The Cabibbo angle anomaly, electroweak fits, and $(g-2)_{ au}$

$u^{\scriptscriptstyle b}$

Martin Hoferichter

Albert Einstein Center for Fundamental Physics,

UNIVERSITÄT BERN Institute for Theoretical Physics, University of Bern

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

March 28, 2023

ALPS - Alpine Particle physics Symposium 2023

Obergurgl University Centre

first row:	$ V_{ud} ^2 + V_{us} ^2 + V_{ub} ^2 = 0.9985(5)$
second row:	$ V_{cd} ^2 + V_{cs} ^2 + V_{cb} ^2 = 1.025(22)$
first column:	$ V_{ud} ^2 + V_{cd} ^2 + V_{td} ^2 = 0.9970(18)$
second column:	$ V_{us} ^2 + V_{cs} ^2 + V_{ts} ^2 = 1.026(22)$

• First-row unitarity test

- Testing consistency of V_{ud} and V_{us} at precision of a few times 10^{-4}
- $|V_{ub}|^2 \simeq 1.5 \times 10^{-5}$
- Deficit of (2–3) σ (also deficit in first-column test, but less sensitive)
 - $\hookrightarrow \text{``Cabibbo angle anomaly''}$
- Second row/column more than an order of magnitude away; third row/column $\mathcal{O}(\lambda^4)$
- First part of this talk:
 - Review inputs to first-row test, focus on uncertainties
 - Discuss prospects for improvements

Determination of V_{ud} from superallowed β decays

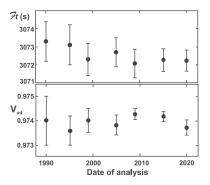
Master formula Hardy, Towner 2018

$$|V_{ud}|^2 = \frac{2984.432(3)\,\mathrm{s}}{\mathcal{F}t(1+\Delta_R^V)}$$

with (universal) radiative corrections Δ_R^V

• Value of V_{ud} crucially depends on Δ_R^V :

Ref.	Δ_R^V			
Marciano, Sirlin 2006	0.02361(38)			
Seng, Gorchtein, Patel, Ramsey-Musolf 2018	0.02467(22)			
Czarnecki, Marciano, Sirlin 2019	0.02426(32)			
Seng, Feng, Gorchtein, Jin 2020	0.02477(24)			
Hayen 2020	0.02474(31)			
Shiells, Blunden, Melnitchouk 2021	0.02472(18)			
Cirigliano, Crivellin, MH, Moulson 2022	0.02467(27)			



Hardy, Towner 2020

- \hookrightarrow main uncertainty from Regge region,
- lattice QCD to improve?

M. Hoferichter (Institute for Theoretical Physics) The Cabibbo angle anomaly, EW fits, and $(g - 2)_{\tau}$

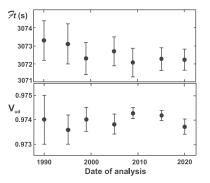
Determination of V_{ud} from superallowed β decays

Further corrections

- Isospin breaking Miller, Schwenk 2008, 2009, Condren, Miller 2022, Seng, Gorchtein 2022, Crawford, Miller 2022
- Nuclear corrections Seng, Gorchtein, Ramsey-Musolf 2018, Gorchtein 2018, Seng, Gorchtein 2022
- Estimate from Gorchtein 2018 becomes dominant source of uncertainty

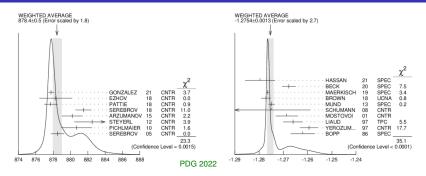
$$\lambda_{ud}^{0^+ \to 0^+} = 0.97367(11)_{exp}(13)_{\Delta_{U}^{R}}(27)_{NS}[32]_{total}$$

 Improvements from ab-initio nuclear structure? Martin, Stroberg, Holt, Leach 2021



Hardy, Towner 2020

Determination of V_{ud} from neutron decay



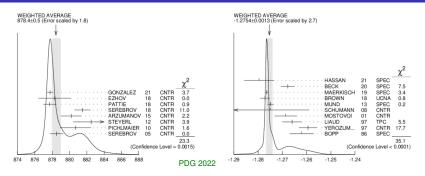
Master formula Czarnecki, Marciano, Sirlin 2018

$$|V_{ud}|^2 \tau_n (1 + 3g_A^2)(1 + \Delta_{\rm RC}) = 5099.3(3) \, {\rm s}$$

with radiative corrections Δ_{RC}

- \hookrightarrow need lifetime τ_n and asymmetry $\lambda = g_A/g_V$
- PDG average especially for g_A includes large scale factors

Determination of V_{ud} from neutron decay



Results for V_{ud}

$$\begin{split} V_{ud}^{n,\,\text{PDG}} &= 0.97441(3)_f(13)_{\Delta_R}(82)_{\lambda}(28)_{\tau_n}[88]_{\text{total}} \\ V_{ud}^{n,\,\text{best}} &= 0.97413(3)_f(13)_{\Delta_R}(35)_{\lambda}(20)_{\tau_n}[43]_{\text{total}} \end{split}$$

 \leftrightarrow average of $V_{ud}^{0^+ \rightarrow 0^+}$ with $V_{ud}^{n, \text{best}}$ gives $V_{ud}^{\beta} = 0.97384(26)$

Need improved measurements especially for g_A to make progress

Determination of V_{ud} from pion β decay

• Master formula Cirigliano, Knecht, Neufeld, Pichl 2003, Czarnecki, Marciano, Sirlin 2020, Feng et al. 2020

$$\Gamma(\pi^+ \to \pi^0 e^+ \nu_e(\gamma)) = \frac{G_F^2 |V_{ud}|^2 M_{\pi^\pm}^5 |f_+^{\pi}(0)|^2}{64\pi^3} (1 + \Delta_{\rm RC}^{\pi\ell}) I_{\pi\ell}$$

 \hookrightarrow need branching fraction and pion life time from experiment

- (Theory) inputs
 - Phase space $I_{\pi\ell} = 7.3766(43) \times 10^{-8}$
 - Form factor $f_{+}^{\pi}(0) = 1 7 \times 10^{-6}$
 - \hookrightarrow protected by SU(2) Ademollo–Gatto theorem (Behrends–Sirlin)
 - Radiative corrections $\Delta_{RC}^{\pi\ell} = 0.0334(10)$ ChPT, Cirigliano et al., $\Delta_{RC}^{\pi\ell} = 0.0332(3)$ lattice QCD, Feng et al.
- Resulting V_{ud} extracted from PIBETA 2004

$$V_{ud}^{\pi, \text{ChPT}} = 0.97376(281)_{\text{BR}}(9)_{\tau_{\pi}}(47)_{\Delta_{\text{RC}}^{\pi\ell}}(28)_{I_{\pi\ell}}[287]_{\text{total}}$$
$$V_{ud}^{\pi, \text{lattice}} = 0.97386(281)_{\text{BR}}(9)_{\tau_{\pi}}(14)_{\Delta_{\text{RC}}^{\pi\ell}}(28)_{I_{\pi\ell}}[283]_{\text{total}}$$

 \hookrightarrow factor 10 possible before other errors creep in, aim for **PIONEER experiment**

Determination of V_{us}/V_{ud} from kaon decays: $K_{\ell 2}/\pi_{\ell 2}$

• $K_{\ell 2}$ decays: $K \rightarrow \ell \nu_{\ell}$

$$\frac{V_{us}}{V_{ud}}\frac{F_{K}}{F_{\pi}} = \left(\frac{\Gamma(K^{+} \to \mu^{+}\nu_{\mu}(\gamma)M_{\pi}}{\Gamma(\pi^{+} \to \mu^{+}\nu_{\mu}(\gamma)M_{K}}\right)^{1/2} \frac{1 - \frac{m_{\mu}^{2}}{M_{\pi}^{2}}}{1 - \frac{m_{\mu}^{2}}{M_{K}^{2}}} \left(1 - \underbrace{\frac{\Delta_{\text{RC}}^{K} - \Delta_{\text{RC}}^{\pi}}{2}}_{\Delta_{\text{RC}}^{K\pi}/2}\right)$$

- Consider the ratio over π_{μ2} because
 - Only need ratio of decay constant
 - Certain structure-dependent radiative corrections cancel
- Need theory input for:
 - Decay constants in isospin limit: $F_K/F_{\pi} = 1.1978(22)$ HPQCD 2013, Fermilab/MILC 2017, CalLat 2020, ETMC 2021
 - Isospin-breaking corrections: $\Delta_{BC}^{K\pi} = -0.0112(21)$ ChPT, Cirigliano, Neufeld 2011,

$$\Delta_{\mathsf{RC}}^{K\pi} = -0.0126(14)$$
 lattice, Di Carlo et al. 2019

Result:

$$\frac{V_{us}}{V_{ud}}\Big|_{K_{\ell 2}/\pi_{\ell 2}} = 0.23108(23)_{\exp}(42)_{F_K/F_\pi}(16)_{\text{IB}}[51]_{\text{total}}$$

•
$$K_{\ell 3}$$
 decays: $K \to \pi \ell \nu_{\ell}$

$$\Gamma(K \to \pi \ell \nu_{\ell}(\gamma)) = \frac{C_{K}^{2} G_{F}^{2} |V_{US}|^{2} M_{K}^{5} |f_{+}^{K\pi}(0)|^{2}}{192\pi^{3}} \left(1 + \underbrace{\Delta_{RC}^{K\ell}}_{\Delta_{EM}^{K} + \Delta_{SU(2)}}\right) I_{K\ell}$$

 $\hookrightarrow \ell = \mu, e$ and two charge channels

- Need theory input for:
 - Form factor: $f_{+}^{K\pi}(0) = 0.9698(17)$ ETMC 2016, Fermilab/MILC 2019
 - Radiative corrections: $\Delta_{SU(2)} = 0.0252(11)$ Cirigliano et al. 2002, $\Delta_{EM}^{K^0e} = 0.0116(3)$, $\Delta_{EM}^{K^+e} = 0.0021(5)$, $\Delta_{EM}^{K^0\mu} = 0.0154(4)$, $\Delta_{EM}^{K^+\mu} = 0.0005(5)$ Seng et al. 2022

Result:

$$V_{us}^{K_{\ell 3}} = 0.22330(35)_{exp}(39)_{f_+}(8)_{IB}[53]_{tota}$$

Tensions in the $V_{ud} - V_{us}$ plane

Global-fit point away from unitarity line

 $(\Delta_{\rm CKM} = |V_{ud}|^2 + |V_{us}|^2 - 1)$

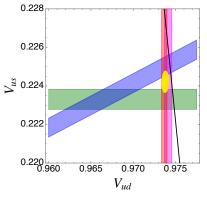
1

$$V_{ud} = 0.97378(26)$$
 $V_{us} = 0.22422(36)$

$$\Delta_{
m CKM} = -1.48(53) imes 10^{-3}$$
 [2.8 σ]

Three possible measures of the CKM tension

$$\begin{split} \Delta_{\text{CKM}}^{(1)} &= \left| V_{ud}^{\beta} \right|^2 + \left| V_{us}^{\kappa_{\ell 3}} \right|^2 - 1 \\ &= -1.76(56) \times 10^{-3} \quad [3.1\sigma] \\ \Delta_{\text{CKM}}^{(2)} &= \left| V_{ud}^{\beta} \right|^2 + \left| V_{us}^{\kappa_{\ell 2}/\pi_{\ell 2}, \beta} \right|^2 - 1 \\ &= -0.98(58) \times 10^{-3} \quad [1.7\sigma] \\ \Delta_{\text{CKM}}^{(3)} &= \left| V_{ud}^{\kappa_{\ell 2}/\pi_{\ell 2}, \kappa_{\ell 3}} \right|^2 + \left| V_{us}^{\kappa_{\ell 3}} \right|^2 - 1 \\ &= -1.64(63) \times 10^{-2} \quad [2.6\sigma] \end{split}$$



Cirigliano, Crivellin, MH, Moulson 2022

 \hookrightarrow already tension in kaon sector alone 2.6 σ

- Corroborating V_{ud}
 - Nuclear-structure corrections for superallowed β decays
 - Improved neutron-decay measurements (g_A, τ_n)
 - Pion *β* decay with PIONEER
- Corroborating V_{us}
 - Improved lattice calculations of F_K/F_{π}
 - A new measurement of K_{µ3}/K_{µ2}, possible at NA62
 - τ and hyperon decays sensitive to V_{us}, but feasible at the relevant level of accuracy?

A new measurement of $K_{\mu3}/K_{\mu2}$, why?

	current fit	κ _μ	$_{\mu 3}/K_{\mu 2}$ BR at 0.	5%	$\kappa_{\mu3}/\kappa_{\mu2}$ BR at 0.2%				
		central	$+2\sigma$	-2σ	central	$+2\sigma$	-2σ		
$\frac{\frac{V_{us}}{V_{ud}}}{\frac{V_{us}}{V_{us}}} _{K_{\ell 2}/\pi_{\ell 2}}$	0.23108(51)	0.23108(50)	0.23085(51)	0.23133(51)	0.23108(49)	0.23071(51)	0.23147(52)		
$V_{us}^{K_{\ell 3}}$	0.22330(53)	0.22337(51)	0.22360(52)	0.22309(54)	0.22342(49)	0.22386(52)	0.22287(52)		
10 ² ∆ ⁽³⁾ CKM	-1.64(63) -2.6σ	-1.57(60) -2.6σ	-1.18(62) -1.9σ	-2.02(63) -3.2σ	-1.53(59) -2.6σ	-0.83(62) -1.4σ	-2.33(62) -3.8σ		

• Is the $K_{\ell 3}$ vs. $K_{\ell 2}$ tension real or an experimental problem?

- $K_{\ell 2}$ data base completely dominated by KLOE 2006
- Global fit to kaon data not great, p-value $\simeq 1\%$
- This can be clarified with a new precision measurement of $K_{\mu3}/K_{\mu2}$:
 - In case the tension were of experimental origin, there should be a positive shift compared to current fit

 $\hookrightarrow \Delta_{\text{CKM}}^{(3)}$ would move from -2.6σ to -1.4σ for a $+2\sigma$ shift with a 0.2% measurement

 In case the tension were of BSM origin, the current value would be confirmed (or move further in the other direction)

\hookrightarrow a single new precision measurement would have a huge impact!

Modify right-handed current

 \hookrightarrow vector \sim 1 + ε_R , axial-vector \sim 1 - ε_R

$$\begin{split} \Delta_{\text{CKM}}^{(1)} &= 2\varepsilon_R + 2\Delta\varepsilon_R V_{us}^2 \qquad \text{(blue)} \\ \Delta_{\text{CKM}}^{(2)} &= 2\varepsilon_R - 2\Delta\varepsilon_R V_{us}^2 \qquad \text{(red)} \\ \Delta_{\text{CKM}}^{(3)} &= 2\varepsilon_R + 2\Delta\varepsilon_R (2 - V_{us}^2) \qquad \text{(green)} \end{split}$$

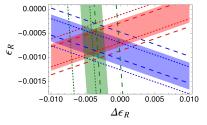
where
$$\Delta arepsilon_R \equiv arepsilon_R^{(s)} - arepsilon_R$$

Current fit

$$\varepsilon_R = -0.69(27) \times 10^{-3}$$
 [2.5 σ]
 $\Delta \varepsilon_R = -3.9(1.6) \times 10^{-3}$ [2.4 σ]

Impact of new K_{μ3}/K_{μ2} measurement mainly

ON $\Delta \varepsilon_R$ (dashed and dotted lines $\pm 2\sigma$ benchmark)



Cirigliano, Crivellin, MH, Moulson 2022

Fermi constant

Best determination from muon decay MuLan 2013

$$G_F^{\mu} = 1.1663787(6) \times 10^{-5} \, \text{GeV}^{-2}$$

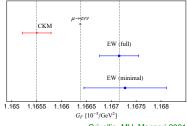
Electroweak fit Marciano 1999, update using HEPFit

$$\left. {{\it G}_{\it F}^{\sf EW}}
ight|_{\sf full} = 1.16716(39) imes 10^{-5} \, {\rm GeV^{-2}}$$

• CKM deficit interpreted as modification of G_F in β decays

$$G_F^{
m CKM} = 1.16550(29) imes 10^{-5} \, {
m GeV}^{-2}$$

Does not explain tension in kaon sector



Crivellin, MH, Manzari 2021

SMEFT analysis of G_F tensions

- Possible explanations in terms of effective operators
 - If our-fermion operators in $\mu \to e\nu\nu$: only viable for SM operator $Q_{\ell\ell}^{2112} = \bar{\ell}_2 \gamma^{\mu} \ell_1 \bar{\ell}_1 \gamma_{\mu} \ell_2$
 - If our-fermion operators in $u \rightarrow de\nu$: now excluded by LHC bounds
 - Modified W-u-d couplings: possible in terms of Belfatto, Berezhiani 2021

$$Q_{\phi q}^{(3)ij} = \phi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu}^{l} \phi \bar{q}_{i} \gamma^{\mu} \tau^{l} q_{j} \qquad Q_{\phi u d}^{ij} = \tilde{\phi}^{\dagger} i D_{\mu} \phi \bar{u}_{i} \gamma^{\mu} d_{j}$$

 \hookrightarrow generate left- and right-handed currents, respectively

o modified $W - \ell - \nu$ couplings: operator

$$Q^{(3)ij}_{\phi\ell} = \phi^{\dagger} i \overset{\leftrightarrow}{D}^{\prime}_{\mu} \phi \bar{\ell}_{i} \gamma^{\mu} \tau^{\prime} \ell_{j}$$

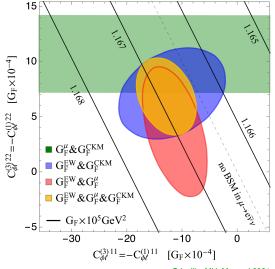
leads to interpretation in terms of LFUV Crivellin, MH 2020

 ${igsimus}$ other operators affecting the EW fit see also talk by D. Stöckinger, $Q^{(3)ij}_{\phi\ell}$ and

$$Q_{\phi\ell}^{(1)ij} = \phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi \bar{\ell}_{i} \gamma^{\mu} \ell_{j}$$

 \hookrightarrow effect can be minimized by turning off $Z \to \ell \ell$ with $C^{(1)ij}_{\phi\ell} = -C^{(3)ij}_{\phi\ell}$

SMEFT analysis of G_F tensions



- Common explanation in terms of $C_{\phi\ell}^{(1)11} = -C_{\phi\ell}^{(3)11}$ and $C_{\phi\ell}^{(1)22} = -C_{\phi\ell}^{(3)22}$ possible
- For BSM sensitivity the second-most-precise determination of *G_F* is crucial

Crivellin, MH, Manzari 2021

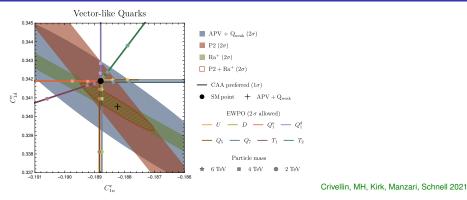
				<u> </u>								
	Result	Result with CKM	a (3)				H ood			$\Delta x^2 = 2^{-1}$	1	
$\hat{C}^{(1)}_{\varphi l}$	-0.007 ± 0.011	-0.013 ± 0.009	$\hat{C}_{HI}^{(3)}$	Ē.					Avg.	-~ -		
$\hat{C}^{(3)}_{\varphi l}$	-0.042 ± 0.015	-0.034 ± 0.014			SM				σ			
$\hat{C}_{\varphi e}$	-0.017 ± 0.009	-0.021 ± 0.009			, , ,				Vorl	$\Delta \chi^2 = 23$		
$ \hat{C}^{(1)}_{\varphi l} \\ \hat{C}^{(3)}_{\varphi l} \\ \hat{C}^{(3)}_{\varphi q} \\ \hat{C}^{(3)}_{\varphi q} \\ \hat{C}^{(3)}_{\varphi q} \\ \hat{C}^{(3)}_{\varphi q} \\ \hat{C}_{\varphi u} \\ \hat{C}_{\varphi d} $	-0.0181 ± 0.044	-0.048 ± 0.04	Ĉ	ŀ		нон	⊷	4	5	Δχ~=2.	5	• EWPO
$\hat{C}_{\varphi q}^{(3)}$	-0.114 ± 0.043	-0.041 ± 0.015	Out[-]=									
$\hat{C}_{\varphi u}$	0.086 ± 0.154	-0.12 ± 0.11										 EWPO+Δ_{CKM}
$\hat{C}_{\varphi d}$	-0.626 ± 0.248	-0.38 ± 0.22	All	L				H	<u> </u>	+ $\Delta \chi^2 = 3$.	3	
C_{Δ}	-0.19 ± 0.09	-0.027 ± 0.011	7.01							-		
				L.								
			-	20		2	20	40	60	80	100)

 $m_W - m_W^{SM}$ (MeV)

Cirigliano, Dekens, de Vries, Mereghetti, Tong 2022 Falkowski, Gonzáles-Alonso, . . .

- $\Delta_{\rm CKM}$ excludes certain explanations of M_W
 - \hookrightarrow should be included in EW fit
- Otherwise, generic explanations tend to produce a percent-level Δ_{CKM}

Correlations with parity violation in simplified models



• Low-energy parity violation conventionally parameterized in terms of

$$\mathcal{L}_{\mathsf{eff}}^{ee} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d,s} \left(\frac{C_{1q}^e [\bar{q}\gamma^{\mu}q] [\bar{e}\gamma_{\mu}\gamma_5 e] + \frac{C_{2q}^e [\bar{q}\gamma^{\mu}\gamma_5 q] [\bar{e}\gamma_{\mu}e]}{[\bar{e}\gamma_{\mu}e]} \right)$$

• In simplified models, Cabibbo angle anomaly defines a preferred parameter range

 \hookrightarrow can be tested in parity-violating electron scattering and atomic parity violation

Lepton flavor universality violation

- Let us parameterize the *W* couplings as $\mathcal{L} = -i \frac{g_2}{\sqrt{2}} \bar{\ell}_i \gamma^{\mu} P_L \nu_j W_{\mu} (\delta_{ij} + \varepsilon_{ij})$
- Modifies Fermi constant in muon decay

$$rac{1}{ au_{\mu}}=rac{(G_{F}^{\mathcal{L}})^{2}m_{\mu}^{5}}{192\pi^{3}}(1+\Delta q)(1+arepsilon_{ee}+arepsilon_{\mu\mu})^{2}$$

 \hookrightarrow measured Fermi constant $G_F = G_F^{\mathcal{L}}(1 + \varepsilon_{ee} + \varepsilon_{\mu\mu})$

• All β -decay observables affected according to

$$V_{ud}
ightarrow V_{ud}^eta = V_{ud}^{\mathcal{L}} ig(1 - arepsilon_{\mu\mu}ig)$$

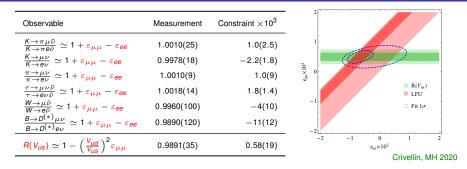
where $V_{ij}^{\mathcal{L}}$ fulfill CKM unitarity

Construct ratio Crivellin, MH 2020

$$R(V_{us}) \equiv \frac{V_{us}^{K_{\mu2}}}{V_{us}^{\beta}} \equiv \frac{V_{us}^{K_{\mu2}}}{\sqrt{1 - (V_{ud}^{\beta})^2 - |V_{ub}|^2}} = 1 - \left(\frac{V_{ud}}{V_{us}}\right)^2 \varepsilon_{\mu\mu} + \mathcal{O}(\varepsilon^2)$$

 \hookrightarrow LFUV effect enhanced by $(V_{ud}/V_{us})^2 \sim 20!$

Lepton flavor universality violation



- Most stringent constraint on $\varepsilon_{\mu\mu}$ thanks to CKM enhancement
- Also does not explain tension in kaon sector
- Best constraint on $\varepsilon_{\mu\mu} \varepsilon_{ee}$ from

$$\mathbf{R}_{\mathbf{e}/\mu}^{\pi} = \frac{\Gamma(\pi \to \mathbf{e}\nu_{\mathbf{e}}(\gamma)}{\Gamma(\pi \to \mu\nu_{\mu}(\gamma))}$$

• Factor 3 (10) from PEN/PiENu (PIONEER), factor 3 for τ decays from Belle II

What about $(g-2)_{\tau}$?

• Current status Abdallah et al. 2004, Keshavarzi et al. 2020

 $a_{\tau}^{\exp} = -0.018(17)$ vs. $a_{\tau}^{SM} = 1,177.171(39) \times 10^{-6}$

• Scaling arguments:

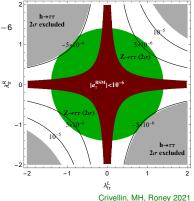
Minimal flavor violation:

$$a_{ au}^{ extsf{BSM}} \simeq a_{\mu}^{ extsf{BSM}} \left(rac{m_{ au}}{m_{\mu}}
ight)^2 \simeq 0.7 imes 10^{-6}$$

• Electroweak contribution: $a_{ au}^{\sf EW} \simeq 0.5 \times 10^{-6}$

Concrete models:

 S₁ leptoquark model promising due to chiral enhancement with m_t/m_τ → can get a_τ^{BSM} ≃ (few) × 10⁻⁶ without violating h → ττ and Z → ττ



- Ultimate target has to be a measurement of a_{τ} at the level of 10^{-6}
 - \hookrightarrow requires two-loop accuracy for theory throughout

Experimental prospects for $(g-2)_{\tau}$

- Many recent proposals, none of which seem to reach much beyond the Schwinger term
- Exception: $e^+e^-
 ightarrow au^+ au^-$ at Υ resonances Bernabéu et al. 2007
 - \hookrightarrow quotes projections at 10^{-6} level
- Idea: study $e^+e^-
 ightarrow au^+ au^-$ cross section and asymmetries

 \hookrightarrow could this be realized at Belle II Crivellin, MH, Roney 2021?

- Answer: yes, but requires polarization upgrade of SuperKEK to get access to transverse and longitudinal asymmetries
 - \hookrightarrow Hiroshima Workshop on Beam Polarization Feb 8+9, https://indico.belle2.org/event/7500/
- Idea: extract $F_2(s)$ at $s \simeq (10 \,\text{GeV})^2$, but heavy new physics decouples

 $\hookrightarrow a_{ au}^{\mathsf{BSM}} = F_2^{\mathsf{exp}}(s) - F_2^{\mathsf{SM}}(s)$ as long as $s \ll \Lambda_{\mathsf{BSM}}^2$

 Bounds on light BSM become model dependent, but anyway better constrained in other processes • Differential cross section for $e^+e^- \rightarrow \tau^+\tau^-$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta}{4s} \bigg[(2 - \beta^2 \sin^2 \theta) \Big(|F_1|^2 - \gamma^2 |F_2|^2 \Big) + 4\text{Re}\left(F_1 F_2^*\right) + 2(1 + \gamma^2) |F_2|^2 \bigg]$$

with scattering angle θ , $\beta = \sqrt{1 - 4m_{\tau}^2/s}$, $\gamma = \sqrt{s}/(2m_{\tau})$

- Interference term $4\text{Re}(F_1F_2^*)$ sensitive to the sought two-loop effects
- Could be determined by fit to θ dependence
- But: need to measure total cross section at 10⁻⁶

 \hookrightarrow can we use asymmetries instead?

• Usual forward–backward asymmetry ($z = \cos \theta$)

$$\sigma_{\mathsf{FB}} = 2\pi \bigg[\int_0^1 dz \frac{d\sigma}{d\Omega} - \int_{-1}^0 dz \frac{d\sigma}{d\Omega} \bigg]$$

alone does not help

Second attempt: normal asymmetry

• Idea: use polarization information of the τ^{\pm}

- \hookrightarrow semileptonic decays $\tau^{\pm} \rightarrow h^{\pm} \nu_{\tau}^{(-)}$, $h = \pi$. ρ Bernabéu et al. 2007
- Polarization characterized by

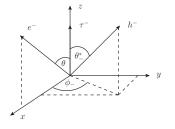
$$\mathbf{n}_{\pm}^{*} = \mp \alpha_{\pm} \begin{pmatrix} \sin \theta_{\pm}^{*} \cos \phi_{\pm} \\ \sin \theta_{\pm}^{*} \sin \phi_{\pm} \\ \cos \theta_{\pm}^{*} \end{pmatrix} \qquad \alpha_{\pm} \equiv \frac{m_{\tau}^{2} - 2m_{h^{\pm}}^{2}}{m_{\tau}^{2} + 2m_{h^{\pm}}^{2}} = \begin{cases} 0.97 & h^{\pm} = \pi^{\pm} \\ 0.46 & h^{\pm} = \rho^{\pm} \end{cases}$$

 \hookrightarrow angles in τ^{\pm} rest frame

Normal asymmetry

$$A_{N}^{\pm} = \frac{\sigma_{L}^{\pm} - \sigma_{R}^{\pm}}{\sigma} \propto \text{Im} F_{2}(s) \qquad \sigma_{L}^{\pm} = \int_{\pi}^{2\pi} d\phi_{\pm} \frac{d\sigma_{\text{FB}}}{d\phi_{\pm}} \quad \sigma_{R}^{\pm} = \int_{0}^{\pi} d\phi_{\pm} \frac{d\sigma_{\text{FB}}}{d\phi_{\pm}}$$

 \hookrightarrow only get the imaginary part, **need electron polarization**



Third attempt: electron polarization

• Transverse and longitudinal asymmetries Bernabéu et al. 2007

$$A_{T}^{\pm} = \frac{\sigma_{R}^{\pm} - \sigma_{L}^{\pm}}{\sigma} \qquad A_{L}^{\pm} = \frac{\sigma_{\text{FB},R}^{\pm} - \sigma_{\text{FB},L}^{\pm}}{\sigma}$$

Constructed based on helicity difference

$$d\sigma_{\text{pol}}^{S} = \frac{1}{2} \left(d\sigma^{S\lambda} \big|_{\lambda=1} - d\sigma^{S\lambda} \big|_{\lambda=-1} \right)$$

and then integrating over angles

$$\sigma_{R}^{\pm} = \int_{-\pi/2}^{\pi/2} d\phi_{\pm} \frac{d\sigma_{\text{pol}}^{S}}{d\phi_{\pm}} \qquad \sigma_{L}^{\pm} = \int_{\pi/2}^{3\pi/2} d\phi_{\pm} \frac{d\sigma_{\text{pol}}^{S}}{d\phi_{\pm}} \qquad \sigma_{\text{FB},R}^{\pm} = \int_{0}^{1} dz_{\pm}^{*} \frac{d\sigma_{\text{FB,pol}}^{S}}{dz_{\pm}^{*}} \qquad \sigma_{\text{FB},L}^{\pm} = \int_{-1}^{0} dz_{\pm}^{*} \frac{d\sigma_{\text{FB,pol}}^{S}}{dz_{\pm}^{*}}$$

Linear combination

$$\mathbf{A}_{\mathbf{7}}^{\pm} - \frac{\pi}{2\gamma} \mathbf{A}_{\mathbf{L}}^{\pm} = \mp \alpha_{\pm} \frac{\pi^2 \alpha^2 \beta^3 \gamma}{4 s \sigma} [\operatorname{\mathsf{Re}}\left(\mathbf{F}_{\mathbf{2}} \mathbf{F}_{\mathbf{1}}^*\right) + |\mathbf{F}_{\mathbf{2}}|^2]$$

isolates the interesting interference effect

How to make use of this?

Contributions to Re $F_2^{\text{eff}}(s)$	<i>s</i> = 0	$s = (10 \mathrm{GeV})^2$
1-loop QED	1161.41	-265.90
e loop	10.92	-2.43
μ loop	1.95	-0.34
2-loop QED (mass independent)	-0.42	-0.24
HVP	3.33	-0.33
EW	0.47	0.47
total	1177.66	-268.77

 $\begin{aligned} &\mathsf{Re}\, F_2^{\mathsf{eff}}((10\,\mathsf{GeV})^2) \\ &\simeq \mp \frac{0.73}{\alpha_+} \left(\mathsf{A}_7^\pm - 0.56\mathsf{A}_L^\pm \right) \end{aligned}$

• Strategy:

• Measure effective F₂(s)

$$\mathsf{Re}\,\mathbf{F}_{2}^{\mathsf{eff}} = \mp \frac{8(3-\beta^{2})}{3\pi\gamma\beta^{2}\alpha_{\pm}} \Big(\mathbf{A}_{7}^{\pm} - \frac{\pi}{2\gamma}\mathbf{A}_{L}^{\pm}\Big)$$

- Compare measurement to SM prediction for Re F₂^{eff}
- Difference gives constraint on a_{τ}^{BSM}
- A measurement of $A_T^{\pm} \frac{\pi}{2\gamma} A_L^{\pm}$ at $\lesssim 1\%$ would already be competitive with current limits

• Challenges:

- Cancellation in $A_T^{\pm} \frac{\pi}{2\gamma} A_L^{\pm}$: $A_{T,L}^{\pm} = \mathcal{O}(1)$, difference $\mathcal{O}(\alpha)$
- Two-loop calculation in SM see 2111.10378 for form factor and radiative corrections
- Form factor only dominates for resonant $\tau^+\tau^-$ pairs

$$|H(M_{\Upsilon})|^2 = \left(rac{3}{lpha} \mathrm{Br}(\Upsilon o e^+ e^-)
ight)^2 \simeq 100$$

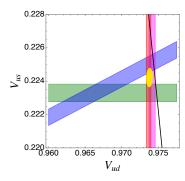
- However: continuum pairs dominate even at $\Upsilon(nS)$, n = 1, 2, 3, due to energy spread
- Should consider A[±]_T, A[±]_L also for nonresonant τ⁺τ⁻, but requires substantial investment in theory for SM prediction (box diagrams, ...)

Conclusions

- Tensions among β decays and kaon decays point to the apparent violation of CKM unitarity
- Tension at the level of $(2-3)\sigma$
 - \hookrightarrow more work needed to corroborate or resolve
- Pion β decay clean, competitive probe of V_{ud} if branching fraction improved by a factor 10
- New precision measurement of $K_{\mu3}/K_{\mu2}$ to clarify situation in kaon sector
- Interesting interplay with electroweak fit and tests of lepton flavor universality
- BSM search with $(g-2)_{ au}$ via $e^+e^- o au^+ au^-$

asymmetries using polarized electrons

SuperKEKB with electron polarization upgrade?



• For $K_{\ell 2}$ and $\pi_{\ell 2}$ decays one uses the ratio

$$\boldsymbol{R}_{\boldsymbol{A}} = \frac{\Gamma(K^+ \to \mu^+ \nu_{\mu}(\gamma)}{\Gamma(\pi^+ \to \mu^+ \nu_{\mu}(\gamma)} = \left(\frac{\boldsymbol{V}_{\boldsymbol{us}}}{\boldsymbol{V}_{\boldsymbol{ud}}} \frac{\boldsymbol{F}_{\boldsymbol{K}}}{\boldsymbol{F}_{\pi}}\right)^2 \frac{\boldsymbol{M}_{\boldsymbol{K}}}{\boldsymbol{M}_{\pi}} \left(\frac{1 - \frac{m_{\mu}^2}{M_{\boldsymbol{K}}^2}}{1 - \frac{m_{\mu}^2}{M_{\pi}^2}}\right)^2 \left(1 + \Delta_{\boldsymbol{R}\boldsymbol{C}}^{\boldsymbol{K}} - \Delta_{\boldsymbol{R}\boldsymbol{C}}^{\boldsymbol{\pi}}\right)$$

to cancel uncertainties and extract V_{us}/V_{ud}

• Can do the same for $K_{\ell 3}$ and $\pi_{\ell 3}$ Czarnecki, Marciano, Sirlin 2020

$$R_{V} = \frac{\Gamma(K \to \pi \ell \nu_{\ell}(\gamma))}{\Gamma(\pi^{+} \to \pi^{0} e^{+} \nu_{e}(\gamma))}$$

- Need a factor 2–3 to obtain a competitive value of V_{us}/V_{ud}, first goal for PIONEER
- Caveats: contrary to *R*_A no cancellation of structure-dependent radiative corrections nor gains in form-factor determination
 - \hookrightarrow need factor 10 of Phase III to unleash full potential

BSM searches with pion β decay

Generalize master formula to include effective operators not present in SM

$$\begin{split} \Gamma(\pi^+ \to \pi^0 e^+ \nu_e(\gamma)) &= \frac{G_F^2 |V_{ed}|^2}{192\pi^3 M_\pi^3} (1 + \Delta_{\rm RC}^{\pi\ell}) \int_{m_e^2}^{(M_\pi - M_\pi 0)^2} ds \, \lambda^{3/2}(s) \left(1 + \frac{m_e^2}{2s}\right) \left(1 - \frac{m_e^2}{s}\right)^2 \\ &\times \left[|V(s)|^2 + |A(s)|^2 + \frac{4(s - m_e^2)^2}{9sm_e^2} |T(s)|^2 + \frac{3m_e^2 (M_\pi^2 - M_{\pi 0}^2)^2}{(2s + m_e^2)\lambda(s)} \left(|S(s)|^2 + |P(s)|^2\right)\right] \end{split}$$

with V(s), A(s), ... depending on Wilson coefficients c_V , c_A , ...

- Tensor: $T(s) = \frac{3s}{2s+m_{\theta}^2} \frac{m_{\theta}}{M_{\pi}} c_T B_T^{\pi}(s)$
 - \hookrightarrow suppressed by electron mass and tensor form factor
- Scalar: more competitive constraints, but still not at the same level as other β decays Falkowski, Gonzáles-Alonso, Naviliat-Cuncic 2020