## The Cabibbo angle anomaly, electroweak fits, and $(g-2)_{\tau}$

## $u^{b}$ <br> b

Martin Hoferichter<br>Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern<br>March 28, 2023<br>ALPS - Alpine Particle physics Symposium 2023<br>Obergurgl University Centre

ALBERT EINSTEIN CENTER
FOR FUNDAMENTAL PHYSICS

## CKM unitarity

## Benchmarks numbers for CKM tests from PDG

| first row: | $\left\|V_{u d}\right\|^{2}+\left\|V_{u s}\right\|^{2}+\left\|V_{u b}\right\|^{2}=0.9985(5)$ |
| :--- | :--- |
| second row: | $\left\|V_{c d}\right\|^{2}+\left\|V_{c s}\right\|^{2}+\left\|V_{c b}\right\|^{2}=1.025(22)$ |
| first column: | $\left\|V_{u d}\right\|^{2}+\left\|V_{c d}\right\|^{2}+\left\|V_{t d}\right\|^{2}=0.9970(18)$ |
| second column: | $\left\|V_{u s}\right\|^{2}+\left\|V_{c s}\right\|^{2}+\left\|V_{t s}\right\|^{2}=1.026(22)$ |

- First-row unitarity test
- Testing consistency of $V_{u d}$ and $V_{u s}$ at precision of a few times $10^{-4}$
- $\left|V_{u b}\right|^{2} \simeq 1.5 \times 10^{-5}$
- Deficit of (2-3) $\sigma$ (also deficit in first-column test, but less sensitive)
$\hookrightarrow$ "Cabibbo angle anomaly"
- Second row/column more than an order of magnitude away; third row/column $\mathcal{O}\left(\lambda^{4}\right)$
- First part of this talk:
- Review inputs to first-row test, focus on uncertainties
- Discuss prospects for improvements


## Determination of $V_{u d}$ from superallowed $\beta$ decays

- Master formula Hardy, Towner 2018

$$
\left|V_{u d}\right|^{2}=\frac{2984.432(3) \mathrm{s}}{\mathcal{F} t\left(1+\Delta_{R}^{V}\right)}
$$

with (universal) radiative corrections $\Delta_{R}^{V}$

- Value of $V_{u d}$ crucially depends on $\Delta_{R}^{V}$ :

| Ref. | $\Delta_{R}^{V}$ |
| :---: | :---: |
| Marciano, Sirlin 2006 | $0.02361(38)$ |
| Seng, Gorchtein, Patel, Ramsey-Musolf 2018 | $0.02467(22)$ |
| Czarnecki, Marciano, Sirlin 2019 | $0.02426(32)$ |
| Seng, Feng, Gorchtein, Jin 2020 | $0.02477(24)$ |
| Hayen 2020 | $0.02474(31)$ |
| Shiells, Blunden, Melnitchouk 2021 | $0.02472(18)$ |
| Cirigliano, Crivellin, MH, Moulson 2022 | $0.02467(27)$ |



Hardy, Towner 2020
$\hookrightarrow$ main uncertainty from Regge region, lattice QCD to improve?

## Determination of $V_{u d}$ from superallowed $\beta$ decays

- Further corrections
- Isospin breaking Miller, Schwenk 2008, 2009, Condren, Miller 2022, Seng, Gorchtein 2022, Crawford, Miller 2022
- Nuclear corrections Seng, Gorchtein, Ramsey-Musolf 2018, Gorchtein 2018, Seng, Gorchtein 2022
- Estimate from Gorchtein 2018 becomes dominant source of uncertainty

$$
V_{u d}^{0^{+} \rightarrow 0^{+}}=0.97367(11)_{\exp }(13)_{\Delta_{V}^{R}}(27)_{\mathrm{NS}}[32]_{\text {total }}
$$

- Improvements from ab-initio nuclear


Hardy, Towner 2020
structure? Martin, Stroberg, Holt, Leach 2021

## Determination of $V_{u d}$ from neutron decay



PDG 2022


- Master formula Czarnecki, Marciano, Sirlin 2018

$$
\left|V_{u d}\right|^{2} \tau_{n}\left(1+3 g_{A}^{2}\right)\left(1+\Delta_{\mathrm{RC}}\right)=5099.3(3) \mathrm{s}
$$

with radiative corrections $\Delta_{R C}$
$\hookrightarrow$ need lifetime $\tau_{n}$ and asymmetry $\lambda=g_{A} / g_{V}$

- PDG average especially for $g_{A}$ includes large scale factors


## Determination of $V_{u d}$ from neutron decay



PDG 2022


- Results for $V_{u d}$

$$
\begin{aligned}
& V_{u d}^{\mathrm{n}, \mathrm{PDG}}=0.97441(3)_{f}(13)_{\Delta_{R}}(82)_{\lambda}(28)_{\tau_{n}}[88]_{\text {total }} \\
& V_{u d}^{\mathrm{n}, \text { best }}=0.97413(3)_{f}(13)_{\Delta_{R}}(35)_{\lambda}(20)_{\tau_{n}}[43]_{\text {total }}
\end{aligned}
$$

$\hookrightarrow$ average of $V_{u d}^{0+} \rightarrow 0^{+}$with $V_{u d}^{n, \text { best }}$ gives $V_{u d}^{\beta}=0.97384(26)$

- Need improved measurements especially for $g_{A}$ to make progress


## Determination of $V_{u d}$ from pion $\beta$ decay

- Master formula Cirigliano, Knecht, Neufeld, Pichl 2003, Czarnecki, Marciano, Sirlin 2020, Feng et al. 2020

$$
\Gamma\left(\pi^{+} \rightarrow \pi^{0} e^{+} \nu_{e}(\gamma)\right)=\frac{G_{F}^{2}\left|V_{u d}\right|^{2} M_{\pi^{ \pm}}^{5}\left|f_{+}^{\pi}(0)\right|^{2}}{64 \pi^{3}}\left(1+\Delta_{R C}^{\pi \ell}\right) I_{\pi \ell}
$$

$\hookrightarrow$ need branching fraction and pion life time from experiment

- (Theory) inputs
- Phase space $I_{\pi \ell}=7.3766(43) \times 10^{-8}$
- Form factor $f_{+}^{\pi}(0)=1-7 \times 10^{-6}$
$\hookrightarrow$ protected by SU(2) Ademollo-Gatto theorem (Behrends-Sirlin)
- Radiative corrections $\Delta_{R C}^{\pi \ell}=0.0334(10)$ ChPT, Cirigliano et al., $\Delta_{R C}^{\pi \ell}=0.0332(3)$ lattice QCD, Feng et al.
- Resulting $V_{u d}$ extracted from PIBETA 2004

$$
\begin{aligned}
V_{u d}^{\pi, \mathrm{ChPT}} & =0.97376(281)_{\mathrm{BR}}(9)_{\tau_{\pi}}(47)_{\Delta_{\mathrm{RC}}^{\pi \ell}}(28)_{I_{\ell \ell}}[287]_{\mathrm{total}} \\
V_{u d}^{\pi, \text { lattice }} & =0.97386(281)_{\mathrm{BR}}(9)_{\tau_{\pi}}(14)_{\Delta_{\mathrm{RC}}^{\pi \ell}}(28)_{I_{\pi} \ell}[283]_{\mathrm{total}}
\end{aligned}
$$

$\hookrightarrow$ factor 10 possible before other errors creep in, aim for PIONEER experiment

## Determination of $V_{u s} / V_{u d}$ from kaon decays: $K_{\ell 2} / \pi_{\ell 2}$

- $K_{\ell 2}$ decays: $K \rightarrow \ell \nu_{\ell}$

$$
\frac{V_{u s}}{V_{u d}} \frac{F_{K}}{F_{\pi}}=\left(\frac{\Gamma\left(K^{+} \rightarrow \mu^{+} \nu_{\mu}(\gamma) M_{\pi}\right.}{\Gamma\left(\pi^{+} \rightarrow \mu^{+} \nu_{\mu}(\gamma) M_{K}\right.}\right)^{1 / 21-\frac{m_{\mu}^{2}}{M_{\pi}^{2}}} \frac{1-\frac{m_{\mu}^{2}}{M_{K}^{2}}}{(1-\underbrace{\frac{\Delta_{\mathrm{RC}}^{K}-\Delta_{\mathrm{RC}}^{\pi}}{2}}_{\Delta_{\mathrm{RC}}^{K} / 2})}
$$

- Consider the ratio over $\pi_{\mu 2}$ because
- Only need ratio of decay constant
- Certain structure-dependent radiative corrections cancel
- Need theory input for:
- Decay constants in isospin limit: $F_{K} / F_{\pi}=1.1978(22)$ HPQCD 2013, Fermilab/MILC 2017, CalLat 2020, ETMC 2021
- Isospin-breaking corrections: $\Delta_{\text {RC }}^{K \pi}=-0.0112(21) \mathrm{ChPT}$, Cirigliano, Neufeld 2011, $\Delta_{\mathrm{RC}}^{K \pi}=-0.0126(14)$ lattice, Di Carlo et al. 2019
- Result:

$$
\left.\frac{V_{u s}}{V_{u d}}\right|_{K_{\ell 2} / \pi_{\ell 2}}=0.23108(23)_{\exp }(42)_{F_{K} / F_{\pi}}(16)_{\mathrm{IB}}[51]_{\mathrm{total}}
$$

## Determination of $V_{u s}$ from kaon decays: $K_{\ell 3}$

- K $K_{\ell 3}$ decays: $K \rightarrow \pi \ell \nu_{\ell}$

$$
\Gamma\left(K \rightarrow \pi \ell \nu_{\ell}(\gamma)\right)=\frac{C_{K}^{2} G_{F}^{2}\left|V_{u s}\right|^{2} M_{K}^{5}\left|f_{+}^{K \pi}(0)\right|^{2}}{192 \pi^{3}}(1+\underbrace{\Delta_{\mathrm{RC}}^{K \ell}}_{\Delta_{\mathrm{EM}}^{K \ell}+\Delta_{S U(2)}})) I_{K \ell}
$$

$\hookrightarrow \ell=\mu, e$ and two charge channels

- Need theory input for:
- Form factor: $f_{+}^{K \pi}(0)=0.9698(17)$ ETMC 2016, Fermilab/MILC 2019
- Radiative corrections: $\Delta_{S U(2)}=0.0252(11)$ Cirigliano et al. 2002, $\Delta_{\mathrm{EM}}^{K^{0} e}=0.0116(3)$,

$$
\Delta_{\mathrm{EM}}^{K^{+} e}=0.0021(5), \Delta_{\mathrm{EM}}^{K^{0} \mu}=0.0154(4), \Delta_{\mathrm{EM}}^{K^{+} \mu}=0.0005(5) \text { Seng et al. } 2022
$$

- Result:

$$
V_{u S}^{K_{\ell 3}}=0.22330(35)_{\exp }(39)_{f_{+}}(8)_{\mathrm{IB}}[53]_{\text {total }}
$$

## Tensions in the $V_{u d}-V_{u s}$ plane

- Global-fit point away from unitarity line

$$
\begin{aligned}
&\left(\Delta_{\mathrm{CKM}}=\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}-1\right) \\
& V_{u d}=0.97378(26) \quad V_{u s}=0.22422(36) \\
& \Delta_{\mathrm{CKM}}=-1.48(53) \times 10^{-3} \quad[2.8 \sigma]
\end{aligned}
$$



Cirigliano, Crivellin, MH, Moulson 2022
$\hookrightarrow$ already tension in kaon sector alone $2.6 \sigma$

## What can we do to clarify the situation?

- Corroborating $V_{u d}$
- Nuclear-structure corrections for superallowed $\beta$ decays
- Improved neutron-decay measurements ( $g_{A}, \tau_{n}$ )
- Pion $\beta$ decay with PIONEER
- Corroborating $V_{u s}$
- Improved lattice calculations of $F_{K} / F_{\pi}$
- A new measurement of $K_{\mu 3} / K_{\mu 2}$, possible at NA62
- $\tau$ and hyperon decays sensitive to $V_{u S}$, but feasible at the relevant level of accuracy?


## A new measurement of $K_{\mu 3} / K_{\mu 2}$, why?

|  | current fit | $K_{\mu 3} / K_{\mu 2}$ BR at 0.5\% |  |  | $K_{\mu 3} / K_{\mu 2}$ BR at 0.2\% |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | central | $+2 \sigma$ | $-2 \sigma$ | central | $+2 \sigma$ | $-2 \sigma$ |
| $\left.\frac{V_{u s}}{V_{u d}}\right\|_{K_{\ell \rho} / \pi \rho \rho}$ | $0.23108(51)$ | $0.23108(50)$ | $0.23085(51)$ | 0.23133(51) | 0.23108(49) | $0.23071(51)$ | $0.23147(52)$ |
| $V_{\text {US }}^{K}$ | 0.22330(53) | $0.22337(51)$ | $0.22360(52)$ | $0.22309(54)$ | 0.22342(49) | $0.22386(52)$ | 0.22287(52) |
| 2 (3) | $-1.64(63)$ | $-1.57(60)$ | -1.18(62) | -2.02(63) | $-1.53(59)$ | $-0.83(62)$ | $-2.33(62)$ |
| CKM | $-2.6 \sigma$ | $-2.6 \sigma$ | $-1.9 \sigma$ | $-3.2 \sigma$ | $-2.6 \sigma$ | $-1.4 \sigma$ | $-3.8 \sigma$ |

- Is the $K_{\ell 3}$ vs. $K_{\ell 2}$ tension real or an experimental problem?
- $K_{\ell 2}$ data base completely dominated by KLOE 2006
- Global fit to kaon data not great, $p$-value $\simeq 1 \%$
- This can be clarified with a new precision measurement of $K_{\mu 3} / K_{\mu 2}$ :
- In case the tension were of experimental origin, there should be a positive shift compared to current fit
$\hookrightarrow \Delta_{\text {CKM }}^{(3)}$ would move from $-2.6 \sigma$ to $-1.4 \sigma$ for a $+2 \sigma$ shift with a $0.2 \%$ measurement
- In case the tension were of BSM origin, the current value would be confirmed (or move further in the other direction)
$\hookrightarrow$ a single new precision measurement would have a huge impact!


## An interpretation in terms of right-handed currents

- Modify right-handed current
$\hookrightarrow$ vector $\sim 1+\varepsilon_{R}$, axial-vector $\sim 1-\varepsilon_{R}$

$$
\begin{array}{ll}
\Delta_{\text {CKM }}^{(1)}=2 \varepsilon_{R}+2 \Delta \varepsilon_{R} V_{U S}^{2} \\
\Delta_{\text {CKM }}^{(2)}=2 \varepsilon_{R}-2 \Delta \varepsilon_{R} V_{U S}^{2} & \text { (blue) } \\
\Delta_{\text {CKM }}^{(3)}=2 \varepsilon_{R}+2 \Delta \varepsilon_{R}\left(2-V_{U S}^{2}\right) & \text { (green) }
\end{array}
$$

where $\Delta \varepsilon_{R} \equiv \varepsilon_{R}^{(s)}-\varepsilon_{R}$

- Current fit

$$
\begin{array}{rlrl}
\varepsilon_{R} & =-0.69(27) \times 10^{-3} & {[2.5 \sigma]} \\
\Delta \varepsilon_{R} & =-3.9(1.6) \times 10^{-3} & & {[2.4 \sigma]}
\end{array}
$$



Cirigliano, Crivellin, MH, Moulson 2022

- Impact of new $K_{\mu 3} / K_{\mu 2}$ measurement mainly
on $\Delta \varepsilon_{R}$ (dashed and dotted lines $\pm 2 \sigma$ benchmark)


## Modification of the Fermi constant

## - Fermi constant

- Best determination from muon decay MuLan 2013

$$
G_{F}^{\mu}=1.1663787(6) \times 10^{-5} \mathrm{GeV}^{-2}
$$

- Electroweak fit Marciano 1999, update using HEPFit

$$
\left.G_{F}^{E W}\right|_{\text {full }}=1.16716(39) \times 10^{-5} \mathrm{GeV}^{-2}
$$

- CKM deficit interpreted as modification of $G_{F}$ in $\beta$ decays


$$
G_{F}^{C K M}=1.16550(29) \times 10^{-5} \mathrm{GeV}^{-2}
$$

- Does not explain tension in kaon sector


## SMEFT analysis of $G_{F}$ tensions

- Possible explanations in terms of effective operators
A. four-fermion operators in $\mu \rightarrow e_{\nu \nu}$ : only viable for SM operator $Q_{\ell \ell}^{2112}=\bar{\ell}_{2} \gamma^{\mu} \ell_{1} \bar{\ell}_{1} \gamma_{\mu} \ell_{2}$
B. four-fermion operators in $u \rightarrow$ de : now excluded by LHC bounds
(©) modified $W-u-d$ couplings: possible in terms of Belfatto, Berezhiani 2021

$$
Q_{\phi q}^{(3) i j}=\phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu}^{\prime} \phi \bar{q}_{i} \gamma^{\mu} \tau^{\prime} q_{j} \quad Q_{\phi u d}^{i j}=\tilde{\phi}^{\dagger} i D_{\mu} \phi \bar{u}_{i} \gamma^{\mu} d_{j}
$$

$\hookrightarrow$ generate left- and right-handed currents, respectively
(D) modified $W-\ell-\nu$ couplings: operator

$$
Q_{\phi \ell}^{(3) i j}=\phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{\prime} \phi \bar{\ell}_{i} \gamma^{\mu} \tau^{\prime} \ell_{j}
$$

leads to interpretation in terms of LFUV Crivellin, MH 2020
(9.) other operators affecting the EW fit see also talk by D. Stöckinger, $Q_{\phi \ell}^{(3) i j}$ and

$$
Q_{\phi \ell}^{(1) i j}=\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi \bar{\ell}_{i} \gamma^{\mu} \ell_{j}
$$

$\hookrightarrow$ effect can be minimized by turning off $Z \rightarrow \ell \ell$ with $C_{\phi \ell}^{(1) i j}=-C_{\phi \ell}^{(3) i j}$

## SMEFT analysis of $G_{F}$ tensions



- Common explanation in terms of $C_{\phi \ell}^{(1) 11}=-C_{\phi \ell}^{(3) 11}$ and $C_{\phi \ell}^{(1) 22}=-C_{\phi \ell}^{(3) 22}$ possible
- For BSM sensitivity the second-most-precise determination of $G_{F}$ is crucial


## Impact of CKM unitarity on explanations of $W$-boson mass

|  | Result | Result with CKM |
| :---: | :---: | :---: |
| $\hat{C}_{\varphi l}^{(1)}$ | $-0.007 \pm 0.011$ | $-0.013 \pm 0.009$ |
| $\hat{C}_{\varphi l}^{(3)}$ | $-0.042 \pm 0.015$ | $-0.034 \pm 0.014$ |
| $\hat{C}_{\varphi e}$ | $-0.017 \pm 0.009$ | $-0.021 \pm 0.009$ |
| $\hat{C}_{\varphi q}^{(1)}$ | $-0.0181 \pm 0.044$ | $-0.048 \pm 0.04$ |
| $\hat{C}_{\varphi q}^{(3)}$ | $-0.114 \pm 0.043$ | $-0.041 \pm 0.015$ |
| $\hat{C}_{\varphi u}$ | $0.086 \pm 0.154$ | $-0.12 \pm 0.11$ |
| $\hat{C}_{\varphi d}$ | $-0.626 \pm 0.248$ | $-0.38 \pm 0.22$ |
| $C_{\Delta}$ | $-0.19 \pm 0.09$ | $-0.027 \pm 0.011$ |



Cirigliano, Dekens, de Vries, Mereghetti, Tong 2022
Falkowski, Gonzáles-Alonso, . . .

- $\Delta_{\text {CKM }}$ excludes certain explanations of $M_{W}$
$\hookrightarrow$ should be included in EW fit
- Otherwise, generic explanations tend to produce a percent-level $\Delta_{\text {СКм }}$


## Correlations with parity violation in simplified models



- Low-energy parity violation conventionally parameterized in terms of

$$
\mathcal{L}_{\mathrm{eft}}^{e e}=\frac{G_{F}}{\sqrt{2}} \sum_{q=u, d, s}\left(C_{1 q}^{e}\left[\overline{q^{\prime}} \gamma^{\mu} q\right]\left[\bar{e}_{\gamma_{\mu} \gamma_{5}} e\right]+C_{2 q}^{e}\left[\bar{q} \gamma^{\mu} \gamma_{5} q\right]\left[\bar{e}_{\gamma_{\mu}} e\right]\right)
$$

- In simplified models, Cabibbo angle anomaly defines a preferred parameter range $\hookrightarrow$ can be tested in parity-violating electron scattering and atomic parity violation


## Lepton flavor universality violation

- Let us parameterize the $W$ couplings as $\mathcal{L}=-i \frac{g_{2}}{\sqrt{2}} \bar{l}_{i} \gamma^{\mu} P_{L} \nu_{j} W_{\mu}\left(\delta_{i j}+\varepsilon_{i j}\right)$
- Modifies Fermi constant in muon decay

$$
\frac{1}{\tau_{\mu}}=\frac{\left(G_{F}^{\mathcal{L}}\right)^{2} m_{\mu}^{5}}{192 \pi^{3}}(1+\Delta q)\left(1+\varepsilon_{e e}+\varepsilon_{\mu \mu}\right)^{2}
$$

$\hookrightarrow$ measured Fermi constant $G_{F}=G_{F}^{\mathcal{L}}\left(1+\varepsilon_{e e}+\varepsilon_{\mu \mu}\right)$

- All $\beta$-decay observables affected according to

$$
V_{u d} \rightarrow V_{u d}^{\beta}=V_{u d}^{\mathcal{E}}\left(1-\varepsilon_{\mu \mu}\right)
$$

where $V_{i j}^{\mathcal{E}}$ fulfill CKM unitarity

- Construct ratio Crivelin, MH 2020

$$
R\left(V_{u s}\right) \equiv \frac{V_{u s}^{K_{\mu 2}}}{V_{u s}^{\beta}} \equiv \frac{V_{u s}^{K_{\mu 2}}}{\sqrt{1-\left(V_{u d}^{\beta}\right)^{2}-\left|V_{u b}\right|^{2}}}=1-\left(\frac{V_{u d}}{V_{u s}}\right)^{2} \varepsilon_{\mu \mu}+\mathcal{O}\left(\varepsilon^{2}\right)
$$

$\hookrightarrow$ LFUV effect enhanced by $\left(V_{u d} / V_{u s}\right)^{2} \sim 20$ !

## Lepton flavor universality violation

| Observable | Measurement | Constraint $\times 10^{3}$ |
| :--- | :---: | ---: |
| $\frac{K \rightarrow \pi \mu \bar{\nu}}{K \rightarrow \pi e \bar{\nu}} \simeq 1+\varepsilon_{\mu \mu}-\varepsilon_{e e}$ | $1.0010(25)$ | $1.0(2.5)$ |
| $\frac{K \rightarrow \mu \nu}{K \rightarrow e \nu} \simeq 1+\varepsilon_{\mu \mu}-\varepsilon_{e e}$ | $0.9978(18)$ | $-2.2(1.8)$ |
| $\frac{\pi \rightarrow \mu \nu}{\pi \rightarrow e \nu} \simeq 1+\varepsilon_{\mu \mu}-\varepsilon_{e e}$ | $1.0010(9)$ | $1.0(9)$ |
| $\frac{\tau \rightarrow \mu \nu \bar{\nu}}{\tau \rightarrow e \nu_{\nu}} \simeq 1+\varepsilon_{\mu \mu}-\varepsilon_{e e}$ | $1.0018(14)$ | $1.8(1.4)$ |
| $\frac{W \rightarrow \mu \bar{\nu}}{W \rightarrow e \bar{\nu}} \simeq 1+\varepsilon_{\mu \mu}-\varepsilon_{e e}$ | $0.9960(100)$ | $-4(10)$ |
| $\frac{B \rightarrow D^{(*)} \mu \nu}{B \rightarrow D^{(*)} e \nu} \simeq 1+\varepsilon_{\mu \mu}-\varepsilon_{e e}$ | $0.9890(120)$ | $-11(12)$ |
| $R\left(V_{u s}\right) \simeq 1-\left(\frac{V_{u d}}{V_{u s}}\right)^{2} \varepsilon_{\mu \mu}$ | $0.9891(35)$ | $0.58(19)$ |



- Most stringent constraint on $\varepsilon_{\mu \mu}$ thanks to CKM enhancement
- Also does not explain tension in kaon sector
- Best constraint on $\varepsilon_{\mu \mu}-\varepsilon_{e e}$ from

$$
R_{e / \mu}^{\pi}=\frac{\Gamma\left(\pi \rightarrow e \nu_{e}(\gamma)\right.}{\Gamma\left(\pi \rightarrow \mu \nu_{\mu}(\gamma)\right.}
$$

- Factor 3 (10) from PEN/PiENu (PIONEER), factor 3 for $\tau$ decays from Belle II


## What about $(g-2)_{\tau}$ ?

- Current status Abdallah et al. 2004, Keshavarzi et al. 2020

$$
a_{\tau}^{\exp }=-0.018(17) \quad \text { vs. } \quad a_{\tau}^{S M}=1,177.171(39) \times 10^{-6}
$$

- Scaling arguments:
- Minimal flavor violation:

$$
a_{\tau}^{\mathrm{BSM}} \simeq a_{\mu}^{\mathrm{BSM}}\left(\frac{m_{\tau}}{m_{\mu}}\right)^{2} \simeq 0.7 \times 10^{-6}
$$

- Electroweak contribution: $a_{\tau}^{\mathrm{EW}} \simeq 0.5 \times 10^{-6}$
- Concrete models:
- $S_{1}$ leptoquark model promising due to chiral enhancement with $\frac{m_{t}}{m_{\tau}}$ $\hookrightarrow$ can get $a_{\tau}^{\mathrm{BSM}} \simeq$ (few) $\times 10^{-6}$ without
 violating $h \rightarrow \tau \tau$ and $Z \rightarrow \tau \tau$
- Ultimate target has to be a measurement of $a_{\tau}$ at the level of $10^{-6}$
$\hookrightarrow$ requires two-loop accuracy for theory throughout


## Experimental prospects for $(g-2)_{\tau}$

- Many recent proposals, none of which seem to reach much beyond the Schwinger term
- Exception: $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}$at $\Upsilon$ resonances Bernabéu et al. 2007
$\hookrightarrow$ quotes projections at $10^{-6}$ level
- Idea: study $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$cross section and asymmetries $\hookrightarrow$ could this be realized at Belle II Crivellin, MH, Roney 2021?
- Answer: yes, but requires polarization upgrade of SuperKEK to get access to transverse and longitudinal asymmetries
$\hookrightarrow$ Hiroshima Workshop on Beam Polarization Feb 8+9, https://indico.belle2.org/event/7500/
- Idea: extract $F_{2}(s)$ at $s \simeq(10 \mathrm{GeV})^{2}$, but heavy new physics decouples $\hookrightarrow a_{\tau}^{\text {BSM }}=F_{2}^{\text {exp }}(s)-F_{2}^{\text {SM }}(s)$ as long as $s \ll \Lambda_{\text {BSM }}^{2}$
- Bounds on light BSM become model dependent, but anyway better constrained in other processes


## First attempt: total cross section

- Differential cross section for $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta}{4 s}\left[\left(2-\beta^{2} \sin ^{2} \theta\right)\left(\left|F_{1}\right|^{2}-\gamma^{2}\left|F_{2}\right|^{2}\right)+4 \operatorname{Re}\left(F_{1} F_{2}^{*}\right)+2\left(1+\gamma^{2}\right)\left|F_{2}\right|^{2}\right]
$$

with scattering angle $\theta, \beta=\sqrt{1-4 m_{\tau}^{2} / s}, \gamma=\sqrt{s} /\left(2 m_{\tau}\right)$

- Interference term 4Re ( $F_{1} F_{2}^{*}$ ) sensitive to the sought two-loop effects
- Could be determined by fit to $\theta$ dependence
- But: need to measure total cross section at $10^{-6}$
$\hookrightarrow$ can we use asymmetries instead?
- Usual forward-backward asymmetry $(z=\cos \theta)$

$$
\sigma_{\mathrm{FB}}=2 \pi\left[\int_{0}^{1} d z \frac{d \sigma}{d \Omega}-\int_{-1}^{0} d z \frac{d \sigma}{d \Omega}\right]
$$

alone does not help

## Second attempt: normal asymmetry

- Idea: use polarization information of the $\tau^{ \pm}$ $\hookrightarrow$ semileptonic decays $\tau^{ \pm} \rightarrow h^{ \pm}(-), h=\pi, \rho, \ldots$ Bernabéu et al. 2007
- Polarization characterized by


$$
\mathbf{n}_{ \pm}^{*}=\mp \alpha_{ \pm}\left(\begin{array}{c}
\sin \theta_{ \pm}^{*} \cos \phi_{ \pm} \\
\sin \theta_{ \pm}^{*} \sin \phi_{ \pm} \\
\cos \theta_{ \pm}^{*}
\end{array}\right) \quad \alpha_{ \pm} \equiv \frac{m_{\tau}^{2}-2 m_{h^{ \pm}}^{2}}{m_{\tau}^{2}+2 m_{h^{ \pm}}^{2}}= \begin{cases}0.97 & h^{ \pm}=\pi^{ \pm} \\
0.46 & h^{ \pm}=\rho^{ \pm}\end{cases}
$$

$\hookrightarrow$ angles in $\tau^{ \pm}$rest frame

- Normal asymmetry

$$
A_{N}^{ \pm}=\frac{\sigma_{L}^{ \pm}-\sigma_{R}^{ \pm}}{\sigma} \propto \operatorname{Im} F_{2}(s) \quad \sigma_{L}^{ \pm}=\int_{\pi}^{2 \pi} d \phi_{ \pm} \frac{d \sigma_{\mathrm{FB}}}{d \phi_{ \pm}} \quad \sigma_{R}^{ \pm}=\int_{0}^{\pi} d \phi_{ \pm} \frac{d \sigma_{\mathrm{FB}}}{d \phi_{ \pm}}
$$

$\hookrightarrow$ only get the imaginary part, need electron polarization

## Third attempt: electron polarization

- Transverse and longitudinal asymmetries Bernabéu e tal. 2007

$$
A_{T}^{ \pm}=\frac{\sigma_{R}^{ \pm}-\sigma_{L}^{ \pm}}{\sigma} \quad A_{L}^{ \pm}=\frac{\sigma_{\mathrm{FB}, R}^{ \pm}-\sigma_{\mathrm{FB}, L}^{ \pm}}{\sigma}
$$

- Constructed based on helicity difference

$$
d \sigma_{\mathrm{pol}}^{S}=\frac{1}{2}\left(\left.d \sigma^{S \lambda}\right|_{\lambda=1}-\left.d \sigma^{S \lambda}\right|_{\lambda=-1}\right)
$$

and then integrating over angles

$$
\sigma_{R}^{ \pm}=\int_{-\pi / 2}^{\pi / 2} d \phi_{ \pm} \frac{d \sigma_{\mathrm{pol}}^{S}}{d \phi_{ \pm}} \quad \sigma_{L}^{ \pm}=\int_{\pi / 2}^{3 \pi / 2} d \phi_{ \pm} \frac{d \sigma_{\mathrm{pol}}^{S}}{d \phi_{ \pm}} \quad \sigma_{\mathrm{FB}, R}^{ \pm}=\int_{0}^{1} d z_{ \pm}^{*} \frac{d \sigma_{\mathrm{FB}, \mathrm{pol}}^{S}}{d z_{ \pm}^{*}} \quad \sigma_{\mathrm{FB}, L}^{ \pm}=\int_{-1}^{0} d z_{ \pm}^{*} \frac{d \sigma_{\mathrm{FB}, \mathrm{pol}}^{S}}{d z_{ \pm}^{*}}
$$

- Linear combination

$$
A_{T}^{ \pm}-\frac{\pi}{2 \gamma} A_{L}^{ \pm}=\mp \alpha_{ \pm} \frac{\pi^{2} \alpha^{2} \beta^{3} \gamma}{4 s \sigma}\left[\operatorname{Re}\left(F_{2} F_{1}^{*}\right)+\left|F_{2}\right|^{2}\right]
$$

isolates the interesting interference effect

## How to make use of this?

| Contributions to $\operatorname{Re} F_{2}^{\text {eff }}(s)$ | $s=0$ | $s=(10 \mathrm{GeV})^{2}$ |
| :--- | ---: | ---: |
| 1-loop QED | 1161.41 | -265.90 |
| e loop | 10.92 | -2.43 |
| $\mu$ loop | 1.95 | -0.34 |
| 2-loop QED (mass independent) | -0.42 | -0.24 |
| HVP | 3.33 | -0.33 |
| EW | 0.47 | 0.47 |
| total | 1177.66 | -268.77 |

$$
\begin{aligned}
& \operatorname{Re} F_{2}^{\mathrm{eff}}\left((10 \mathrm{GeV})^{2}\right) \\
& \simeq \mp \frac{0.73}{\alpha_{ \pm}}\left(A_{T}^{ \pm}-0.56 A_{L}^{ \pm}\right)
\end{aligned}
$$

- Strategy:
- Measure effective $F_{2}(s)$

$$
\operatorname{Re} F_{2}^{\mathrm{eff}}=\mp \frac{8\left(3-\beta^{2}\right)}{3 \pi \gamma \beta^{2} \alpha_{ \pm}}\left(A_{T}^{ \pm}-\frac{\pi}{2 \gamma} A_{L}^{ \pm}\right)
$$

- Compare measurement to SM prediction for $\operatorname{Re} F_{2}^{\text {eff }}$
- Difference gives constraint on $a_{\tau}^{\mathrm{BSM}}$
- A measurement of $A_{T}^{ \pm}-\frac{\pi}{2 \gamma} A_{L}^{ \pm}$at $\lesssim 1 \%$ would already be competitive with current limits


## How to make use of this?

## - Challenges:

- Cancellation in $A_{T}^{ \pm}-\frac{\pi}{2 \gamma} A_{L}^{ \pm}: A_{T, L}^{ \pm}=\mathcal{O}(1)$, difference $\mathcal{O}(\alpha)$
- Two-loop calculation in SM see 2111.10378 for form factor and radiative corrections
- Form factor only dominates for resonant $\tau^{+} \tau^{-}$pairs

$$
\left|H\left(M_{\Upsilon}\right)\right|^{2}=\left(\frac{3}{\alpha} \operatorname{Br}\left(\Upsilon \rightarrow e^{+} e^{-}\right)\right)^{2} \simeq 100
$$

- However: continuum pairs dominate even at $\Upsilon(n S), n=1,2,3$, due to energy spread
- Should consider $A_{T}^{ \pm}, A_{L}^{ \pm}$also for nonresonant $\tau^{+} \tau^{-}$, but requires substantial investment in theory for SM prediction (box diagrams, ...)


## Conclusions

- Tensions among $\beta$ decays and kaon decays point to the apparent violation of CKM unitarity
- Tension at the level of (2-3) $\sigma$
$\hookrightarrow$ more work needed to corroborate or resolve
- Pion $\beta$ decay clean, competitive probe of $V_{u d}$ if branching fraction improved by a factor 10
- New precision measurement of $\boldsymbol{K}_{\mu 3} / \boldsymbol{K}_{\mu 2}$ to clarify situation in kaon sector
- Interesting interplay with electroweak fit and tests of lepton flavor universality

- BSM search with $(g-2)_{\tau}$ via $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$ asymmetries using polarized electrons
SuperKEKB with electron polarization upgrade?


## Back to pion $\beta$ decay

- For $K_{\ell 2}$ and $\pi_{\ell 2}$ decays one uses the ratio

$$
R_{A}=\frac{\Gamma\left(K^{+} \rightarrow \mu^{+} \nu_{\mu}(\gamma)\right.}{\Gamma\left(\pi^{+} \rightarrow \mu^{+} \nu_{\mu}(\gamma)\right.}=\left(\frac{V_{u s}}{V_{u d}} \frac{F_{K}}{F_{\pi}}\right)^{2} \frac{M_{K}}{M_{\pi}}\left(\frac{1-\frac{m_{\mu}^{2}}{M_{K}^{2}}}{1-\frac{m_{\mu}^{2}}{M_{\pi}^{2}}}\right)^{2}\left(1+\Delta_{\mathrm{RC}}^{K}-\Delta_{\mathrm{RC}}^{\pi}\right)
$$

to cancel uncertainties and extract $V_{u s} / V_{u d}$

- Can do the same for $K_{\ell 3}$ and $\pi_{\ell 3}$ Czarneecki, Marciano, Sirini 2020

$$
R_{V}=\frac{\Gamma\left(K \rightarrow \pi \ell \nu_{e}(\gamma)\right)}{\Gamma\left(\pi^{+} \rightarrow \pi^{0} e^{+} \nu_{e}(\gamma)\right)}
$$

- Need a factor 2-3 to obtain a competitive value of $V_{u s} / V_{u d}$, first goal for PIONEER
- Caveats: contrary to $R_{A}$ no cancellation of structure-dependent radiative corrections nor gains in form-factor determination
$\hookrightarrow$ need factor 10 of Phase III to unleash full potential


## BSM searches with pion $\beta$ decay

- Generalize master formula to include effective operators not present in SM

$$
\begin{aligned}
\Gamma\left(\pi^{+} \rightarrow \pi^{0} e^{+} \nu_{e}(\gamma)\right) & =\frac{G_{F}^{2}\left|V_{u d}\right|^{2}}{192 \pi^{3} M_{\pi}^{3}}\left(1+\Delta_{\mathrm{RC}}^{\pi \ell}\right) \int_{m_{e}^{2}}^{\left(M_{\pi}-M_{\pi}\right)^{2}} d s \lambda^{3 / 2}(s)\left(1+\frac{m_{e}^{2}}{2 s}\right)\left(1-\frac{m_{e}^{2}}{s}\right)^{2} \\
& \times\left[|V(s)|^{2}+|A(s)|^{2}+\frac{4\left(s-m_{e}^{2}\right)^{2}}{9 s m_{e}^{2}}|T(s)|^{2}+\frac{3 m_{e}^{2}\left(M_{\pi}^{2}-M_{\pi^{0}}^{2}\right)^{2}}{\left(2 s+m_{e}^{2}\right) \lambda(s)}\left(|S(s)|^{2}+|P(s)|^{2}\right)\right]
\end{aligned}
$$

with $V(s), A(s), \ldots$ depending on Wilson coefficients $c_{V}, c_{A}, \ldots$

- Tensor: $T(s)=\frac{3 s}{2 s+m_{e}^{2}} \frac{m_{e}}{M_{\pi}} c_{T} B_{T}^{\pi}(s)$
$\hookrightarrow$ suppressed by electron mass and tensor form factor
- Scalar: more competitive constraints, but still not at the same level as other $\beta$ decays Falkowski, Gonzáles-Alonso, Naviliat-Cuncic 2020

