

Small-scale tensions and self-interacting dark matter

Felix Kahlhoefer ALPS 2023 Obergurgl, 30 March 2023

Outline

Part 1: Astrophysics (not my own work)

Part 2: Collider physics (partially my own work)

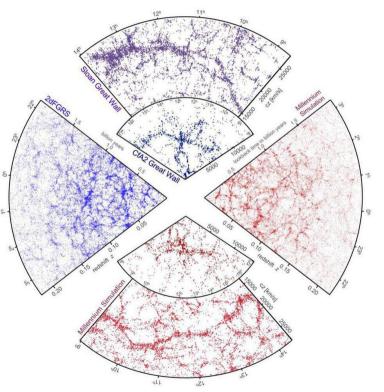
References

Small-Scale Challenges to the Λ CDM Paradigm

James S. Bullock¹ and Michael Boylan-Kolchin²

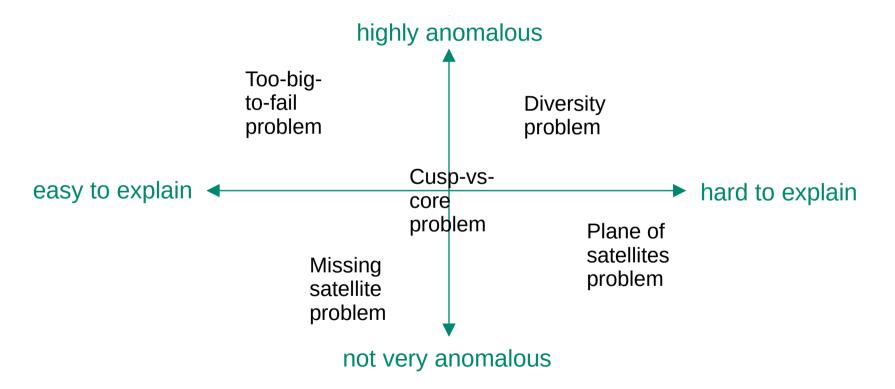
Dark Matter Self-interactions and Small Scale Structure

Sean Tulin^{1,*} and Hai-Bo Yu^{2,†}


Baryonic solutions and challenges for cosmological models of dwarf galaxies

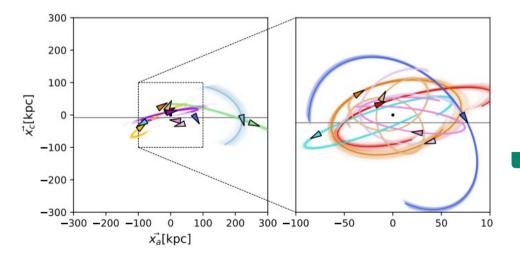
Laura V. Sales^{1,*}, Andrew Wetzel², and Azadeh Fattahi³

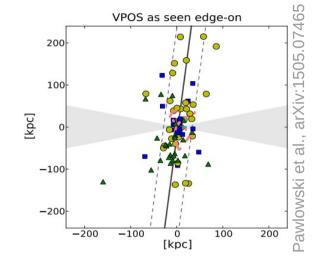
Structure formation in the early universe



- ACDM is extremely successful in predicting the structure of the universe at the largest scales
- At smaller scales (comparable to the size of individual galaxies) structure formation is strongly non-linear, and baryonic effects become important
- These scales are also the most sensitive to the particle physics properties of dark matter (DM)
 - Free-streaming DM (not perfectly non-relativistic)
 - Self-interacting or dissipative DM (not collisionless)
 - Fuzzy DM (macroscopic de Broglie wavelength)
- Interesting to look for tensions and anomalies!

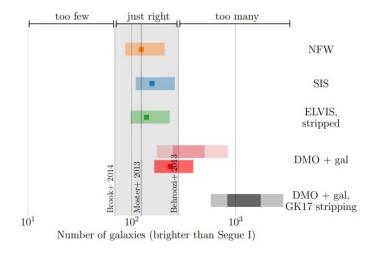
A chart of anomalies

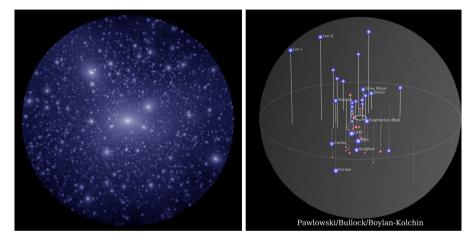




The plane of satellites problem

- The 11 brightest MW satellites appear to lie in a plane that is unlikely to arise from standard structure formation
- Data from the Gaia satellite makes it possible for the first time to infer the orbital motion of these satellites

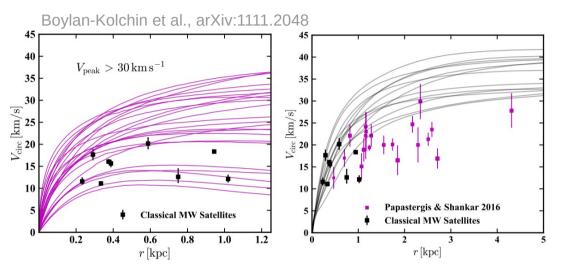

Conclusion: The plane of satellites is of transient nature and statistically not very unlikely


Sawala et al., arXiv:2205.02860

The missing satellite problem

- Where are all the Milky Way satellites seen in N-body simulations?
- Many new discoveries in recent years!

Applying completeness correction for the detection efficiency, the missing satellite problem is likely solved


Kim et al., arXiv:1711.06267

The too-big-to-fail problem

For very massive MW satellites, detection efficiency should be close to unity, because they are guaranteed to be bright

Nevertheless, none of the known MW satellites have a circular velocity (i.e. mass) as large as predicted by simulations

However, these are also the systems, for which baryonic effects are most important

Baryon-induced cores from stellar feedback reduce the central mass of these systems

The cusp-core problem

Discrepancy between predicted and observed circular velocities is largest in the central region

Deficit in mass points to constant-density cores rather than cuspy density profiles

Tulin & Yu, arXiv:1705.02358 60 DDO 154 Cusp Dark Matter Density (M_{\odot} /kpc³) 50 10^{8} V_{cir} (km/s) 05 Core 107 Gas 20 10⁶ 10 Stars 0.5 0.1 5 10 2 Radius (kpc) Radius (kpc)

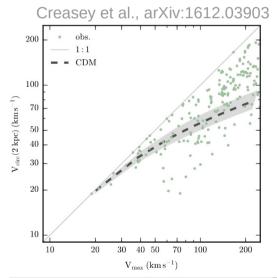
Problem: Small baryonic effects

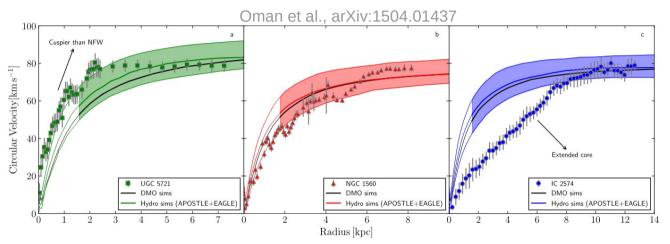
 \rightarrow few stars \rightarrow unreliable observations

Reliable observations

 \rightarrow many stars \rightarrow large baryonic effects

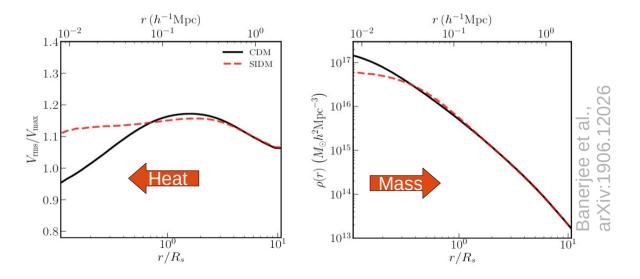
The diversity problem


Nobel Prize winners between 1901 and 2020 by category and gender Female Male Total 212 210 58 876 179 101 90 84 17 16 12 7 2 4 Physics Medicine Chemistry Literature Peace Economics Source: Nobel Foundation statista 🔽 \bigcirc (i) \bigcirc


The Nobel Prize Gender Gap

The other diversity problem

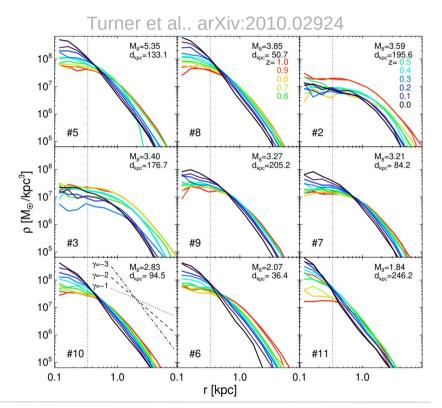
Dwarf galaxy rotation curves exhibit much more diversity than expected


- In fact, some dwarf galaxies are even cuspier than in $\Lambda CDM!$
- Speculated to be a projection effect due to non-circular motion
- No conclusive demonstration that enough diversity is achieved
 Describble greatest shallongs for ACDM on small scales
- Possibly greatest challenge for ACDM on small scales

Resolving the small-scale tensions

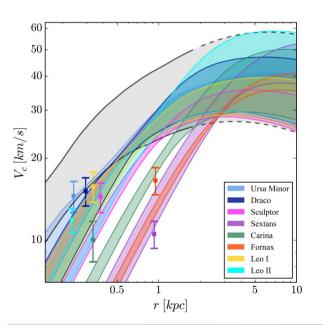
Dark matter (DM) self-interactions can transfer energy from hot regions of a DM halo (shallow gravitational potential) to cold regions (deep gravitational potential)

As a result, they transform halos with cuspy profile into halos with central cores



12

Gravothermal collapse


- Cores created by DM self-interactions are not stable
- Once the inner region is fully thermalised, the direction of the heat flow reverses and the central region starts cooling down
- After sufficiently long times (or for very large cross sections) cores experience gravitational collapse and cusps reappear
 - \rightarrow gravothermal catastrophe

The impact of tidal forces

If the outer parts of a DM halo are stripped by tidal forces (e.g. from a nearby galaxy), the heat loss increases and core collapse accelerates

High concentration halos become even denser while low concentration halos are disrupted

Sameie et al., arXiv:1904.07872; FK et al., arXiv: 1904.10539

Moreover, central density of a Milky Way satellite depends on its precise orbit (i.e. the pericenter distance)

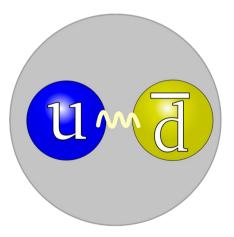
Possible explanation of the observed diversity of MW satellites

Valli & Yu, arXiv:1711.03502

Back-of-the-envelope estimate

- We can estimate the required DM self-interaction cross section through simple dimensional arguments
- Consider a Milky Way-like galaxy: mass M ~ 10¹² M_{sun} radius r ~ 100 kpc
 - $\Sigma = M/r^2 = 10^{\circ} M = 4/r^2 = 0$ m/s m
 - $\rightarrow~Surface~density~\Sigma\sim~M/r^{2}\sim10^{8}~M_{sun}/kpc^{2}\sim2~g$ / cm^{2}
- Self-interactions will be important if the cross section σ satisfies $\Sigma \sigma / m_{DM} > 1$
- \bullet \rightarrow σ / m_{DM} > 0.5 cm² / g ~ 1 barn / GeV ~ m_{\pi} / f_{\pi}⁴ ~ Λ_{QCD}^{-3}

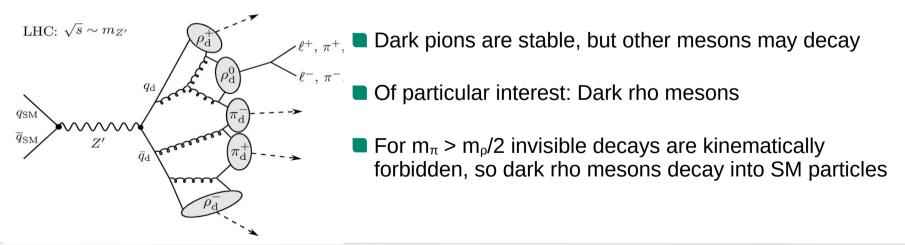
Similar to pion-pion and nucleon-nucleon scattering cross section!


Strongly-interacting dark sectors

- This surprising result compels us to think about dark matter particles with interactions similar to QCD
- Consider a dark sector that **contains dark gluons and dark quarks**:

$$\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu a} + \overline{q}_{\rm d} i \not\!\!\!D q_{\rm d} - \overline{q}_{\rm d} M_q q_{\rm d}$$

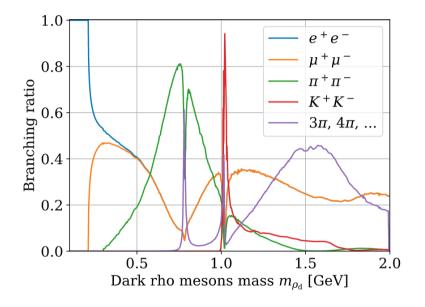
- For energies below some scale Λ_d the dark sector confines, giving rise to dark mesons and dark baryons
- In contrast to the SM, it is possible that the lightest dark mesons (i.e. the dark pions) are stable and possible DM candidates



Dark showers

Assume that dark quarks also couple to SM particles (details irrelevant here)

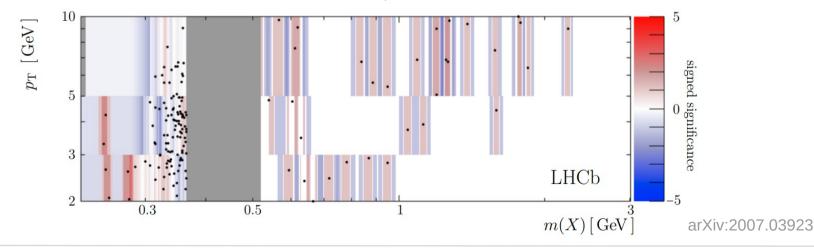
- $\rightarrow\,$ Possible to pair-produce dark quarks at the LHC
- \rightarrow Dark quarks will undergo fragmentation and hadronisation in the dark sector
- → Result: Dark shower with high multiplicity of dark mesons



Displaced vertices from dark showers

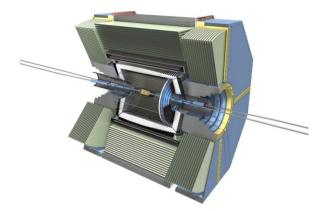
- GeV-scale dark rho meson predicted to decay dominantly into pairs of charged particles
- If the dark rho mesons decay promptly, the dark shower results in a semi-visible jet
- Difficult to distinguish from ordinary QCD jets

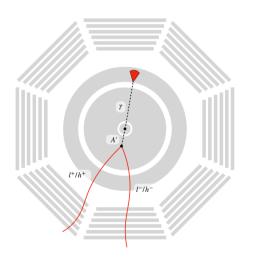
- But if the dark rho mesons are long-lived, we can hope to reconstruct individual displaced vertices
 - \rightarrow Striking signature very different from SM



Displaced vertex search at LHCb

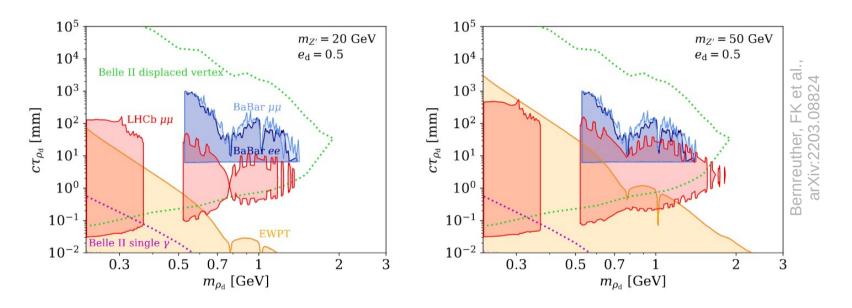
LHCb has searched for GeV-scale LLPs decaying into a pair of muons


- Requirement: Transverse displacement 12–30 mm
- Veto invariant mass close to K meson mass
- **Present model-independent results in different** p_{T} bins

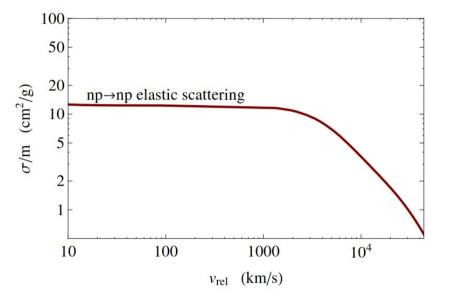


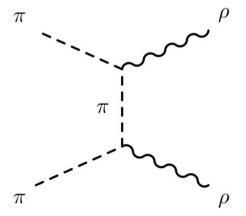
What about Belle II?

Since 2020 Belle II is using e⁺e⁻ collisions at √s ~ 10.6 GeV to compete with LHCb for the most precise measurements of B mesons



- The Belle II detectors are highly suited to search also for DVs from exotic LLPs
- Transverse distance of DV can be as large as 60cm
- Smaller energies ↔ smaller boost factors
- Expect sensitivity to much larger lifetimes


Comparison of sensitivities


Mass reach of LHCb and Belle II comparable, but Belle II sensitive to larger decay lengths
 Note: LHCb constraint depends on details of interaction between SM and dark sector

Open questions

- Can these models evade the strong bounds on DM self-interactions from the Bullet Cluster?
- How reliable are dark shower simulations with PYTHIA?

How do dark mesons from strongly-interacting dark sectors obtain their relic abundance?

Conclusions

- The small-scale crisis of ACDM is evolving with new observations and better understanding of baryonic effects
- The (diversity of) density profiles of dwarf galaxies remain puzzling
- Dark matter self-interactions can lead to core formation and collapse
- Required cross sections are large! New strong dynamics in the dark sector?
- Collider signature: Dark showers, semi-visible jets and displaced vertices
- Ongoing searches at the LHC and Belle II