An ALpine Particle physics Symposium March 27th 2023

Recent Belle II results related to flavor anomalies

Stefano Moneta On behalf of the Belle II collaboration

Table of contents

• Introduction

- anomalies in $b \rightarrow c$ decays
- Belle II experiment
- lepton identification and *B*-tag
- $R(X_{e/\mu})$ measurement
- Measurement of $B^0 \rightarrow D^* \ell v$ angular asymmetries
- Summary

Anomalies in $b \rightarrow c$ decays

Standard Model assumes **lepton flavor universality** (LFU): $g_e = g_\mu = g_\tau$

• Observed $\sim 3\sigma$ tension in $R(D^{(\star)})$ could hint possible new physics scenarios

We present recent Belle II tests for LFU in **light leptons** (e/μ) for **semileptonic** *b* **decays**:

 $\bar{\nu}_{\tau}$

• Fully inclusive
$$\mathcal{R}(X_{e/\mu}) = rac{\mathcal{B}(B o Xe\nu)}{\mathcal{B}(B o X\mu\nu)}$$

• $B \rightarrow D^* \ell v$ angular asymmetries

The Belle II experiment

- Running at E_{CM} = 10.58 GeV $\Upsilon(4S) \rightarrow B\overline{B}$
- World-record instantaneous luminosity: 4.7 x 10³⁴ cm⁻²s⁻¹
- By summer 2022:
 ∫ ℒ dt = 424 fb⁻¹
 - \circ 189 fb⁻¹ in following analysis

- Multi purpose detector
- **Hermetic** (~ 4π acceptance)
 - combined with knowledge of initial collision → good reconstruction of missing neutrinos

Lepton Identification

Crucial for any LFU test

• **Efficiencies** and **fake rates** measured on different well-known control channels [BELLE2-CONF-PH-2022-003]

5

Event reconstruction

B-mesons are produced in pairs with opposite flavors

Event reconstruction

B-mesons are produced in pairs with opposite flavors

Tag a *B*-meson (*B*_{tag}) in fully hadronic decays
 𝒪(0.1%) efficiency of correctly reconstructed *B*_{tag}

BDT-based algorithm: Full Event Interpretation <u>Comput</u> Softw Big Sci 3, 6 (2019)

• *B*-tagging efficiency higher than Belle and BaBar algorithms

Event reconstruction

B-mesons are produced in pairs with opposite flavors

- Tag a *B*-meson (*B*_{tag}) in fully hadronic decays
 - $\mathcal{O}(0.1\%)$ efficiency of correctly reconstructed B_{tag}
- The other *B*-meson has well-defined energy and momentum

$$R(X_{e/\mu}) = \frac{\operatorname{Br}(B \to X e \nu)}{\operatorname{Br}(B \to X \mu \nu)}$$

- Precise test of LFU for **light** leptons in semileptonic $b \rightarrow c \ell v$
- First fully inclusive $R(X_{e/\mu})$ measurement
- Preparation for measuring inclusive $R(X_{\tau/\ell}) = (B \rightarrow X\tau \nu / B \rightarrow X\ell \nu)$

arXiv:2301.08266 (submitted to PRL)

- Tag a *B*-meson (*B*_{tag}) in **fully** hadronic decays
- Lepton momentum in B_{sig}
 rest-frame: p_p^B > 1.3 GeV/c
 - reduce fakes and secondary leptons
 - suppress leptons from $B \rightarrow X \tau v$
 - if more leptons, keep the one with highest lepton-ID probability
- Rest of the event assigned to fully-inclusive *X*

Extract signal yields N^{meas} by fit in 10 bins of p_{ϱ}^{B} (simultaneously for *e* and μ -channel)

- Maximize binned likelihood, systematics included as nuisance parameters
- 3 model templates (for *e*, *µ* separately)

Extract signal yields N^{meas} by fit in 10 bins of p_{ℓ}^{B} (simultaneously for *e* and μ -channel)

- Maximize binned likelihood, systematics included as nuisance parameters
- 3 model templates (for *e*, *μ* separately):
 - \circ X ℓv signal

Signal modelling:

- $B \rightarrow D^{(*)} \ell_{\nu}$: BGL **form-factor** parametrization <u>Phys. Rev.</u> Lett. 74, 4603 (1995), <u>Phys. Rev. D 103, 073005 (2021)</u>
- B→ D**ℓv: BLR model (form-factor) Phys. Rev. D 97, 075011(2018), Phys. Rev. D 95, 014022 (2017)
- **Non-resonant** "gap-modes" $B \rightarrow D^{(\star)}\pi\pi\ell\nu$, $B \rightarrow D^{(\star)}\eta\ell\nu$: treated as from $B \rightarrow D^{\star\star}\ell\nu$

Extract signal yields N^{meas} by fit in 10 bins of p_{ℓ}^{B} (simultaneously for *e* and μ -channel)

- Maximize binned likelihood, systematics included as nuisance parameters
- 3 model templates (for *e*, *µ* separately):
 - \circ X ℓv signal
 - continuum background

- Use additional 18 fb⁻¹ of **off-resonance** data: 60 MeV below $\Upsilon(4S) \Rightarrow$ no $B\overline{B}$
- Scale cross-section to account for CM energy difference

Extract signal yields N^{meas} by fit in 10 bins of p_{ϱ}^{B} (simultaneously for *e* and μ -channel)

- Maximize binned likelihood, systematics included as nuisance parameters
- 3 model templates (for *e*, *µ* separately):
 - \circ X ℓv signal
 - continuum background
 - other backgrounds (fakes and secondaries)

Data-driven normalization:

• Exploit background-enriched **control channel**: <u>same flavor</u> for reconstructed B_{tag} and B_{sig}

Extract signal yields N^{meas} by fit in 10 bins of p_{ϱ}^{B} (simultaneously for *e* and μ -channel)

- Maximize binned likelihood, systematics included as nuisance parameters
- 3 model templates (for *e*, *µ* separately):
 - \circ X ℓv signal
 - continuum background
 - **other backgrounds** (fakes and secondaries)

Data-driven normalization:

- Exploit background-enriched control channel: same flavor for reconstructed B_{tag} and B_{sig}
- Derive correction factors from **fit** to control channel

 $R(X_{e/\mu})$ – results

Obtain N^{meas} by fit on signal-region data and evaluate R(X), reweighting for signal efficiency:

$$R(X_{e/\mu}) = \frac{N_e^{\text{meas}}}{N_{\mu}^{\text{meas}}} \cdot \frac{\varepsilon_{\mu}}{\varepsilon_e}$$

Signal **efficiency** ε for each channel (including B_{tag} efficiency) :

$$\varepsilon_{\ell} = \frac{N_{\ell}^{\text{sel}}}{N_{\ell}^{\text{gen}}} \qquad \varepsilon_{e} = (1.62 \pm 0.03) \times 10^{-3} \\ \varepsilon_{\mu} = (2.04 \pm 0.05) \times 10^{-3}$$

- $N^{\text{sel}} \rightarrow \text{signal yield extracted from simulation}$
- $N^{\text{gen}} \rightarrow \text{total generated signal events}$

 $R(X_{e/\mu}) = 1.033 \pm 0.010(\text{stat}) \pm 0.019(\text{syst})$

 $R(X_{e/\mu})$ – systematics

- Lepton-ID efficiency and misidentification
- Other systematics mostly cancel in e/μ ratio:
 - form factor and BR uncertainties
 - B_{tag} efficiency corrections are the same for the two channels
- Check model-dependence recomputing efficiency with generated $p_{\rho}^{B} > 1.3 \text{ GeV}/c$
 - result consistent with nominal one

$R(X_{e/\mu})$	$= 1.033 \pm$	0.010(stat)	$) \pm 0.019$	(syst)
$e(-e/\mu)$	1.000 =		/ == 0.010	$\langle \sim J \sim \circ J$

SourceUncertainty [%]Sample size1.0Lepton identification1.9 $X_c \ell \nu$ branching fractions0.1 $X_c \ell \nu$ form factors0.2Total2.2

arXiv:2301.08266 (submitted to PRL)

$m(r_e/\mu'SM)$

$B^0 \rightarrow D^* \ell \nu$ angular asymmetries

$B^0 \rightarrow D^* \ell \nu$ angular asymmetries

Study semileptonic *B* decays to D* vector

- **4 parameters** to fully describe $B \rightarrow D^* \ell v$ decay:
 - \circ $\ell
 u$ invariant mass $q^2 = (p_B p_{D^*})^2$
 - \circ 3 helicity angles $heta_\ell, heta_V, \chi$
 - Properties of *V A* coupling and spin of virtual
 W boson are encoded in angular distributions

We measure **asymmetries** of these **angular distributions** versus q^2

$B^0 \rightarrow D^* \ell \nu$ angular asymmetries

Define a set of 5 asymmetries for angular observables *x*

D*0

W.

v

θ.

 π

LFU in $B^0 \rightarrow D^* \ell \nu$ angular asymmetries

Test e/μ universality through the asymmetry difference:

$$\Delta \mathcal{A} = \mathcal{A}(B
ightarrow D^* \mu
u) - \mathcal{A}(B
ightarrow D^* e
u)$$

- Asymmetries *A* are **experimentally clean** (large cancellations of systematics)
- **A** difference is **theoretically well-known** (reduced form-factor uncertainty)

 $\Delta S_7 \Delta S_9$ reduced or no sensitivity to new physics (used as cross-check)

~4 σ deviation in ΔA_{FB} was claimed by theoretical reinterpretation of Belle data [Eur. Phys. J. C 81, 984 (2021), Phys. Rev. D 103, 079901 (2021)]

$B^0 \rightarrow D^* \ell \nu$ event selection

- Fully reconstruct a *B*-meson
 (*B*_{tag}) in hadronic decay
- Reconstruct signal-side D*&v
 exclusively
 - select one lepton with p_{ℓ} > 0.4 GeV/c
 - look for clean and abundant D^0 decay modes
 - combine with a charged slow pion: $D^* \rightarrow D^0 \pi_s$

$B^0 \rightarrow D^* \ell \nu$ angular asymmetry measurement

Measure **asymmetry** for each angular observable and for each lepton ($\ell = e, \mu$)

Consider three q^2 regions:

- Use D^* recoil parameter *w*: product of *B* and D^* four-velocity (it is proportional to $-q^2$)
 - $\circ w_{low} < 1.275$
 - $\circ w_{high} > 1.275$
 - $w_{\text{incl.}} \rightarrow \text{full phase-space}$

$B^0 \rightarrow D^* \ell \nu$ yields extraction

Fit $M_{\rm miss}^2$ to extract signal yields $N(\pm)$

- Signal is peaked at zero M_{miss}^{2}
- Main background is from $B \rightarrow D^{**} \ell v$, with higher M_{miss}^2

Correct fitted yields for detector acceptance and efficiency

- Use detector response matrix (from simulation)
- Correct for migration of candidates between + – categories and different w-bins

LFU in $B^0 \rightarrow D^* \ell \nu$ angular asymmetries: results

Belle II Preliminary $\int \mathcal{L} dt = 189 \text{ fb}^{-1}$

- Statistical uncertainty is dominant:
 ~one order of magnitude larger than systematics
- Limited size of sample to simulate detector response is the main systematics

Obs.	$w \operatorname{bin}$	Total	Stat.	MC stat.	LID	$\pi_{\rm slow}$
$\Delta A_{\rm FB}$	$w_{\rm low}$	0.064	0.060	0.020	0.004	0.001
	w_{high}	0.072	0.067	0.024	0.004	0.001
	$w_{\rm incl.}$	0.046	0.044	0.015	0.004	0.001
ΔS_3	$w_{\rm low}$	0.071	0.067	0.024	0.001	0.000
	w_{high}	0.072	0.067	0.025	0.001	0.000
	$w_{\rm incl.}$	0.049	0.046	0.017	0.001	0.000
ΔS_5	$w_{\rm low}$	0.072	0.068	0.024	0.001	0.000
	w_{high}	0.070	0.066	0.023	0.001	0.000
	$w_{\rm incl.}$	0.049	0.046	0.016	0.001	0.000
ΔS_7	$w_{\rm low}$	0.070	0.066	0.023	0.001	0.001
	$w_{\rm high}$	0.068	0.064	0.022	0.000	0.000
	$w_{\rm incl.}$	0.047	0.044	0.016	0.000	0.000
ΔS_9	$w_{\rm low}$	0.070	0.065	0.024	0.000	0.000
	w_{high}	0.071	0.067	0.024	0.001	0.001
	$w_{\rm incl.}$	0.049	0.046	0.017	0.000	0.000

Belle II is playing a major role for LFU testing in semi-leptonic *B* decays

- First inclusive measurement of $R(X_{e/u})$ (arXiv:2301.08266 submitted to PRL)
 - most precise BF-based LFU e/μ test in semileptonic *B*-meson decays
 - consistent with Standard Model and with Belle $R(D^*_{e/u})$ measurements
 - $R(X_{e/\mu})$ is the first step towards $R(X_{\tau/\ell})$
- LFU in $B \rightarrow D^* \ell v$ angular asymmetries (**preliminary** result)
 - first comprehensive LFU test in angular distributions of semileptonic *B* decays
 - results agree well with Standard Model, no evidence of LFU
 - new promising method for testing LFU anomalies
 - o demonstration of good experimental control. Still dominated by statistical uncertainty

$B^0 \rightarrow D^* \ell \nu$ angular asymmetries (II)

$$\mathcal{A}_x = rac{\int_0^1 rac{d\Gamma}{dx} dx - \int_{-1}^0 rac{d\Gamma}{dx} dx}{\Gamma}$$

