ESR6: Optimization of RTA resources for LHCb Lepton Flavor Violation search and manufacturing

> Daniel Magdalinski, Nikhef SMARTHEP Kick-off, Manchester 21 November, 2022

We acknowledge funding from the European Union Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

About me: Daniel Magdalinski

- Born and raised in Stockholm, Sweden
- Both bachelor and master at Lund University
- Bachelor
 - Energy regression with neural networks at LDMX(Light Dark Matter eXperiment)
- Master
 - Lepton to doubly charged higgs initial analysis study at ATLAS

About me: Daniel Magdalinski

- CERN summer student 2022
 - HGCAL reconstruction at CMS
- Mainly physics background with deep interest in programming and machine learning
- ESR6 in Amsterdam from 1st of October

About me: Daniel Magdalinski

- Other interests:
 - Gaming
 - Classical guitar
 - Cooking
- Sports
 - Skiing(cross-country and alpine)
 - Squash
 - Bouldering recently

Lepton Flavor Universality(LFU)

- Lepton couplings to vector bosons are independent of generation/flavor
- Violation of this principle would be an indication of new physics
- LFU measurements have so far shown tension to the SM but no discoveries so far

LFV process: $\tau \rightarrow \mu + \gamma$

- Flavor violating process
 - Current best: $B(\tau \rightarrow \mu + \gamma) < 4.2 \times 10^{-8}$
- Initial investigation into if LHCb could be competitive with Belle II
 - \circ LHCb: very messy but higher luminosity and cross section for τ
 - Belle II very clean
- Simple decay products
 - Background very large

LHCb software trigger update

- Hardware trigger limited physics gain of increased luminosity
- Solution: Throw it out and replace with software trigger

LHCb software trigger update

- 30 MHz using GPUs in HLT1
 - 1 MHz output
- HLT1 focus on displaced charged tracks
 - Muon and calorimeter info also available for PID
- HLT2 does full reconstruction with CPUs
 - Alignment and calibration needed for offline-quality reconstruction
 - Trigger chains

LHCb
40 Tbit/s 30 MHz
170 servers event building
GPUs HLT1
1-2 Tbit/s ~1 MHz
Server farm
buffer on disk calibration and alignment
¥
HLT2
80 Gbit/s
Tier-0

Optimization of trigger

- HLT2 trigger consists of ~1000 trigger chains
 - Similar analysis: similar computations
 - Possibly saving the same object twice in the event
- Optimization task
 - Computational resources
 - Storage resources
 - Cost-benefit

Optimization of trigger

- HLT2 trigger consists of ~1000 trigger chains
 - Similar analysis: similar computations
 - Possibly saving the same object twice in the event
- Optimization task
 - Computational resources
 - Storage resources
 - Cost-benefit
- Global optimization task ideal candidate for machine learning
- Optimization should be generalized so it can be applicable to ATLAS during secondment to CERN

Thank you for listening!