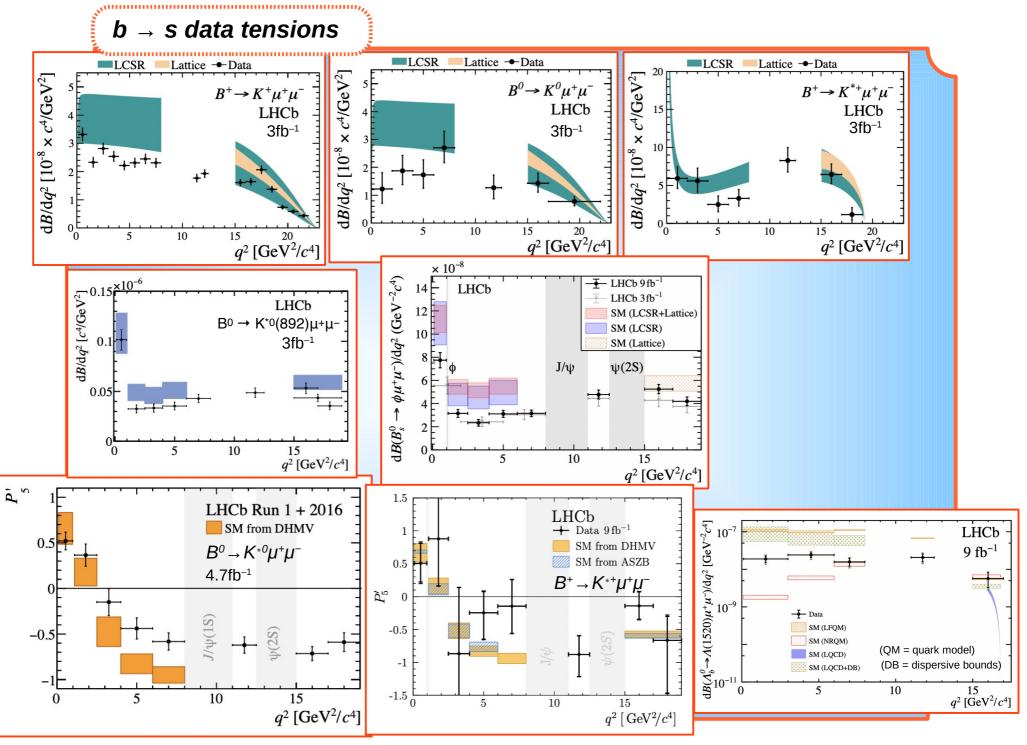
$B_{d,s} o \mu^+ \mu^- \gamma$ phenomenology – overview –

Diego Guadagnoli CNRS, LAPTh Annecy

A novel, short-term way to cross-check the existing tensions ("anomalies") in $b \rightarrow s \mu\mu$ data



D. Guadagnoli, ALPS, 26-31 March, 2023

The additional photon lifts chirality suppression

For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude

The additional photon lifts chirality suppression

For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude

• High-q² $B_s \rightarrow \mu\mu \ \gamma$ spectrum can be accessed "indirectly" from $B_s \rightarrow \mu\mu$ dataset. First LHCb analysis completed

The additional photon lifts chirality suppression

For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude

- High-q² $B_s \rightarrow \mu\mu \ \gamma$ spectrum can be accessed "indirectly" from $B_s \rightarrow \mu\mu$ dataset. First LHCb analysis completed
- $B_s \to \ell \ell \gamma$ offers sensitivity to larger set of EFT couplings than $B_s \to \ell \ell$. Plus, it probes them at high q^2

The additional photon lifts chirality suppression

For light leptons: enhancement w.r.t. purely leptonic mode ee channel: enhancement is 5 orders of magnitude

- High-q² $B_s \rightarrow \mu\mu \ \gamma$ spectrum can be accessed "indirectly" from $B_s \rightarrow \mu\mu$ dataset. First LHCb analysis completed
- $B_s \to \ell \ell \gamma$ offers sensitivity to larger set of EFT couplings than $B_s \to \ell \ell$. Plus, it probes them at high q^2
- With Run 3 (ightharpoonup hopefully comparable e and μ efficiencies), $B_s \to ee \ \gamma$ no more science fiction

 $B_s \rightarrow \mu\mu \ \gamma \ \text{from} \ B_s \rightarrow \mu\mu$

[Dettori, DG, Reboud, 2017]

Basic Idea Extract $B_s \rightarrow \mu\mu\gamma$ from $B_s \rightarrow \mu\mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

[Dettori, DG, Reboud, 2017]

Basic Idea Extract $B_s \rightarrow \mu \mu \gamma$ from $B_s \rightarrow \mu \mu$ event sample, by enlarging $m_{\mu\nu}$ below B_s peak

- One can relate the $m_{\mu\mu}$ energy imbalance to E_{γ} (even w/ undetected γ)
- Essential precondition: controlling all other backgrounds

[Dettori, DG, Reboud, 2017]

Basic Idea Extract $B_s \rightarrow \mu \mu y$ from $B_s \rightarrow \mu \mu$ event sample, by enlarging $m_{\mu\mu}$ below B_s peak

- One can relate the $m_{\mu\mu}$ energy imbalance to E_{γ} (even w/ undetected γ)
- Essential precondition: controlling all other backgrounds

Approach merges the advantages of both decays:

• Exploits rich and ever increasing $B_s \rightarrow \mu\mu$ dataset

[Dettori, DG, Reboud, 2017]

Basic Idea Extract $B_s \rightarrow \mu \mu \gamma$ from $B_s \rightarrow \mu \mu$ event sample, by enlarging $m_{\mu\nu}$ below B_s peak

- One can relate the $m_{\mu\nu}$ energy imbalance to E_{γ} (even w/ undetected γ)
- Essential precondition: controlling all other backgrounds

Approach merges the advantages of both decays:

- Exploits rich and ever increasing $B_s \rightarrow \mu\mu$ dataset
- ... to access $B_s \rightarrow \mu\mu\gamma$, that probes any $\mu\mu$ "anomaly"
 - more thoroughly (more EFT couplings)
 - in a different, not well tested, q² region
 - with a completely different exp approach

• No need to reconstruct the γ (factor-of-20 loss in efficiency)

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

Cons

Signal is a shoulder, not a peak as in several semilep. B decays

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

- Signal is a shoulder, not a peak as in several semilep. B decays
- Relatively (but not too) small q^2 range. Below 4.2 GeV, $c\bar{c}$ pollution

- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

- Signal is a shoulder, not a peak as in several semilep. B decays
- Relatively (but not too) small q^2 range. Below 4.2 GeV, $c\bar{c}$ pollution
- Trigger efficiency and reco somewhat below $B_s \to \mu\mu$ But better than full γ reco

[thanks F. Dettori]

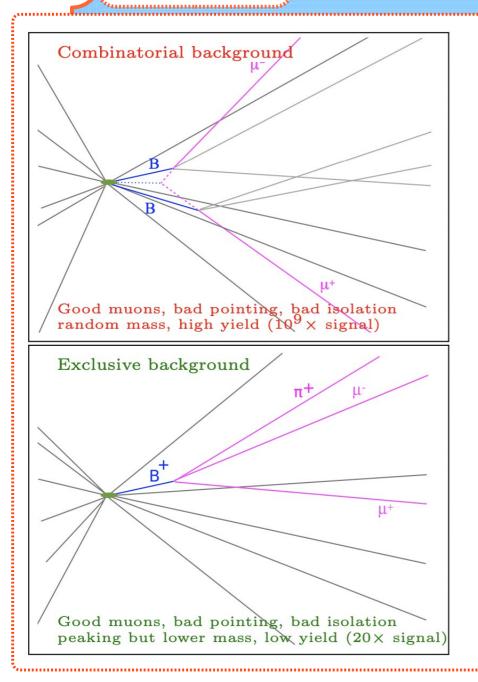
Pros (besides those already stated)

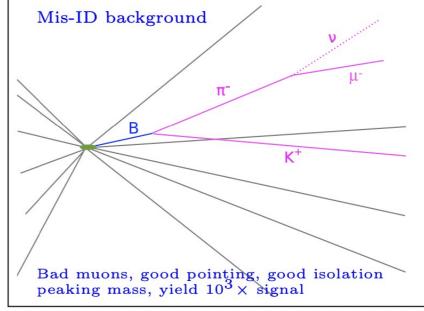
- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

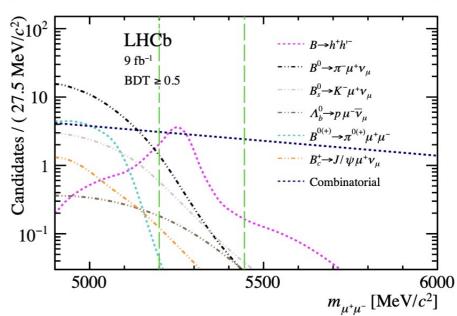
- Signal is a shoulder, not a peak as in several semilep. B decays
- Relatively (but not too) small q^2 range. Below 4.2 GeV, $c\bar{c}$ pollution
- Trigger efficiency and reco somewhat below $B_s \to \mu\mu$ But better than full γ reco
- Mass resolution, O(50 MeV), crucial: could be more challenging at ATLAS / CMS

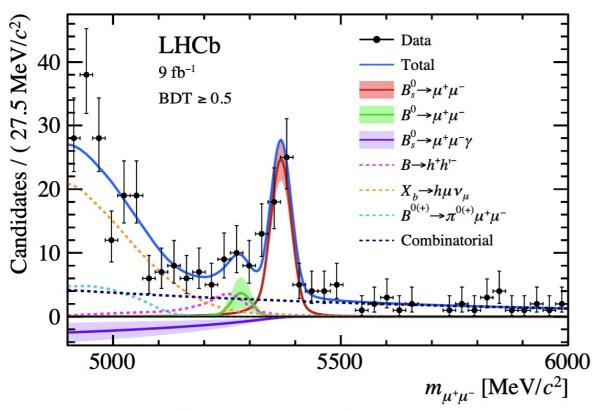
- No need to reconstruct the γ (factor-of-20 loss in efficiency)
- Probes a q^2 region where even a good γ detector is challenged
- Trigger & selection: muons only the cleanest particles at LHC

- Signal is a shoulder, not a peak as in several semilep. B decays
- Relatively (but not too) small q^2 range. Below 4.2 GeV, $c\bar{c}$ pollution
- Trigger efficiency and reco somewhat below $B_s \to \mu\mu$ But better than full γ reco
- Mass resolution, O(50 MeV), crucial: could be more challenging at ATLAS / CMS
- Calibration not trivial no "analogous" channel









$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(3.09^{+0.46}_{-0.43}^{+0.15}\right) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = \left(1.2^{+0.8}_{-0.7} \pm 0.1\right) \times 10^{-10} < 2.6 \times 10^{-10}$$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m_{\mu\mu} > 4.9 \text{ GeV}} = (-2.5 \pm 1.4 \pm 0.8) \times 10^{-9} < 2.0 \times 10^{-9}$$
No significant signal for $B^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^- \gamma$, upper limits at

No significant signal for $B^0 \to \mu^+\mu^-$ and $B^0_s \to \mu^+\mu^-\gamma$, upper limits at 95% First world limit on $B^0_s \to \mu^+\mu^-\gamma$ decay

The elephant in the room (FFs)

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

Small E_y

[RM123, '15] [1st application ($K_{\ell 2}$), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

Small E_y

[RM123, '15] [1st application (K_{f2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

$$\Gamma(E_{\gamma}^{\max}) = \Gamma_0 + \Gamma_1(E_{\gamma}^{\max}) \qquad \qquad \ell\ell'\gamma \text{ width,}$$
 whose the root of 1 y
$$\ell\ell' \text{ width (no ext y)}$$

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

Small
$$E_{y}$$

[RM123, '15] [1st application (K_{f2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Total width
$$\Gamma(E_{\gamma}^{\max}) = \Gamma_0 + \Gamma_1(E_{\gamma}^{\max}) \qquad \ell\ell'\gamma \text{ width,}$$
 where 0 or 1 γ
$$\ell\ell'$$
 width (no ext γ)

as
$$\Gamma(E_{\gamma}^{\max})=$$

$$\lim_{V o \infty} \left(\Gamma_0 - \Gamma_0^{\mathrm{sQED}}\right) + \lim_{V o \infty} \left(\Gamma_0^{\mathrm{sQED}} + \Gamma_1^{\mathrm{sQED}}(E_{\gamma}^{\max})\right)$$
 IR-safe

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

Small
$$E_{y}$$

[RM123, '15] [1st application (K_{f2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Calculate

$$\Gamma(E_{\gamma}^{\max}) = \Gamma_0 + \Gamma_1(E_{\gamma}^{\max}) \qquad \qquad \ell\ell'\gamma \text{ width,}$$
 whose ther 0 or 1 γ

as
$$\Gamma(E_{\gamma}^{\max}) = \lim_{V \to \infty} \left[\Gamma_0 - \Gamma_0^{\mathrm{sQED}} + \lim_{V \to \infty} \left[\Gamma_0^{\mathrm{sQED}} + \Gamma_1^{\mathrm{sQED}} (E_{\gamma}^{\max}) \right] \right]$$
IR-safe

LQCD $O(\alpha)$ $\ell\ell'$ width

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

Small
$$E_{y}$$

[RM123, '15] [1st application (K_{f2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

Total width
$$\Gamma(E_{\gamma}^{\max}) = \Gamma_0 + \Gamma_1(E_{\gamma}^{\max}) \qquad \ell\ell'\gamma \text{ width,}$$
 w/ either 0 or 1 γ

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

[RM123, '15] [1st application (K_{f2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator

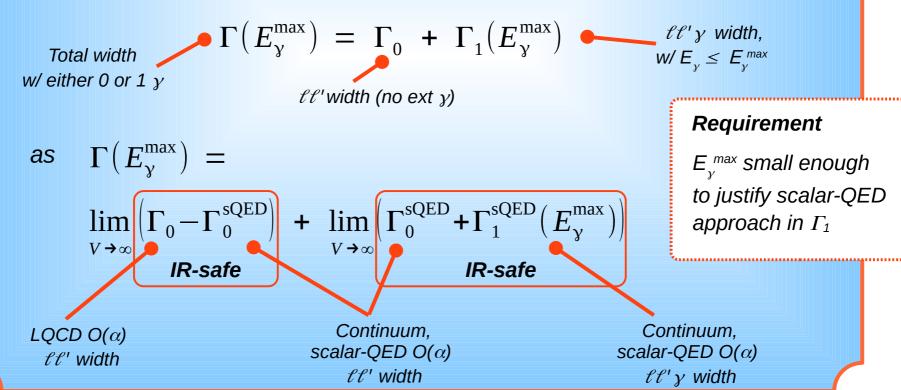
Total width
$$\Gamma(E_{\gamma}^{\max}) = \Gamma_0 + \Gamma_1(E_{\gamma}^{\max}) \qquad \qquad \ell\ell'\gamma \text{ width,}$$
 w/ either 0 or 1 γ

Novel ideas & applications, both at low q^2 (large E_y) and high q^2 (small E_y)

Small E_y

[RM123, '15] [1st application (K_{f2}), RM123, '17]

Novel method to define an IR-safe LQCD correlator



FFs at low q^2

within factorization

$B_s \rightarrow \mu\mu\gamma$ with energetic γ

[Beneke-Bobeth-Wang, '20]

• For low $q^2 \le 6$ GeV, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_\gamma$

[Beneke-Bobeth-Wang, '20]

- For low $q^2 \le 6$ GeV, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_\gamma$
- In particular
 - LP (\triangleleft expressible in terms of B-meson LCDA λ_B)
 - + $O(\alpha_s)$ corr's

$B_s \rightarrow \mu\mu\gamma$ with energetic γ

[Beneke-Bobeth-Wang, '20]

- For low $q^2 \le 6$ GeV, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_\gamma$
- In particular
 - LP (\sim expressible in terms of B-meson LCDA λ_B) + $O(\alpha_s)$ corr's
 - local NLP

similar to $B_u \to \ell \nu \gamma$

$B_{\rm s} ightarrow \mu \mu \gamma$ with energetic γ

[Beneke-Bobeth-Wang, '20]

- For low $q^2 \le 6$ GeV, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_\gamma$
- In particular
 - LP (\sim expressible in terms of B-meson LCDA λ_B) + $O(\alpha_s)$ corr's
 - local NLP
 - non-local NLP

similar to $B_u \to \ell \nu \gamma$

resonance paramet'n

$B_s \rightarrow \mu\mu\gamma$ with energetic γ

[Beneke-Bobeth-Wang, '20]

- For low $q^2 \le 6$ GeV, $B_s \to \gamma^*$ f.f.'s can be calculated in a systematic expansion in $1/m_b$, $1/E_\gamma$
- In particular
 - LP (\sim expressible in terms of B-meson LCDA λ_B) + $O(\alpha_s)$ corr's
 - local NLP
 - non-local NLP
 - actually dominant contribution by far
 - escapes first-principle description

similar to $B_u \to \ell \nu \gamma$

resonance paramet'n

[Beneke-Bobeth-Wang, '20]

• Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_B (as expected)

[Beneke-Bobeth-Wang, '20]

- Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_B (as expected)
- Also continuum contribution gives large error (± 35-45%)

[Beneke-Bobeth-Wang, '20]

- Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_B (as expected)
- Also continuum contribution gives large error (± 35-45%)
- Large NLP + small phase space available + large λ_B dependence challenge a precise $B_s \to \mu \overline{\mu} \gamma$ prediction at low q^2

[Beneke-Bobeth-Wang, '20]

- Dominant parametric error, $^{+70\%}_{-30\%}$, from λ_{B} (as expected)
- Also continuum contribution gives large error (± 35-45%)
- Large NLP + small phase space available + large λ_B dependence challenge a precise $B_s \to \mu \overline{\mu} \gamma$ prediction at low q^2
- Prediction

$$\langle \mathcal{B} \rangle_{[4m_{\mu}^2, 6.0]} = (12.51_{-1.93}^{+3.83}) \cdot 10^{-9}, \quad \langle \mathcal{B} \rangle_{[2.0, 6.0]} = (0.30_{-0.14}^{+0.25}) \cdot 10^{-9}$$

i.e. ϕ region gives 97.6% of the BR

FFs within LCSRs

[Janowski, Pullin, Zwicky, '21]

see also [Pullin, Zwicky, '21; Albrecht et al., 19]

FFs fitted to a z-expansion ansatz

$$F_n^{\bar{B}\to\gamma}(q^2) = \frac{1}{1 - q^2/m_R^2} \left(\alpha_{n0} + \sum_{k=1}^N \alpha_{nk} (z(q^2) - z(0))^k \right)$$

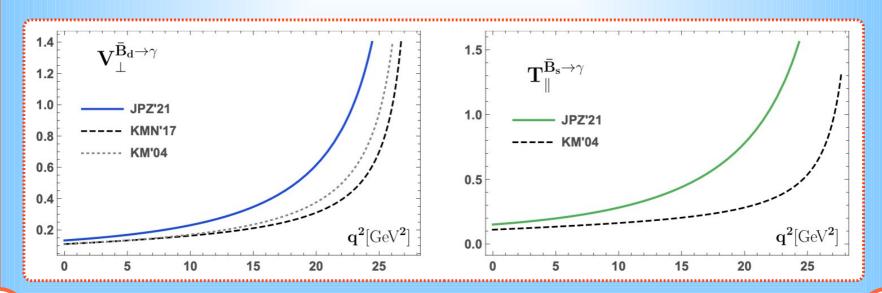
FFs within LCSRs

[Janowski, Pullin, Zwicky, '21] see also [Pullin, Zwicky, '21; Albrecht et al., 19]

FFs fitted to a z-expansion ansatz

$$F_n^{\bar{B}\to\gamma}(q^2) = \frac{1}{1 - q^2/m_R^2} \left(\alpha_{n0} + \sum_{k=1}^N \alpha_{nk} (z(q^2) - z(0))^k \right)$$

 Comparison with the quark-model FF parameterizations in [Melikhov, Nikitin, '04; Kozachuk, Melikhov, Nitikin, '17]



FFs at high q²

A phenomenological approach using LQCD and heavy-quark symmetry

[DG, Normand, Simula, Vittorio, '23]

① Use available $D_s \rightarrow \gamma$ LQCD data (directly computed in very range of interest)

[DG, Normand, Simula, Vittorio, '23]

- ① Use available $D_s \rightarrow \gamma$ LQCD data (directly computed in very range of interest)
- Prame these data within vector meson dominance

[DG, Normand, Simula, Vittorio, '23]

- ① Use available $D_s \rightarrow y$ LQCD data (directly computed in very range of interest)
- ② Frame these data within vector meson dominance
- 3 Such description obeys well-defined heavy-quark scaling

Scale up from the D_s to the B_s

[DG, Normand, Simula, Vittorio, '23]

- ① Use available $D_s \rightarrow y$ LQCD data (directly computed in very range of interest)
- Prame these data within vector meson dominance
- 3 Such description obeys well-defined heavy-quark scaling
 - Scale up from the D_s to the B_s
- Validate as much as possible

① Use $D_s \rightarrow \gamma LQCD$ data

Our region of interest is high $q^2 \in [4.2, 5.0]^2 \text{ GeV}^2$ In precisely this region, LQCD has directly computed $D_s \to \gamma$ FFs

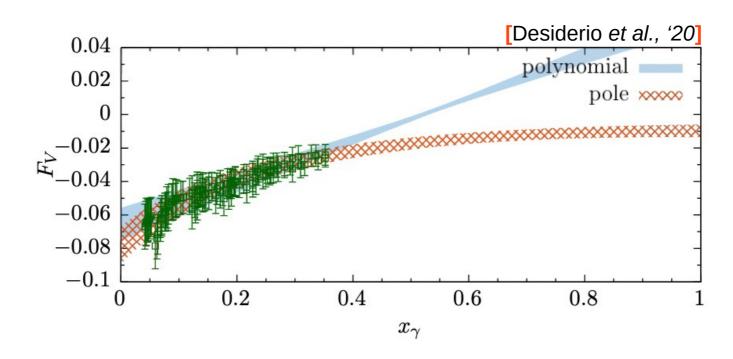
Use $D_s \rightarrow \gamma LQCD$ data

Our region of interest is high $q^2 \in [4.2, 5.0]^2 \text{ GeV}^2$ In precisely this region, LQCD has directly computed $D_s \rightarrow \gamma$ FFs

High q² means low $x_{\gamma} \equiv 1 - q^2 / m_{Ds}^2$

$$q^2 \in [4.2, 5.0]^2 \text{ GeV}^2$$
 $x_y \in [0.39, 0.13]$

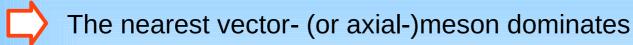
$$x_y \in [0.39, 0.13]$$



5⁵51 Frame LQCD data within Vector Meson Dominance High q^2 means small E_y The nearest vector- (or axial-)meson dominates [Becirevic, Haas, Kou, '09] 2 Frame LQCD data within Vector Meson Dominance

ATTICLE TO THE PARTY OF THE PAR

High q^2 means small E_y



[Becirevic, Haas, Kou, '09]

$$\langle \gamma | \bar{s} \gamma_{\mu} b | \bar{B}_{s} \rangle \simeq \sum_{\lambda} \frac{\langle 0 | \bar{s} \gamma_{\mu} b | B_{s}^{*}(\varepsilon_{\lambda}) \rangle \langle B_{s}^{*}(\varepsilon_{\lambda}) | B_{s} \gamma \rangle}{q^{2} - m_{B_{s}^{*}}^{2}}$$

Prame LQCD data within Vector Meson Dominance

High q^2 means small E_y

The nearest vector- (or axial-)meson dominates

[Becirevic, Haas, Kou, '09]

$$(\gamma |\bar{s}\gamma_{\mu}b|\bar{B}_{s}) \simeq \sum_{\lambda} \frac{\langle 0|\bar{s}\gamma_{\mu}b|B_{s}^{*}(\varepsilon_{\lambda})\rangle\langle B_{s}^{*}(\varepsilon_{\lambda})|B_{s}\gamma\rangle}{q^{2} - m_{B_{s}^{*}}^{2}}$$

$$\propto V_{\perp}(q^2) = \frac{1}{\pi} \int_0^{\infty} dt \frac{\text{Im}[V_{\perp}(t)]}{t - q^2} = \frac{r_{\perp}}{1 - q^2/m_{B_s^*}^2} + \dots$$

2 Frame LQCD data within Vector Meson Dominance

High q^2 means small E_y

The nearest vector- (or axial-)meson dominates

[Becirevic, Haas, Kou, '09]

$$\langle \gamma | \bar{s} \gamma_{\mu} b | \bar{B}_{s} \rangle \simeq \sum_{\lambda} \underbrace{\begin{pmatrix} 0 | \bar{s} \gamma_{\mu} b | B_{s}^{*}(\varepsilon_{\lambda}) \end{pmatrix} \langle B_{s}^{*}(\varepsilon_{\lambda}) | B_{s} \gamma \rangle}_{q^{2} - m_{B_{s}^{*}}^{2}} \underbrace{\langle Tri-coupling}_{g_{B_{s}^{*}B_{s}\gamma}}$$

$$\propto m_{B_{s}^{*}} f_{B_{s}^{*}} \qquad \text{``tri-coupling''}_{g_{B_{s}^{*}B_{s}\gamma}}$$

$$\propto V_{\perp}(q^{2}) = \frac{1}{\pi} \int_{0}^{\infty} dt \frac{\operatorname{Im}[V_{\perp}(t)]}{t - q^{2}} = \frac{r_{\perp}}{1 - q^{2}/m_{B_{s}^{*}}^{2}} + \dots$$

Prame LQCD data within Vector Meson Dominance

High q^2 means small E_y

The nearest vector- (or axial-)meson dominates

[Becirevic, Haas, Kou, '09]

$$\langle \gamma | \bar{s} \gamma_{\mu} b | \bar{B}_{s} \rangle \simeq \sum_{\lambda} \underbrace{\langle 0 | \bar{s} \gamma_{\mu} b | B_{s}^{*}(\varepsilon_{\lambda}) \rangle \langle B_{s}^{*}(\varepsilon_{\lambda}) | B_{s} \gamma \rangle}_{q^{2} - m_{B_{s}^{*}}^{2}} \underbrace{\langle Tri-coupling}_{g_{B_{s}^{*}B_{s}\gamma}} \times \langle Tri-coupling}_{g_{B_{s}^{*}B_{s}\gamma} \times \langle Tri-coupling}_{g_{B_{s}^{*}B_{s}\gamma}} \times \langle Tri-coupling}_{g_{B_{s}^{*}B_{s}\gamma} \times \langle Tri-coupling}_{g_{B_{s}^{*}B_{s}\gamma}} \times \langle Tri-coupling}_{g_{B_{s}^{*}B_{s}\gamma} \times \langle Tri-coupling}_{g_{B_{$$

One can thus relate the (fitted) residue to the (otherwise unknown) tri-coupling

$$r_{\perp}=rac{m_{B_s}f_{B_s^*}}{m_{B_s^*}}g_{B_s^*B_s\gamma}$$

FFs are described as a sum of poles + cuts Description useful if one or two terms dominate

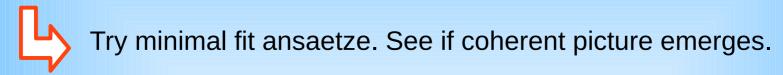
Try minimal fit ansaetze. See if coherent picture emerges.

FFs are described as a sum of poles + cuts Description useful if one or two terms dominate

Try minimal fit ansaetze. See if coherent picture emerges.

Pfit A single, physical pole Fit for one residue

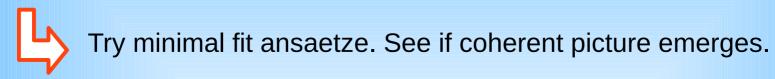
FFs are described as a sum of poles + cuts Description useful if one or two terms dominate



P fit A single, physical pole Fit for one residue

PP fit Two physical poles Fit for two residues

FFs are described as a sum of poles + cuts Description useful if one or two terms dominate



Pfit A single, physical pole Fit for one residue

PP fit Two physical poles Fit for two residues

E fit One effective pole Fit for residue & pole mass

FFs are described as a sum of poles + cuts

Description useful if one or two terms dominate

Try minimal fit ansaetze. See if coherent picture emerges.

Pfit A single, physical pole Fit for one residue

PP fit Two physical poles Fit for two residues

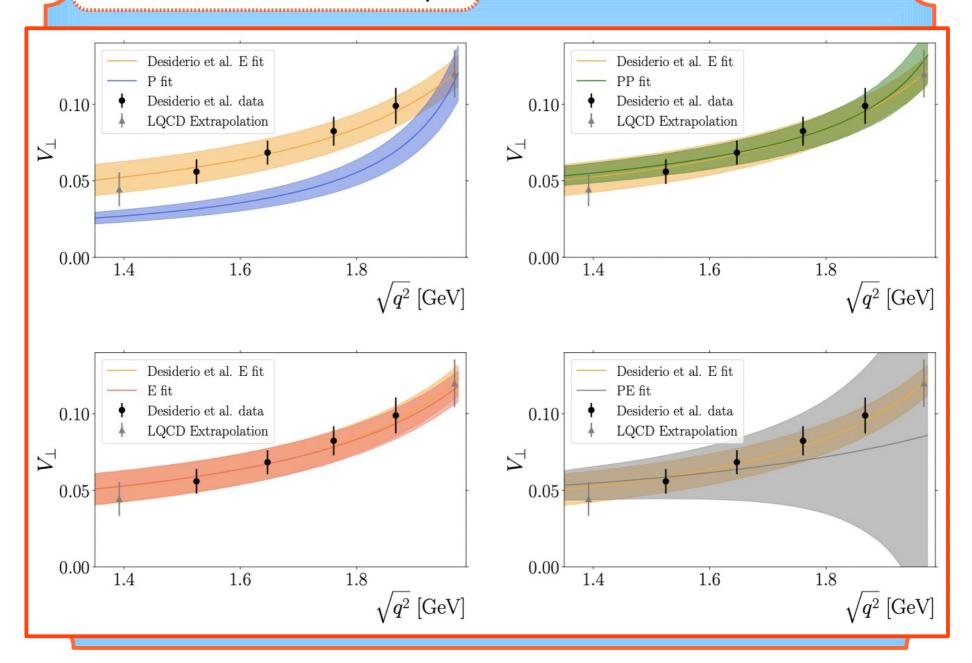
E fit One effective pole Fit for residue & pole mass

PE fit One phys & one eff pole

. . .

VMD: the vector-FF example

,, , ..., , ..., ..., ..., , ..., ..., ..., , ..., ..., , ..., , ..., , ..., , ..., , ..., , ..., , ..., , ..., ,



D. Guadagnoli, ALPS, 26-31 March, 2023

3 From the D_s to the B_s

Basic idea:

Tri-coupling =
$$\sum_{i = \text{valence quarks}} (\pm \text{ e.m. charge})_i \times (\text{magn. moment})_i$$

 \bigcirc From the D_s to the B_s

V vs. A currents have opposite behavior under C The r.h.s. for A must vanish if quarks are degenerate

Basic idea:

Tri-coupling =
$$\sum_{i = \text{valence quarks}} (\pm \text{ e.m. charge})_i \times (\text{magn. moment})_i$$

3 From the D_s to the B_s

V vs. A currents have opposite behavior under C The r.h.s. for A must vanish if quarks are degenerate

Basic idea:

Tri-coupling =
$$\sum_{i = \text{valence quarks}} (\pm \text{ e.m. charge})_i \times (\text{magn. moment})_i$$

Hence such expansion allows to scale up from mc to mb

 \bigcirc From the D_s to the B_s

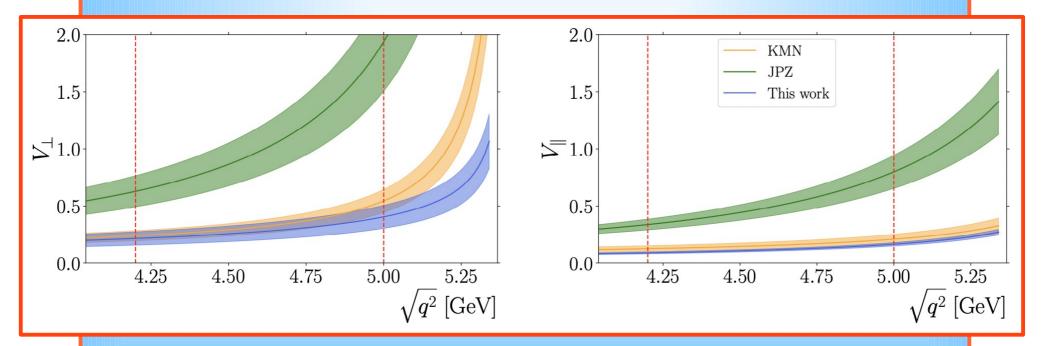
, minimum mini

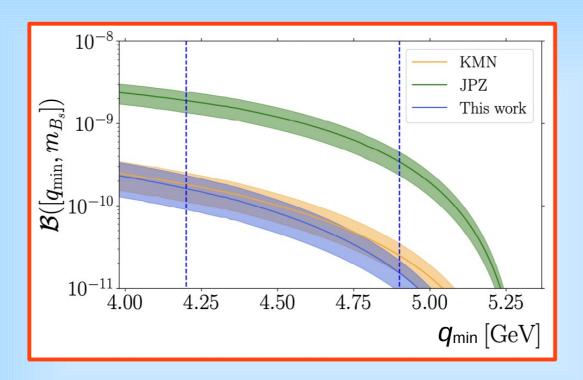
V vs. A currents have opposite behavior under C The r.h.s. for A must vanish if quarks are degenerate

Basic idea:

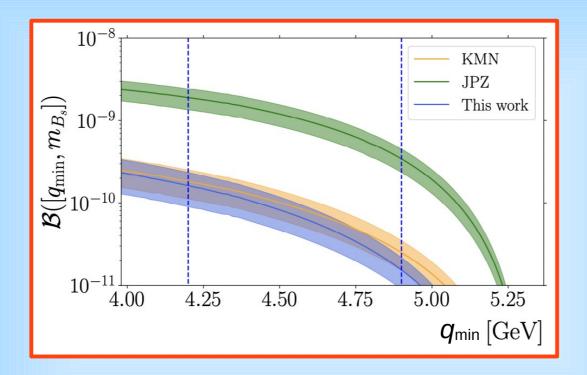
Tri-coupling =
$$\sum_{i = \text{valence quarks}} (\pm \text{ e.m. charge})_i \times (\text{magn. moment})_i$$

Hence such expansion allows to scale up from m_{c} to m_{b}





BR($B_s \rightarrow \mu^+ \mu^- \gamma$) prediction

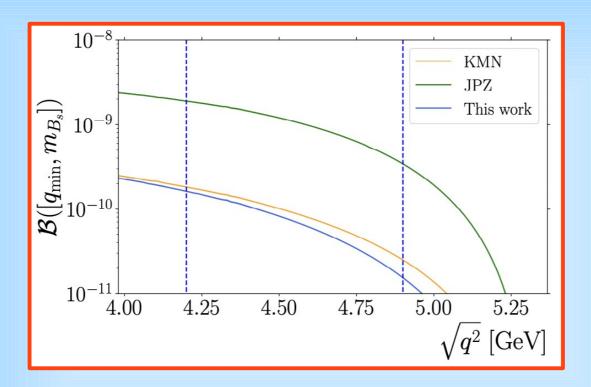


Below ~ 4.4 GeV there is broad-cc pollution

These contributions are incalculable from first principles

How large is their share of the total error?

BR(B_s → μ⁺μ⁻ γ) prediction



How large is their share of the total error?

Tiny!

• Low impact of broad cc encouraging, given that this systematics inherently escapes a rigorous description

- Low impact of broad cc encouraging, given that this systematics inherently escapes a rigorous description
- f.f. uncertainty, even if still large, in principle "reducible"

- Low impact of broad cc encouraging, given that this systematics inherently escapes a rigorous description
- f.f. uncertainty, even if still large, in principle "reducible"
- Maybe worthwhile to look for more observables with such properties

Example: the ${\cal B}_s^{} o\mu\mu\gamma\,$ effective lifetime

4.....

[Carvunis et al., '21]

Natural exp observable: untagged rate

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$$

Example: the $B_s \to \mu \mu \gamma$ effective lifetime

[Carvunis et al., '21]

Natural exp observable: untagged rate

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$$

Recalling the time dependence of the |amplitudes|2

$$|\vec{\mathcal{A}}_f(t)|^2 = \frac{e^{-\Gamma_s t}}{2} \Big[\Big(|\mathcal{A}_f|^2 + |q/p|^2 |\bar{\mathcal{A}}_f|^2 \Big) \cosh(\Delta \Gamma_s t/2) \pm \Big(|\mathcal{A}_f|^2 - |q/p|^2 |\bar{\mathcal{A}}_f|^2 \Big) \cos(\Delta M_s t)$$

$$- 2 \operatorname{Re} \Big(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \Big) \sinh(\Delta \Gamma_s t/2) \mp 2 \operatorname{Im} \Big(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \Big) \sin(\Delta M_s t)$$

Example: the $B_s \to \mu\mu\gamma$ effective lifetime

[Carvunis et al., '21]

Natural exp observable: untagged rate

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$$

Recalling the time dependence of the |amplitudes|2

$$|\overrightarrow{\mathcal{A}}_{f}(t)|^{2} = \frac{e^{-\Gamma_{s}t}}{2} \left[\left(|\mathcal{A}_{f}|^{2} + |q/p|^{2} |\overline{\mathcal{A}}_{f}|^{2} \right) \cosh(\Delta \Gamma_{s} t/2) \pm \left(|\mathcal{A}_{f}|^{2} - |q/p|^{2} |\overline{\mathcal{A}}_{f}|^{2} \right) \cos(\Delta M_{s} t) \right.$$

$$- 2 \operatorname{Re} \left(q/p \, \overline{\mathcal{A}}_{f} \mathcal{A}_{f}^{*} \right) \sinh(\Delta \Gamma_{s} t/2) \mp 2 \operatorname{Im} \left(q/p \, \overline{\mathcal{A}}_{f} \mathcal{A}_{f}^{*} \right) \sin(\Delta M_{s} t)$$

yields the following quantity sensitive to new CPV

$$A_{\Delta\Gamma_s}^f = \frac{-2\int_{\mathrm{PS}} \mathrm{Re}\left(q/p\,\bar{\mathcal{A}}_f \mathcal{A}_f^*\right)}{\int_{\mathrm{PS}} \left(|\mathcal{A}_f|^2 + |q/p|^2|\bar{\mathcal{A}}_f|^2\right)}$$

Example: the $B_s \to \mu\mu\gamma$ effective lifetime

[Carvunis et al., '21]

Natural exp observable: untagged rate

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$$

Recalling the time dependence of the |amplitudes|2

$$|\vec{\mathcal{A}}_f(t)|^2 = \frac{e^{-\Gamma_s t}}{2} \Big[\Big(|\mathcal{A}_f|^2 + |q/p|^2 |\bar{\mathcal{A}}_f|^2 \Big) \cosh(\Delta \Gamma_s t/2) \pm \Big(|\mathcal{A}_f|^2 - |q/p|^2 |\bar{\mathcal{A}}_f|^2 \Big) \cos(\Delta M_s t)$$

$$- 2 \operatorname{Re} \Big(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \Big) \sinh(\Delta \Gamma_s t/2) \mp 2 \operatorname{Im} \Big(q/p \,\bar{\mathcal{A}}_f \mathcal{A}_f^* \Big) \sin(\Delta M_s t)$$

yields the following quantity sensitive to new CPV

$$A_{\Delta\Gamma_s}^f = \frac{-2\int_{PS} \operatorname{Re}\left(q/p\,\bar{\mathcal{A}}_f \mathcal{A}_f^*\right)}{\int_{PS} \left(|\mathcal{A}_f|^2 + |q/p|^2|\bar{\mathcal{A}}_f|^2\right)}$$

 A_{ΔΓ} can be extracted from (an accurate measurement of) the effective lifetime

 $B_s \rightarrow \mu \mu \gamma$ is interesting in many respects

It's new – never measured

 $B_s \rightarrow \mu \mu \gamma$ is interesting in many respects

- It's new never measured
- It's now measurable from $B_s \rightarrow \mu\mu$ for high q^2

 $B_s \rightarrow \mu\mu\gamma$ is interesting in many respects

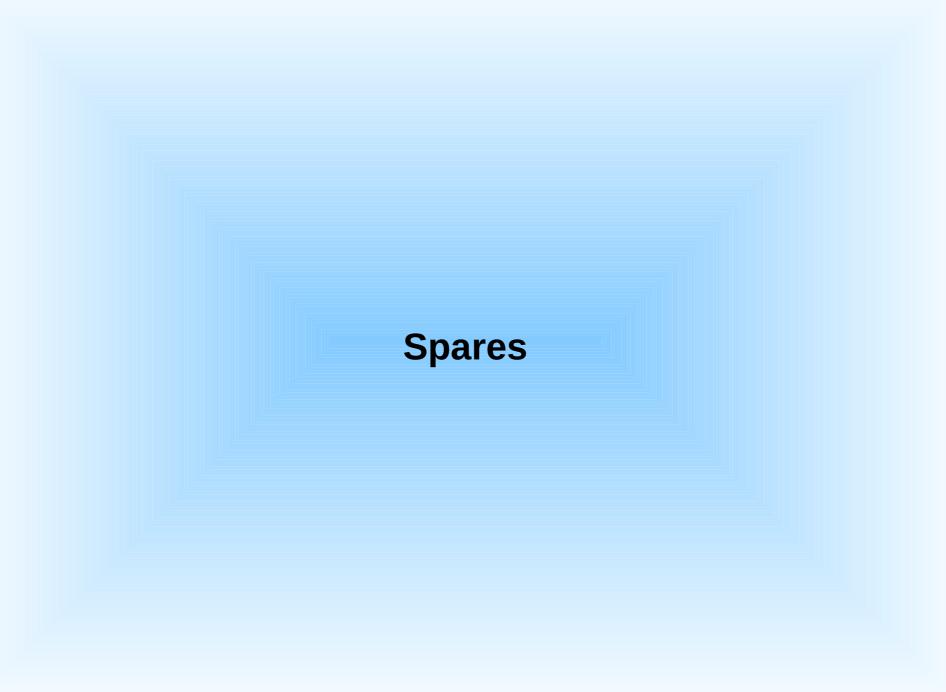
- It's new never measured
- It's now measurable from $B_s \to \mu\mu$ for high q^2
- High q² offers several TH advantages
 - Probes in complementary kin. region the tensions reported in semi-lep BRs

 $B_s \rightarrow \mu\mu\gamma$ is interesting in many respects

- It's new never measured
- It's now measurable from $B_s \to \mu\mu$ for high q^2
- High q² offers several TH advantages
 - Probes in complementary kin. region the tensions reported in semi-lep BRs
 - Test is strong, given the very different underlying exp method

 $B_s \rightarrow \mu \mu \gamma$ is interesting in many respects

- It's new never measured
- It's now measurable from $B_s \to \mu\mu$ for high q^2
- High q² offers several TH advantages
 - Probes in complementary kin. region the tensions reported in semi-lep BRs
 - Test is strong, given the very different underlying exp method
 - Preferred region for lattice QCD



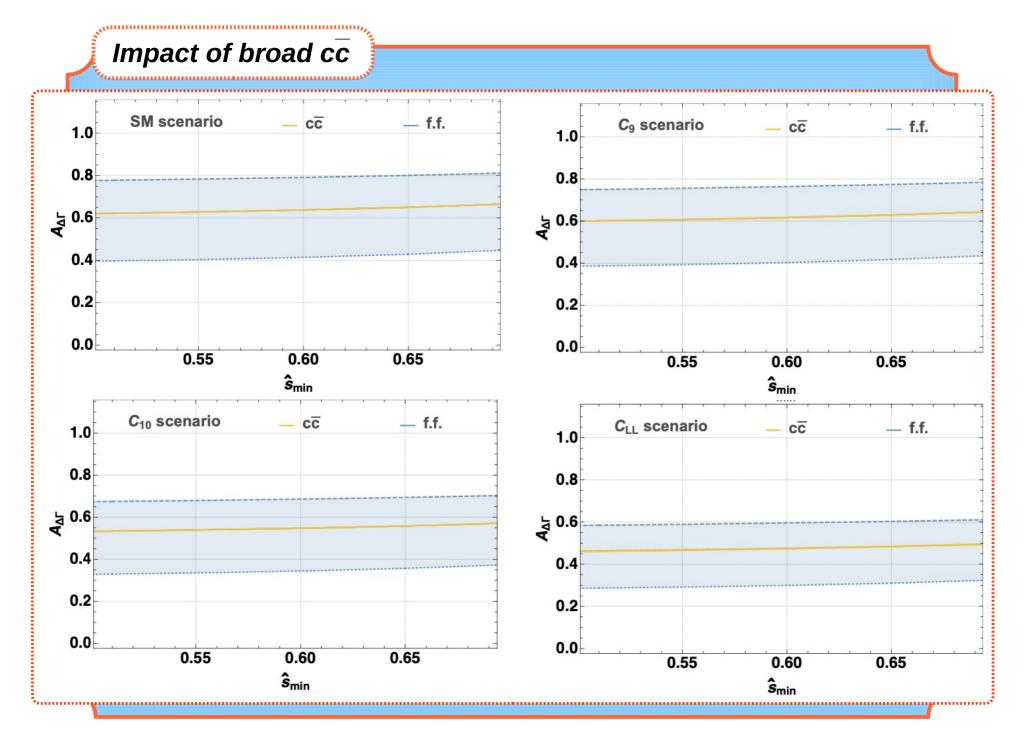
Impact of broad cc

[Carvunis et al., '21]

Parameterize the effect most generally (e.g. discussion in [Lyon, Zwicky, '14])

$$C_9 \to C_9 - \frac{9\pi}{\alpha^2} \bar{C} \sum_{V} |\eta_V| e^{i\delta_V} \frac{\hat{m}_V \mathcal{B}(V \to \mu^+ \mu^-) \hat{\Gamma}_{\text{tot}}^V}{\hat{q}^2 - \hat{m}_V^2 + i\hat{m}_V \hat{\Gamma}_{\text{tot}}^V}$$

- $|\eta_{\mathcal{N}}| \in [1, 3] \& \delta_{\mathcal{N}} \in [0, 2\pi)$ (uniformly and independently for the 5 resonances)
- for all TH scenarios



D. Guadagnoli, ALPS, 26-31 March, 2023

• Bottom line: broad $c\bar{c}$ has surprisingly small impact on $A_{\Delta\Gamma}$

But broad- $c\bar{c}$ shift to C_9 typically O(5%) – and with random phase

Far from obvious why such a small impact on $A_{\Delta\Gamma}$

- Closer look (App. D for an analytic understanding)
 Cancellation is a conspiracy between
 - Complete dominance of contributions quadratic in C_9 and C_{10}
 - Multiplying f.f.'s F_V , $F_A \in \mathbb{R}$
 - Broad \overline{cc} can be treated as small modif. of (numerically large) C_9

Ease cancellations between num & den in $A_{\Delta\Gamma}$

Radiative leptonic FFs in LQCD

Large E_y

 The required correlator (weak & e.m. current insertion between a B and the vac) has always the desired large-Euclidean-t behavior
 [Kane, Lehner, Meinel, Soni, '19]

Note that this is non-trivial — e.g. it doesn't seem to hold if there are hadronic final states

 However, the low-q² spectrum is dominated by resonant contributions (~98% of the BR), that LQCD is unable to capture 4......

• Take the weak operators as $O_i \equiv J_i^{(1)}$. $J_i^{(q)}$ and i = 9,10 for definiteness (and simplicity)

$$\overline{A} \propto \epsilon_{\mu}^* \left\{ \sum_{i} C_i \left[T_i^{\mu\nu} \left\langle \ell \bar{\ell} \right| J_{i\nu}^{(l)}(0) \left| 0 \right\rangle \right. \right. \\ \left. + S_{\nu}^{(i)} \left. \operatorname{FT}_x \left\langle \ell \bar{\ell} \right| T \left\{ J_{\mathrm{em}}^{\mu}(x), J_i^{(l)\nu}(0) \right\} \left| 0 \right\rangle \right] \right\}$$

FSR: only $S_{\nu}^{(10)} \neq 0 \ (\propto m_{\ell}) \Longrightarrow tiny$

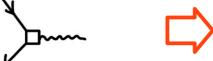
$$T_i^{\mu\nu} \propto \operatorname{FT}_x\langle 0| T\{J_{\mathrm{em}}^{\mu}(x), J_i^{(q)\nu}(0)\}|B\rangle$$

Notes on structure

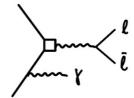
 $_{M}$

[Beneke-Bobeth-Wang, '20]

O₇ :



 $T_{7A}^{\mu\nu}$:



but also

 $T_{7B}^{\mu
u}$

•
$$T_i^{\mu\nu} = T_i^{\mu\nu}(k,q) \propto (g^{\mu\nu}k \cdot q - q^{\mu}k^{\nu}) (F_L^{(i)} - F_R^{(i)}) + i\varepsilon^{\mu\nu qk} (F_L^{(i)} + F_R^{(i)}) = F_A^{(i)}$$

• For
$$\mathsf{E}_{\scriptscriptstyle Y} \gg \Lambda_{\scriptscriptstyle \mathrm{QCD}}$$
 $F_R^{(i)} \sim \frac{\Lambda_{\scriptscriptstyle \mathrm{QCD}}}{E_{\scriptscriptstyle \Sigma}} F_L^{(i)}$ \Longrightarrow $F_A^{(i)} pprox F_V^{(i)}$

Two-step matching onto SCET

[Beneke-Bobeth-Wang, '20]

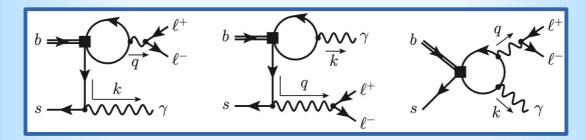
• Decoupling of h modes $O(m_b^2)$ in QCD \rightarrow SCET, matching

$$egin{aligned} \sum_{i}^{9} \; \eta_{i} C_{i} \; T_{i}^{\mu
u} \; &= \; \sum_{i}^{9} \; C_{i} H_{i}(q^{2}) \cdot \ & \cdot \operatorname{FT}_{x} \langle 0 | \; T\{J_{\mathrm{em,SCET_{I}}}^{\mu}(x), \left[\overline{q}_{\mathrm{hc}} \gamma_{L}^{
u\perp} h_{v}\right](0)\} | B
angle \end{aligned}$$

separation $x \sim 1/\sqrt{E_{\gamma}\Lambda_{\rm QCD}}$ i.e. intermediate propagator is hc

• Decoupling of hc modes $O(E_y \Lambda_{QCD}; m_b \Lambda_{QCD})$ in $SCET_l \rightarrow SCET_{ll}$

- Three sources
 - coupling of γ to b quark
 - power corr's to SCET₁ correlator at tree level
 - annihilation-type insertions of 4q operators 🖒 local



- Two soft FFs
 - $\xi(E_{\gamma})$: computable as in $B_u \to \ell \nu \gamma$ [Beneke-Rohrwild, '11]
 - For B-type contributions: $\tilde{\xi}(E_y)$ Its Im develops resonances, thus escaping a factorization description

Resonances

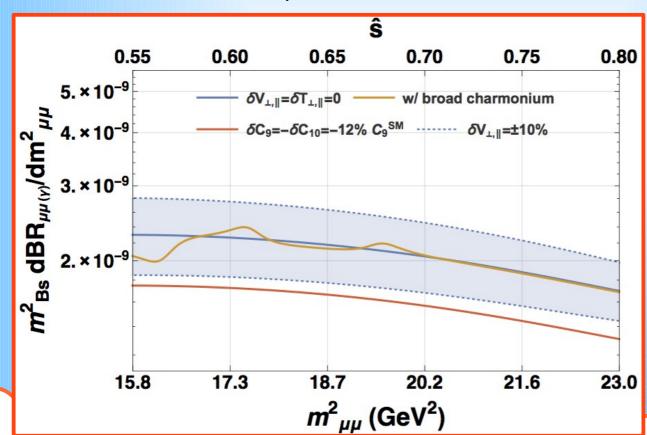
[Beneke-Bobeth-Wang, '20]

- $T_{7B}^{\mu\nu}$ leads to \overline{A}_{res}
 - standard spectral repr. (à la BW)
 - formally power-suppressed

hence inclusion won't lead to double counting of some short-distance contributions

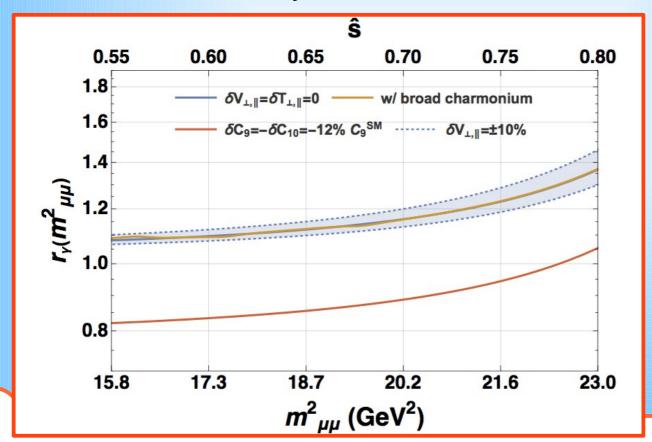
$B_s \rightarrow \mu\mu\gamma$ spectrum

- In [DG, Reboud, Zwicky, '17] resonant ansatz used to rewrite low-q² BR in terms of the measured BR($B_s \rightarrow \phi \gamma$)
- Then main focus on large-q² region, above narrow charmonium.
 Broad-charmonium pollution estimated with similar resonant ansatz



$B_s \rightarrow \mu\mu\gamma$ spectrum

- In [DG, Reboud, Zwicky, '17] resonant ansatz used to rewrite low-q² BR in terms of the measured BR($B_s \rightarrow \phi \gamma$)
- Then main focus on large-q² region, above narrow charmonium.
 Pollution substantially tamed in suitable ratio observable



$$r_{\gamma} \equiv \frac{dBR(B_s \rightarrow \mu \mu \gamma)/dq^2}{dBR(B_s \rightarrow e e \gamma)/dq^2}$$