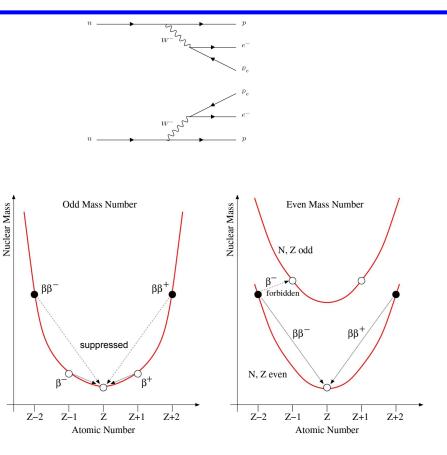


Latest Results from the CUORE Experiment

Ino 20

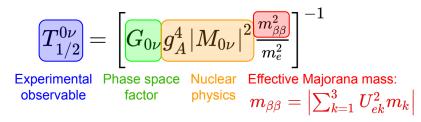
Simone Quitadamo (Gran Sasso Science Institute) on behalf of the CUORE collaboration

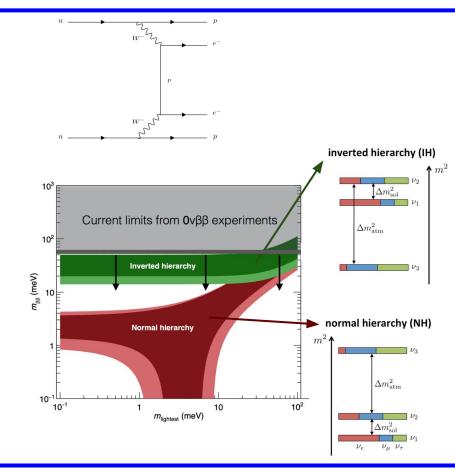

> March 26 - 31, 2023 Obergurgl University Centre, Tyrol, Austria ALPS 2023

Double beta $(2\nu\beta\beta)$ decay

• 2nd order weak process, allowed by the Standard Model:

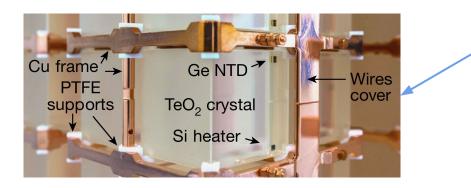
 $egin{aligned} & 2
ueta^-eta^-:(A,Z) o (A,Z+2)+2e^-+2ar
u_e\ & 2
ueta^+eta^+:(A,Z) o (A,Z-2)+2e^++2
u_e \end{aligned}$

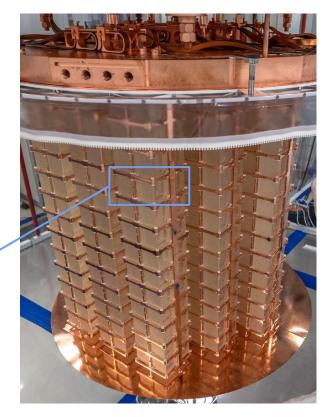

- Observed on 14 even-even nuclei for which β decay is energetically forbidden (⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ...).
- Half-lives: $T_{1/2}^{2\nu} \sim 10^{18} 10^{22}$ yr.


Neutrinoless double beta $(0\nu\beta\beta)$ decay

• 2nd order weak process, **not allowed by the Standard Model**:

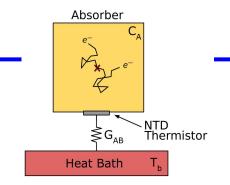
 $egin{aligned} 0
ueta^-eta^-:(A,Z) o (A,Z+2)+2e^-\ 0
ueta^+eta^+:(A,Z) o (A,Z-2)+2e^+ \end{aligned}$

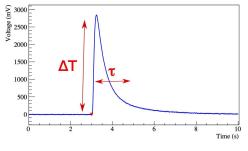

- Never observed \rightarrow Half-lives: $T_{1/2}^{0\nu} > 10^{24} 10^{26}$ yr.
- $0\nu\beta\beta$ decay observation would establish:
 - > violation of the lepton number ($\Delta L = 2$);
 - > neutrinos as Majorana particles ($\nu \equiv \bar{\nu}$);
 - constraints on neutrino mass scale and hierarchy:

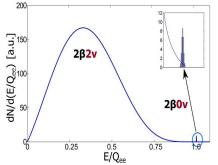


CUORE experiment

- **CUORE** (Cryogenic Underground Observatory for Rare Events):
 - > search for $0\nu\beta\beta$ decay of ¹³⁰Te;
 - > 988 TeO₂ crystals (5x5x5 cm³) with natural ¹³⁰Te isotopic abundance (34%);
 - > total mass: 742 kg of TeO_2 , **206 kg of** ¹³⁰**Te**;
 - > operated at ≃15 mK;
 - crystals equipped with Ge-NTDs thermal sensors;
 - hosted underground in Gran Sasso National Laboratory (LNGS, Italy) for cosmic rays muons suppression (by factor ~10⁶ w.r.t. above-ground).

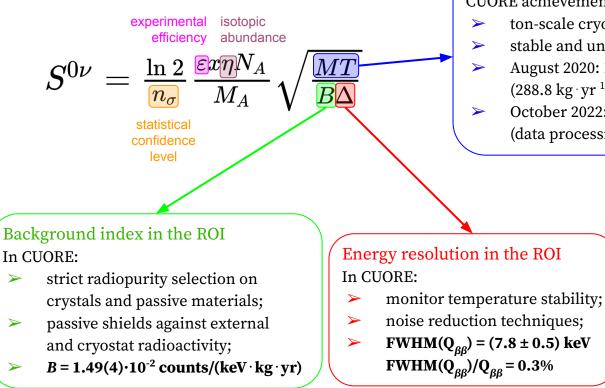

Low-temperature calorimeters

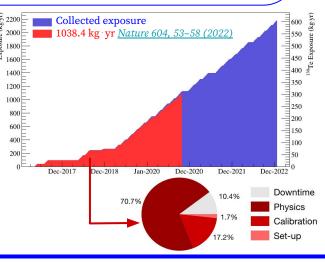

• Working principle of low-temperature calorimeters: energy deposition ΔE in the absorber (TeO₂ crystals) \downarrow temperature increase proportional to energy deposition: $\Delta T \propto \Delta E/C_A(T) \sim 0.1 \text{ mK/MeV}$ \downarrow change of the resistance of the thermal sensor: $R_{NTD}(T) = R_0 e^{\sqrt{\frac{T_0}{T}}}$ electric signal generation; \downarrow


heat dissipation to heat bath (constant T) \rightarrow restoration of initial temperature ($\tau \sim 1$ s).

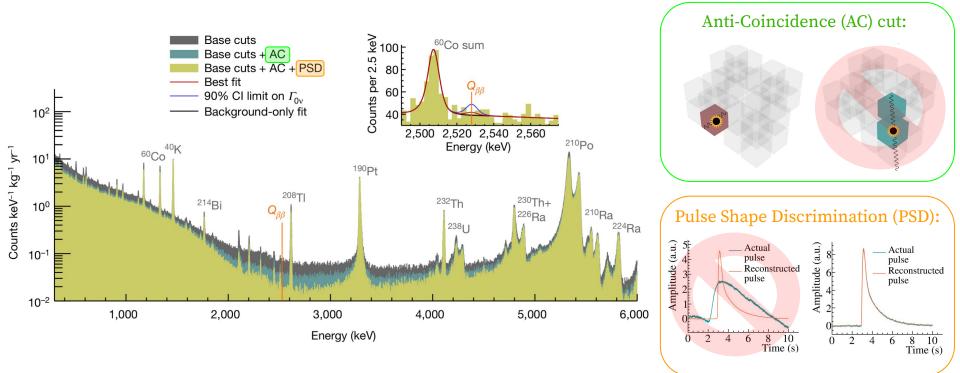
ββ-decaying isotope is embedded in the crystals

 ↓
 high containment efficiency of both electrons within a single crystal (~ 88%);
 ↓
 experimental signature of 0νββ decay:
 peak in the two-electrons sum-energy spectrum,
 at Q-value of the ββ decay: Q_{ββ}(¹³⁰Te) = 2527.5 keV.




Experimental sensitivity to $0\nu\beta\beta$ decay

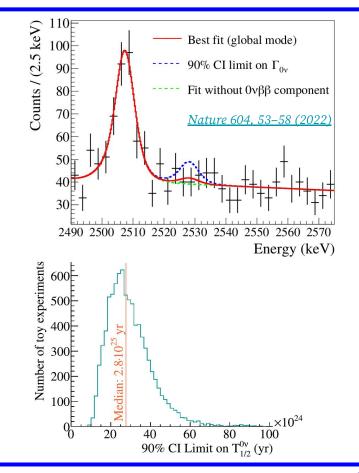
• Experimental sensitivity $S^{0\nu}$ to $0\nu\beta\beta$ decay:


Exposure = $\beta\beta$ -isotope mass · measure time CUORE achievements:

- ton-scale cryogenic experiment;
- stable and uninterrupted data taking since April 2019;
- August 2020: 1 t · yr TeO₂ exposure reached
 (288.8 kg · yr ¹³⁰Te exposure) (*Nature 604, 53–58 (2022)*);
- October 2022: 2 t · yr TeO₂ exposure reached (data processing ongoing).

CUORE energy spectrum

• CUORE energy spectrum at **1038.4 kg**·yr **TeO**₂ (**288.8 kg**·yr ¹³⁰**Te**) exposure (<u>*Nature* 604, 53–58 (2022)</u>):



Search for $0\nu\beta\beta$ decay of ¹³⁰Te

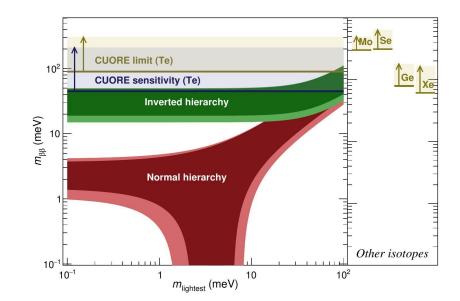
- Model of the ROI = (2490, 2575) keV:
 - > linear background (90% due to degraded- α particles);
 - ⁶⁰Co γ-peak @ 2505.7 keV;
 - > $0\nu\beta\beta$ peak @ $Q_{\beta\beta}^{(130}$ Te) = 2527.5 keV.
- Unbinned Bayesian fit of data (**1038.4 kg** · **yr TeO**₂ **exposure**):
 - > no evidence of $0\nu\beta\beta$ decay;
 - > world-leading lower limit on half-life of ¹³⁰Te $0\nu\beta\beta$ decay:

 $T_{1/2}^{0v}$ (¹³⁰Te) > 2.2·10²⁵ yr (90% C.I.)

- 10^4 toy experiments (background-only model, no $0\nu\beta\beta$ decay):
 - > median exclusion sensitivity: $T_{1/2}^{0\nu}$ (¹³⁰Te) > 2.8·10²⁵ yr (90% C.I.);
 - > 72% probability of obtaining a stronger limit.

Limits on $m_{\beta\beta}$

 \succ


• Assuming $0\nu\beta\beta$ decay mediated by light neutrino exchange:

$$T_{1/2}^{0
u} = \left[G_{0
u} g_A^4 |M_{0
u}|^2 m_{etaeta}^2
ight]^{-1}$$
 Nuclear matrix element (NME)

upper limit on effective Majorana mass:

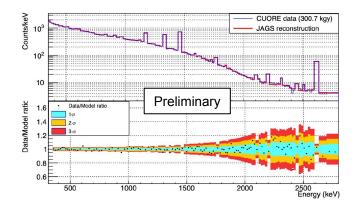
 $m_{\beta\beta}$ < 90 - 305 meV (90% C.I.)

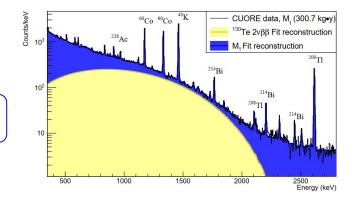
> $m_{\beta\beta}$ spread due to uncertainties on Nuclear Matrix Element (NME) calculations.

Measurement of $2\nu\beta\beta$ decay of ¹³⁰Te

- CUORE background model:
 - > $2\nu\beta\beta$ decay of ¹³⁰Te;
 - > 60 radioactive contaminants (in crystals and cryostat structure);
 - cosmogenic muons.

+


• Reproduce CUORE geometry and detectors energy response.


+

• Markov-Chain Monte Carlo (MCMC) binned Bayesian fit of simulations to experimental data.

- Measurement of $2\nu\beta\beta$ decay of ¹³⁰Te:
 - > $2\nu\beta\beta$ decay of ¹³⁰Te accounts for >50% of events in ~1-2 MeV range;
 - results from 300.7 kg · yr TeO₂ (102.7 kg · yr ¹³⁰Te) exposure (<u>Phys. Rev. Lett. 126, 171801 (2021)</u>):

$$T_{1/2}^{2\nu}$$
 (¹³⁰Te) = 7.71_{-0.06}^{+0.08} (stat.)_{-0.15}^{+0.12} (syst.)·10²⁰ yr

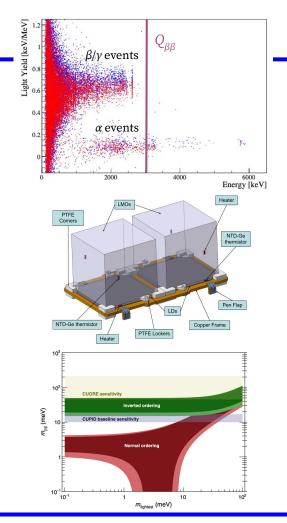
 $[\]downarrow$

Summary

- CUORE demonstrated the feasibility of a ton-scale experiment operating with cryogenic detectors.
- The data collection is ongoing smoothly, accumulating $2 \text{ t} \cdot \text{yr}$ of TeO₂ exposure.
- No evidence of ¹³⁰Te $0\nu\beta\beta$ decay (TeO₂ exposure: 1038.4 kg · yr) (<u>*Nature 604, 53–58 (2022)*</u>):
 - > $T_{1/2}^{0\nu}$ (¹³⁰Te) > 2.2·10²⁵ yr (90% C.I.);
 - > $m_{\beta\beta} < 90 305 \text{ meV}$ (90% C.I.).
- Most precise measurement of ¹³⁰Te $2\nu\beta\beta$ decay half-life (TeO₂ exposure: 300.7 kg · yr) (<u>*Phys. Rev. Lett.* 126, 171801 (2021)</u>):

> $T_{1/2}^{2\nu}$ (¹³⁰Te) = 7.71_{-0.06}^{+0.08} (stat.)_{-0.15}^{+0.12} (syst.)·10²⁰ yr.

• Search for other rare processes:

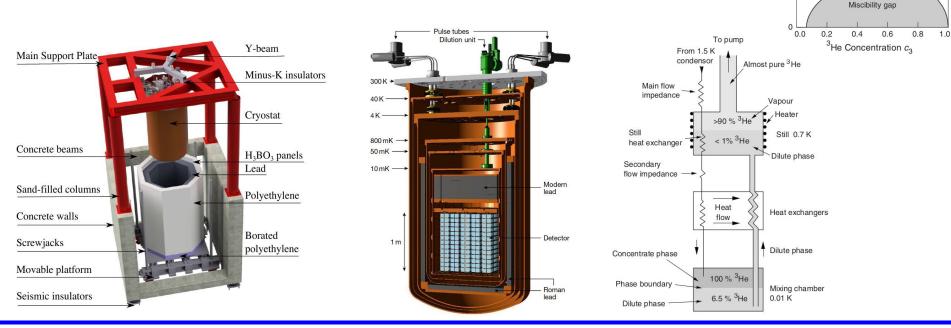

	Exposure (kg·yr)	Results (90% C.I.)	Reference
$0\nu\beta\beta/2\nu\beta\beta$ decay of ¹³⁰ Te on 0_2^+ excited state of ¹³⁰ Xe	372.5 (TeO ₂)	$\begin{split} T_{1/2}^{ 0\nu} (^{130}\text{Te, } 0_2^{\ +}) &> 5.9 \cdot 10^{24} \text{ yr} \\ T_{1/2}^{ 2\nu} (^{130}\text{Te, } 0_2^{\ +}) &> 1.3 \cdot 10^{24} \text{ yr} \end{split}$	<u>Eur. Phys. J. C, 81 57 (2021)</u>
$0 u\beta\beta$ decay of ¹²⁸ Te	309.3 (TeO ₂), 78.6 (¹²⁸ Te)	$T_{1/2}^{0\nu}$ (¹²⁸ Te) > 3.6·10 ²⁴ yr	<u>Phys. Rev. Lett. 129, 222501 (2022)</u>
β^+ EC decay of ¹²⁰ Te	355.7 (TeO ₂), 0.24 (¹²⁰ Te)	$T_{1/2}^{\beta + \text{EC}} (^{120}\text{Te}) > 2.9 \cdot 10^{22} \text{ yr}$	<u>Phys. Rev. C 105, 065504 (2022)</u>

Simone Quitadamo - Latest Results from the CUORE Experiment - ALPS 2023

Next-generation experiment: CUPID

- **CUPID** (**C**UORE **U**pgrade with **P**article **ID**entification):
 - > search for $0\nu\beta\beta$ decay of ¹⁰⁰Mo $\rightarrow Q_{\beta\beta}$ (¹⁰⁰Mo) = 3034 keV;
 - > scintillating crystals for heat-light double read-out \downarrow 99% α vs β/γ discrimination $\rightarrow \alpha$ rejection (main bkg. in CUORE ROI);
 - baseline design:
 - > 1500 $\text{Li}_2^{100}\text{MoO}_4$ crystals enriched in ¹⁰⁰Mo (~ 95%);
 - total mass: $450 \text{ kg of } \text{Li}_2^{100} \text{MoO}_4$, **240 kg of ¹⁰⁰Mo**;
 - Ge bolometric light detectors;
 - target parameters (<u>arXiv:1907.09376v1</u>):
 - background index in ROI: *B* ~ 10⁻⁴ counts/(keV · kg · yr) (factor ~100 better than CUORE);
 - $0\nu\beta\beta$ decay sensitivity: $T_{1/2}^{0\nu}$ (¹⁰⁰Mo) > 1.0·10²⁷ yr (10 yr);
 - effective Majorana mass: $m_{\beta\beta} \sim 12 20$ meV;

explore the entire inverted hierarchy region.


Thanks for the attention!

Backup slides

CUORE cryostat

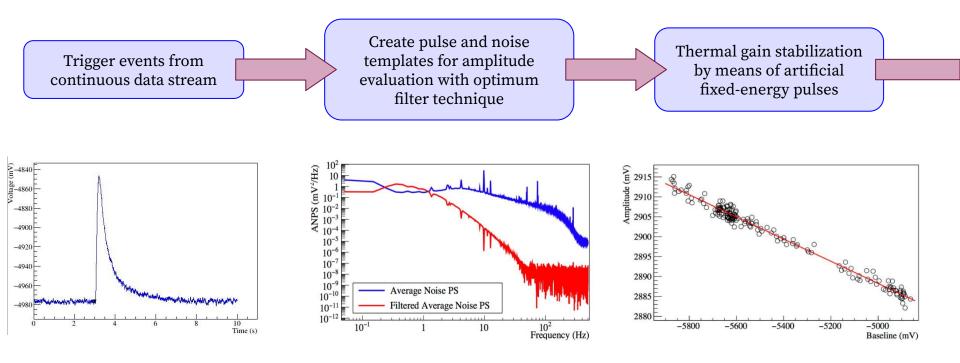
- ³He-⁴He dilution cryostat (<u>Cryogenics 102 (2019) 9-21</u>):
 - suspension system to decouple from external vibrations;
 - pulse tubes pre-cooling system;
 - > shieldings: Roman archPb, modern Pb, H₃BO₃ neutron shield;
 - > radiopurity constraints on materials.

Simone Quitadamo - Latest Results from the CUORE Experiment - ALPS 2023

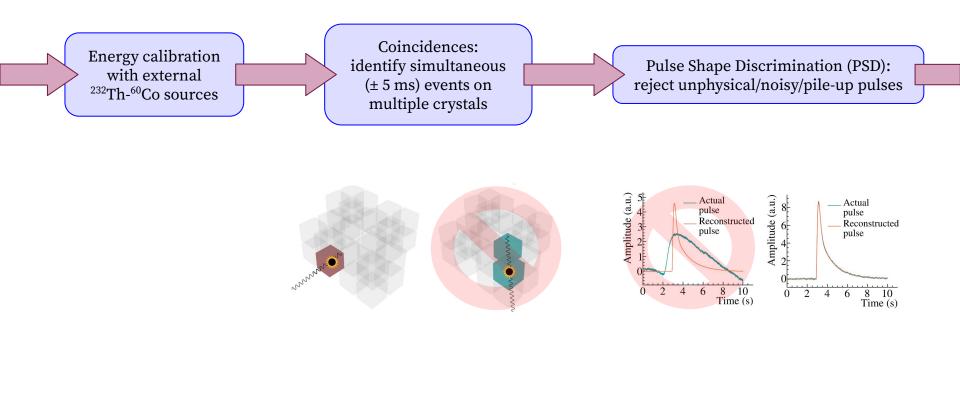
Normal-fluid

³He / ⁴He

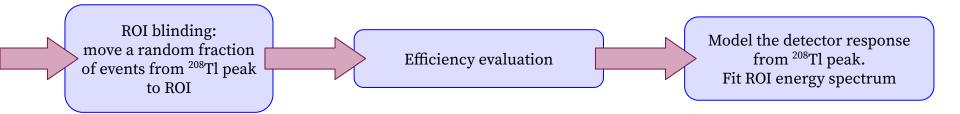
T/K

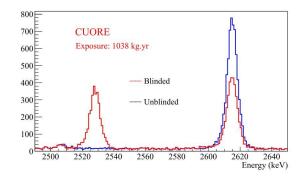

Temperature

Superfluid


³He / ⁴He

se-separation


$0\nu\beta\beta$ decay data analysis



$0\nu\beta\beta$ decay data analysis



$0\nu\beta\beta$ decay data analysis

Total analysis efficiency (data)	92.4(2)%
Reconstruction efficiency	96.418(2)%
Anticoincidence efficiency	99.3(1)%
PSD efficiency	96.4(2)%
Containment efficiency (Monte Carlo)	88.35(9)%

- a) ²⁰⁸Tl 3-guassians peak;
- b) multi-Compton;
- c) flat background;
- d) 30 keV x-ray escape peak;
- e) 30 keV x-ray coincidence peak.