

Searching for Low-Mass Resonances Decaying into W Bosons

Based on arxiv:2302.07276 (GC, A. Crivellin, S. Bhattacharya, B. Mellado)

Guglielmo Coloretti (University of Zurich and Paul Scherrer Institute)

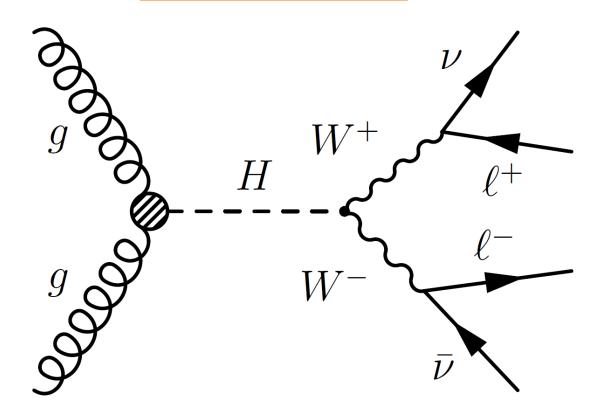
Guglielmo Coloretti

Structure of the talk

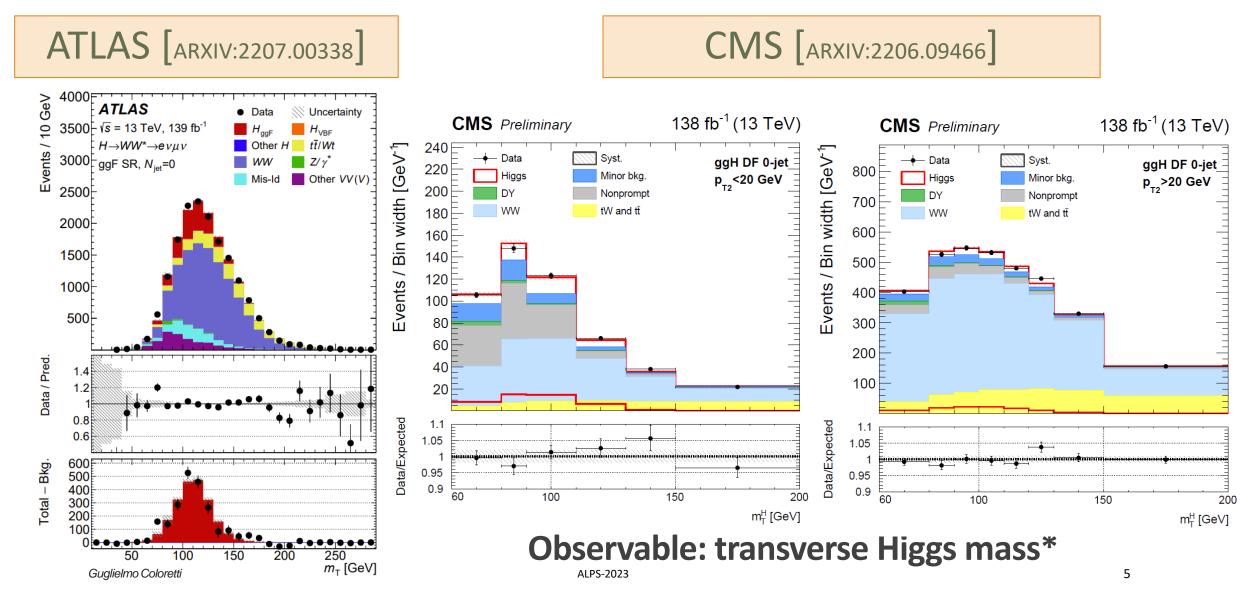
- 1. Overview and motivations
- 2. Experimental search
- **3**. BSM simulation
- 4. Statistical analysis
- 5. Results

Overview and Motivations

- Multi-lepton anomalies motivates existence of new states decaying to WW [see Bruce Mellado's talk]
- In addition: resonant hints at 150 GeV and 95 GeV in $\gamma\gamma$ and $\tau\tau$ channels
- No dedicated resonant BSM searches for $gg \to H \to WW$ with full luminosity and scanning down to 95 GeV
- CMS and ATLAS analyses for SM higgs in $gg \rightarrow h \rightarrow WW$ with full luminosity 135 fb^{-1} available

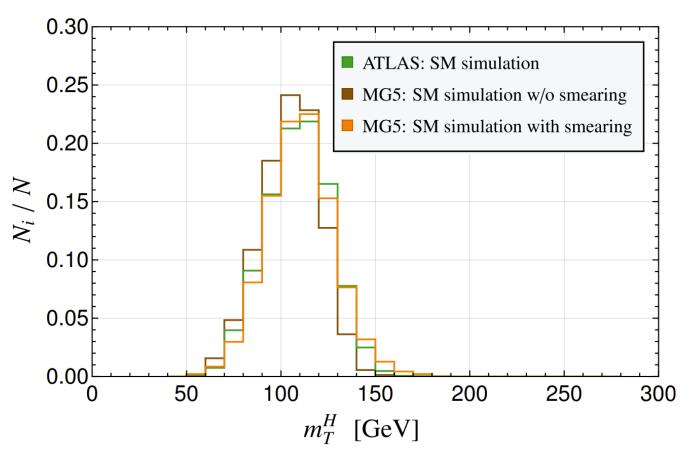


We re-cast CMS and ATLAS SM Higgs analyses to search for new scalars


$gg \to H \to WW$

CATEGORY: 0 jet – ggH – DFOS

- A pair of different flavour opposite sign (DFOS) leptons
- Addition of **missing energy**
- Jet veto category
- Exclusion of Drell-Yan background
- Refining to **spin-0** candidates


Experimental analysis

Simulation

- HEP tools:
 - → MadGraph5_aMC@NLO
 - → Pythia8 (showering)
 - → Delphes3 (detector)
- Limitations of fast simulation
- Compared our SM-simulation to the ATLAS one
- To correct for differences:
 smearing and shifts
- Corrected for efficiency (energy dependence)
- Corrected for NNLO effect in production cross section

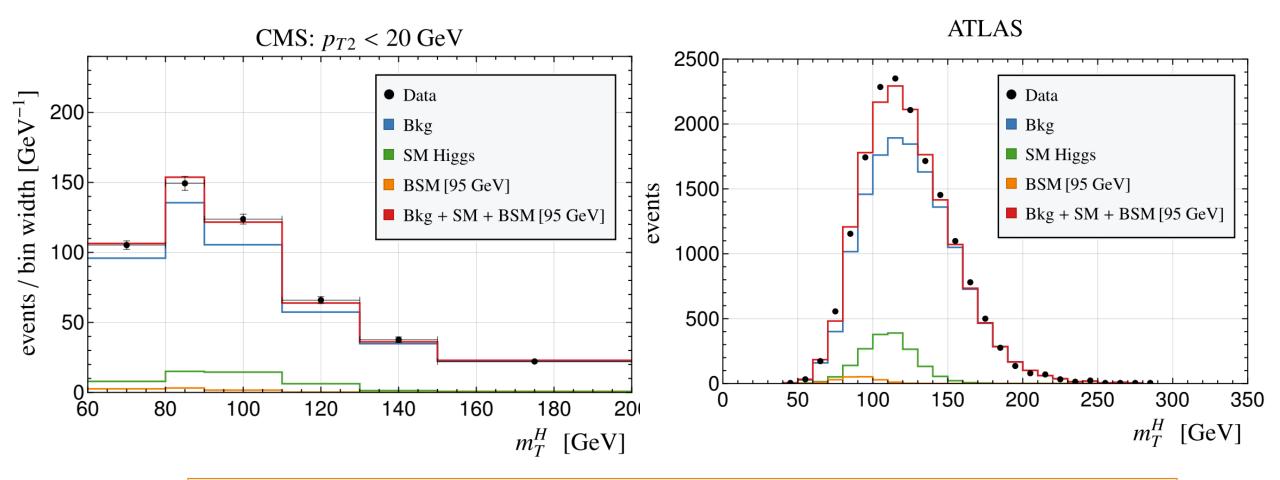
Checks over SM-samples: ATLAS full-simulation VS MG5 fast-simulation

Guglielmo Coloretti

Uncertainties

ATLAS

- ATLAS scaled SM theory prediction by 1.21
- Strong anti-correlations among the different background signals (including the SM Higgs)
- Mis-Id background is least correlated and the total uncertainty matches total one
 → Mis-Id uncertainty chosen as the total experimental systematic uncertainty
- Theory uncertainty (systematic):
 7% uncertainty on the SM Higgs signal

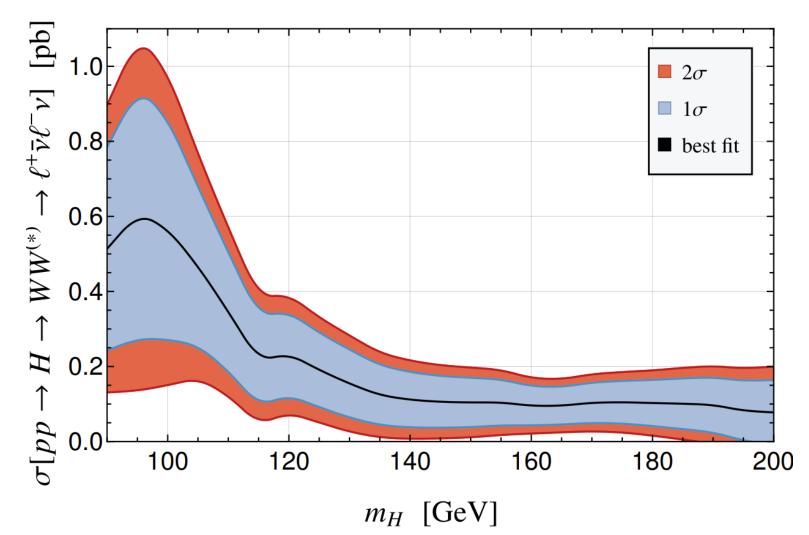

CMS

- CMS uses a combined fit to signal and background to account for systematic uncertainties
 - \rightarrow re-fit background (including SM signal) when including new physics

Theory uncertainty (systematic):
 7% uncertainty on the SM Higgs signal

Systematics uncertainties correlations included

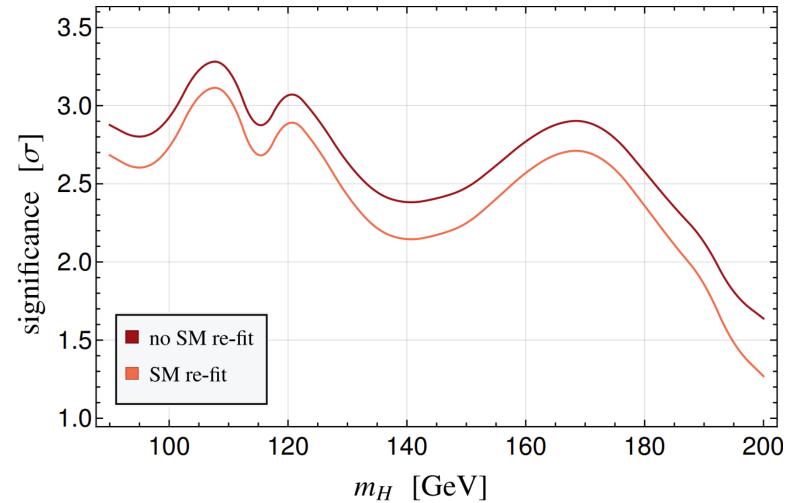
BSM signal fit with a mass of 95 GeV



CMS $p_{T2} > 20 \ GeV$ plot not shown due to very small efficiency

ALPS-2023

Cross section

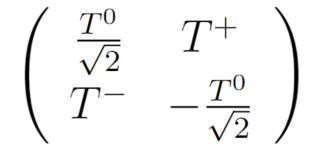

- Observed limit is weaker than the expected one over the whole range (preference for BSM contribution)
- Allowed cross section is largest around 95 GeV

Significance

- Global significance
 is only below ≈ 2 σ
- Considering the existing hints for a scalar at 95 GeV,
 i.e. removing the lookelsewhere effect

 \rightarrow significance of >~ 2.5 σ .

Conclusion


Hints for new scalars decaying to WW bosons

- We re-casted CMS and ATLAS searches of a SM-scalar decaying to WW to search for new resonances
- Hints for new physic resonance in WW decays (compatible with existing one around 95 GeV and 150 GeV)

Possible solution?

(among other models currently under development)

- No signal of a resonance decaying to ZZ
- Real scalar triplet with Y = 0
- Neutral component H⁰ does not couple to ZZ at tree level (only mixing with SM Higgs boson)
- Enhancement of the W boson mass (CDF II)

 $\begin{array}{c|c} SU_c(3) & SU_L(2) & U_Y(1) \\ 1 & 2 & 0 \end{array}$

Statistical analyses

covariance matrix (statistic and systematic)

Significance computed via a χ^2 test $\chi^2 = [N_i^{\text{data}} - N_i^{\text{theory}}] \sum_{ij}^{-1} [N_j^{\text{data}} - N_i^{\text{theory}}]$

 $N_i^{\text{theory}} = p_{\text{BKG}}(N_i^{\text{SM}} + N_i^{\text{BKG}}) + p_{\text{BSM}}N_i^{\text{BSM}}$

BSM signal

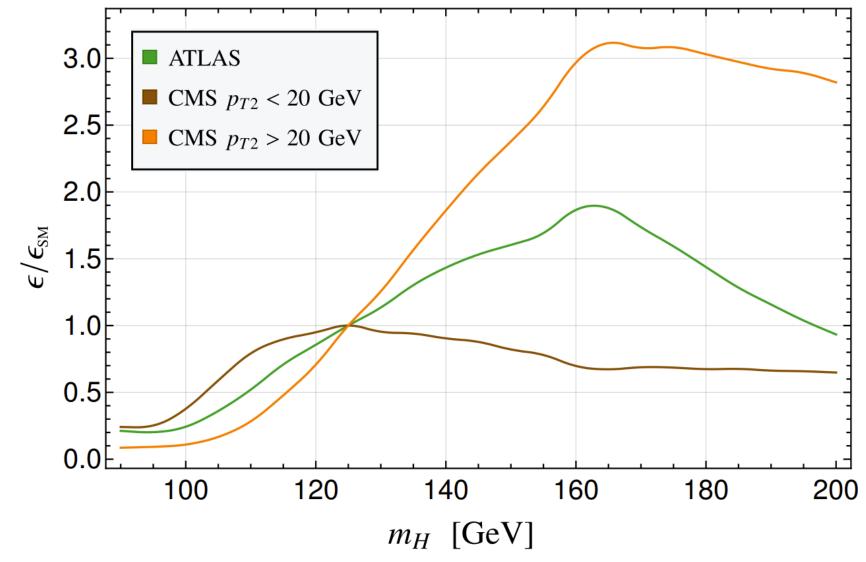
SM signal

CMS re-fit the background and SM-signal: we can therefore either float this contribution or take the nominal values of the paper

$$N_i^{\rm theory} = p_{\rm BKG} (N_i^{\rm SM} + N_i^{\rm BKG})$$

$$N_i^{\text{theory}} = N_i^{\text{SM}} + N_i^{\text{BKG}}$$

\rightarrow both cases included in the fit


BSM signal strength w.r.t. SM: $\mu_{\text{BSM}} = \frac{\sigma[pp \to H \to WW^{(*)} \to \ell^+ \bar{\nu} \ell^- \nu]}{\sigma[pp \to h \to WW^* \to \ell^+ \bar{\nu} \ell^- \nu]}$ Gualielmo Colorett 12

BSM signal strength @ 95 and 150

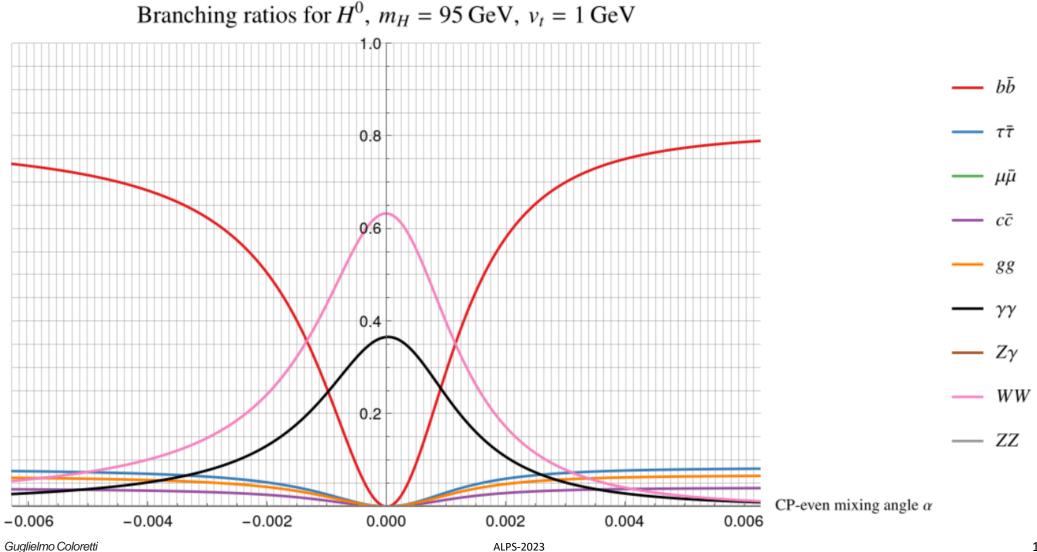
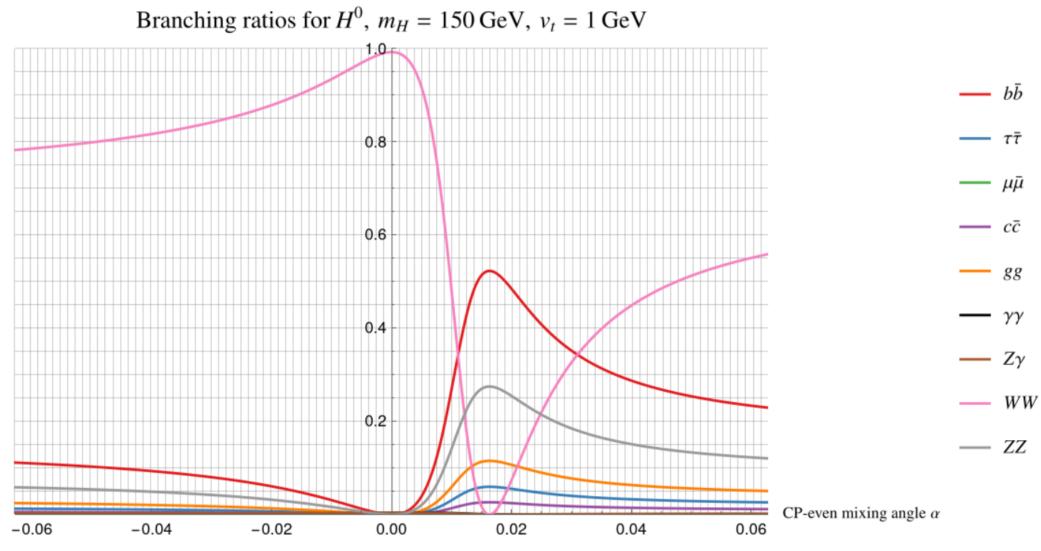
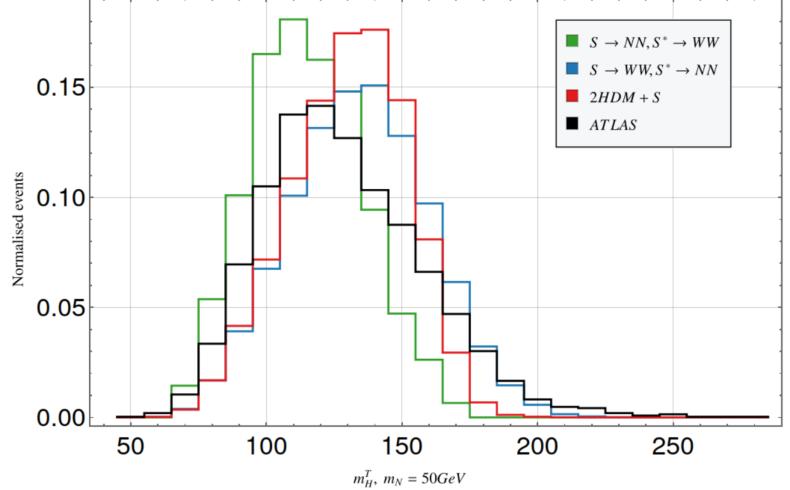

$m_H = 95 \mathrm{GeV}$	$\mu_{\rm BKG}^{p_{T2}<20}$	$\mu_{\rm BKG}^{p_{T2}>20}$	$\mu_{ m BSM}$	$\chi^2_{ m BSM}$	$\chi^{2, \rm re-fit}_{\rm SM}$	$\sigma^{ m re-fit}$	$\chi^2_{ m SM}$	σ
ATLAS			0.7	49.0	57.7	3.0	57.7	3.0
$CMS \ p_{T2} < 20 GeV$	1.01		0.0	5.5	5.5	0.0	6.8	1.2
$CMS \ p_{T2} > 20 GeV$		1.01	-3.5	6.2	9.0	-	9.1	-
Combined Fit	1.00	1.00	0.5	65.4	72.2	2.6	73.3	2.8
$m_H = 150 \mathrm{GeV}$	$\mu_{\rm BKG}^{p_{T2}<20}$	$\mu_{\rm BKG}^{p_{T2}>20}$	$\mu_{ m BSM}$	$\chi^2_{ m BSM}$	$\chi^{2, {\rm re-fit}}_{{ m SM}}$	$\sigma^{ ext{re-fit}}$	$\chi^2_{ m SM}$	σ
$m_H = 150 \mathrm{GeV}$ ATLAS	$\mu_{\rm BKG}^{p_{T2}<20}$	$\mu_{\rm BKG}^{p_{T2}>20}$	$\mu_{\rm BSM}$ 0.1	$\chi^2_{\rm BSM}$ 54.5	$\chi^{2, \text{re-fit}}_{\text{SM}}$ 57.7	$\sigma^{ m re-fit}$ 1.8	$\frac{\chi^2_{\rm SM}}{57.7}$	σ 1.8
	$\mu_{\rm BKG}^{p_{T2}<20}$ 0.97	$\mu_{\rm BKG}^{p_{T2}>20}$						
ATLAS		$\mu_{\rm BKG}^{p_{T2}>20}$ 0.99	0.1	54.5	57.7	1.8	57.7	1.8

TABLE I. Fit results for the two cases $m_H = 95 \text{ GeV}$ and $m_H = 150 \text{ GeV}$, motivated by the existing hints for new scalars at the LHC. Note that the sizable value of μ_{BSM} in the CMS $p_T > 20 \text{ GeV}$ category for the 95 GeV case is due to the very small efficiency. Guardinate Coloretti ALPS-2023


Simulation efficiency

Y = 0 triplet BR @95 GeV



Y = 0 triplet BR @150 GeV

2HDM+S and right-handed neutrinos

 150 GeV has a better fit compared to the case without missing energy

2HDM+S and right-handed neutrinos

150 GeV – miss	bkg CMS < 20	bkg CMS > 20	μ _{BSM}	$\chi^2_{\rm BSM}$	2 refit XSM	$\sigma^{ m refit}$	X ² _{SM}	σ
ATLAS			7.76344	49.2266	57.6562		57.6562	
CMS < 20	0.965477		2.11444	1.62004	5.48858		6.82523	
CMS > 20		0.986532	-14.4418	5.70301	9.03945		9.05016	
Comb. fit – 2 par	1.00473	0.978693	0.490567	63.8945	72.2081		73.2809	
Comb. fit – 1 par	1.00467	0.993217		65.4041	72.2081	2.60846	73.2809	2.80657