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The MUCCA Project

Ultimate Goal: quantifying strengths and solving weaknesses of new and state of
the art xAl methods different data, learning tasks,

/ scientific questions

Strategy: study xAl in heferogeneous use cases from High Energy Physics (HEP),
medical imaging, diagnosis of pulmonary, tracheal and nasal disease, neuroscience

Collaboration: that brings together researchers from different fields

- High Energy Physics

- Applied Physics to Medicine Three phases:

1. Apply XAl techniques
2. ldentify shortcomings and metrics
3. Get new transparent algorithms

- Neuroscience
- Computer science

1

Multidisciplinarity
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The Consortium

Sapienza University of Rome (IT)
Departments of Physics, Physiology,
and Information Engineering

HEP: data-analysis, detectors, simulation Al: ML/DL methods
in basic/applied research and industry, intelligent signal
processing. Neurosciences: brain encoding of complex
behaviours, ML in electrophysiology, multi-scale modelling
approaches

Istituto Nazionale Fisica Nucleare (IT)
Rome group INFN

Fundamental research with cutting edge
technologies and instruments, applications in several fields
(HEP, medicine imaging/diagnosis/prognosis/therapy)

Medlea S.r.l.s (IT)

High tech startup, with an established track record in medical
image analysis and high-performance simulation and
capabilities of developing and deploying industry-standard
software solutions

University of Sofia St.KI.Ohridski (BG)
Faculty of Physics

extended expertise in detector development,
firmware, experiment software in HEP

Polytechnic University of Bucharest (RO)
Department of Hydraulics, Hydraulic
Equipment and Environmental Engineering

Complex Fluids and Microfluidics expertise: mucus/saliva rheology,
reconstruction and simulation of respiratory airways, Al applications
for airflow predictions in respiratory conducts

University of Liverpool (UK)
Department of Physics

physics data analysis at hadron colliders experirﬁé;;ié,
simulation, ML and DL methods in HEP

Istituto Superiore di Sanita (IT) % N \5

expertise in neural networks modeling, cortical network
dynamics, theory inspired data analysis



The Work Plan

Scientific outputs
Soclal Impact

@Ep Samples and xAl-tools exchange
<:> Management and communication exchange

Publication, Realtime application taols <
_______ Open doors days Tools for detectors

£. WP1: HEP physics
Application cf Al-methcds to searches for
new physics at ATLAS. Provide samples
and tools o allow testing of xAl. improve
transparency, impact of systematics
explzinability. Deliverables: HEP

and tools for XAl methods, reports.

WP2: HEP detectors
Application of Al-methods 10 calorimeter
detactors (PADME). Provide simulation of
electromagnetic showers, benchmarking
and tools for xAl. Deliverables: samples

WP3: HEP real-time systems
Develop Al-based real-time selection algorithms
for FPGAs at AT_AS. Use xAl metheds for to
understand complex systems. Deliverables:
tools to transfer knowledge for xAl methods in

real-time applications, publication.

publications, benchmarks use-cases,
Qeneraized {ools. 0
|

SchoolMackaton
publications

WP7: xAl-Tools

Survey of all available xAl methcds
relevant for usa-cases; devalap xAl usage
pipelinas; analysis of results.
/'7 Deliverables: dccument xAl procedures
and engineering pipelines for general usa.

XAl tools, Kaggle challerge for exploiation.
Kaggle challengo\

VV WPO0: Management
Project and reports coordination,
planning of meetings, networking and
particigation in public confererces.
Dissemination, communication and
exploitation of results (publications,

repurls, social media)
A& A N

/

4 )

Y T — WP6: Neuro-science
Computer Test xAl techniques 10 uncover
Interfaces comgutational brain strategies on NHP
Meotings and selectior of dvnamical neural models
ctakeholdere  Deliverables: reports cn saliency maps
from DNNSs trials, quantification of quality
and model selection.
Open doors days \ .
|_Diagnostic tools
1

WP4: Medical imaging -
Develop xAl pipeline to segmentation of
brains in magnetic rescnance imaging.
Use publicly availabls databases for xAl
developments, focusing on explainability
of training strategy. Deliverables: xAl
algonthms and stability evaluation.

N N

g >
WP5: Functional Imaging

Test xAl methodology in respiratory
system. Analyse complex systems
(passage of ar and mucus. expectad ncn-
linear responses) to derive model and test
xAl. Deliverables: prololype of XAl
dgorithm implementaion, assessment of
produced predictions. /

\




High-Energy physics work-packages

Scientific outputs @ Samples and xAl-tools exchange £
Soclal Impact {——)> Management and communication exchange :

Publication, Realtime application taols
_______ Open doors days Tools for deteclors
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WP3: HEP real-time systems
Develop Al-based real-time selection algorithms
for FPGAs at ATLAS. Use xAl methods for to
understand complex systems. Deliverables:
tools to transfer knowledge for xAl methods in
real-time applications, publication.

e P ~ WP2: HEP detectors
q"---. ; . Application of Al-methods 1o calorimeter
WP1: HEP physics detaciors (PADME). Provide simulation of

= 3 : electromagnetic showers, dbenchmarking

new physics at ATLAS. Provde samples and tools for xAl. Deliverables: samples
and tools o allow testing of xAl. Improve and tools for XAl methods. reports
transparency, impact of systematics 2 '

explzinability. Deliverables: HEP & .

publications, benchmarks use-cases,

eneralized {ools.
@ 7

Application cf Al-methcds to searches for




HEP Uses Case 1, 2: offline data analysis

WP1 (HEP Case 1) M. D’Onofrio (Pl), J. Carmignani, C. Sebastiani:

application and development of Al algorithms (CNN, Graph NN), targeted to event classification and process
discrimination, for new physics (dark sector) and dark matter searches at the ATLAS experiment at the CERN LHC

Weakly interactive massive particles or

Information from detector used to build
dark sectors (> 100 MeV dark matter)

NN and extract potential signals

Muon Detectors Electromagnetic Calorimeters

DARK MATTER

Forviard Caloiimieters https://inspirehep.net/literature/2100410
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Liverpool leads WP1, more details in the following of this talk ©


https://inspirehep.net/literature/2100410

HEP Uses Case 1, 2: offline data analysis

WP2 (HEP Case 2): Al algorithms (CNN, autoencoder) for identification of pulses and other specific
parameters of detector responses, in particular of the calorimeter (ECAL)

Use PADME apparatus: PADME is a fixed target experiment located at the Beam Test Facility at the Laboratori

Nazionali di Frascati designed to search for a massive dark photon in the process , using a positron beam of
energy up to 550 MeV.

Dark matter targeted: dark sector

Two photon showers

in the ECAL (bkg) Al algorithms successfully developed

(low masses) and applied to identify pulses,
Positron Annihilation into Dark Matter Experiment RSisssasssees determine amplitude and time of arrival
g eiak for signal (1 g) and bkg (2 g) events in
| simulated data of the ECAL
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https://epjc.epj.org/articles/epjc/abs/2021/11/10052_2021_Article_9770/10052_2021_Article_9770.html

HEP Uses Case 3: real time analysis

WP3 (HEP Case 3): focus on the ability of reconstructing in real time unconventional signatures e.g. from
dark sector particles that traverse the detector before decaying (long-lived particle or LLP) as those searched for
in WP1. Status: developed complete pipeline for an Al based event selection algorithm. CNN model with
compression and simplification strategies to make easier to interpret, and faster to execute the Al model, for the
conversion and implementation in the firmware of FPGA accelerators. Obtained CNN inference in 80/150ns/image

Signature of interest One of the outcomes: transfer knowledge learned by a larger neural network pre-trained
(still at ATLAS) for the same task to a smaller and quantised (4-bits per activations and weights) model

muon spectrometer

Pre-trained teacher = Conwv2D

a
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(Preien) Flater obtained a reduction on size
of the model of a factor 100
prompt
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- -+ Totalloss Slanda'rd toss | In performance

Eur. Phys. J. C 81969 (2021)
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EXPERIMENT

Must suppress not-interesting events
that is several orders of magnitude compression
larger than the LLP signal


https://epjc.epj.org/articles/epjc/abs/2021/11/10052_2021_Article_9770/10052_2021_Article_9770.html

Health-care (medical-based) work packages

WP6: Neuro-science
Test XAl techniques 10 uncover
comgutational brain strategies on NHP
and selectior of dynamical neural models
Deliverables: reports cn saliency maps
from DNNSs trials, quantification of quality
and model selection.

\

< Y
[ WP5: Functional Imaging

pu

WP4: Medical imaging
Develop xAl pipeline to segmentation of
brains in magnetic rescnance imaging.

Use publicly availabls databases for xAl

developments, focusing on explainability
of training strategy. Deliverables: xAl
algonthms and stability evaluation.

A

Test xAl methodology in respiratory
sysiem. Analyse complex sysiems
(passage of ar and mucus. expectad nen-
linear responses) to derive model and test
xAl. Deliverables: prololype of XAl

\

dgorithm implementaion, assessment of
produced predictions. /




Brain in magnetic resonance imaging

WP4 (MED-1): aims to develop a pipeline to provide xAl tools suitable for medical applications, proven to work
in a specific task, the segmentation of the brain in magnetic resonance imaging (MRI).

Status: Implemented Al models for the brain lesion segmentation in the Brats17 MRI dataset (Unet2D, Resnet
3D). Data augmentation techniques to enhance performances tested.
Selected state-of the art xAl algorithms, several under implementation

UNet pipeline

Brats17 training influence
(gradient tracing)

state-of-the-art
xAl

cGAN pipeline

Brain atlas - BRATS Brain + tumor
label (merged)

(inferred)
Infer (G) Merge
“
. MRi-to-label A .
saliency

Tu label - BRATS
maps
No

BRATS - T1

Infer (G)
- MRI-to-label
..
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Functional imaging for respiratory system

WPS5 (MED-2): Aim to develop an integrated approach for 3D reconstruction from medical images to perform
simulation & experiments on respiratory tracts (airways) and assess airflow and air+mucus dynamics in respiratory
tracts. Validation of simulation results with idealized and real data from patients, reaching a high level of automation
to handle several geometries (patients)

Status: procedure for the realization of the prototypes of the trachea bifurcation (reconstruction of the geometry
from the CT scan, numerical code) completed. Study of the GNN model for the simulation of the air-flow and
explainability steps in progress

/ Moebius® I j' '

é _\\,\,‘,J Multiphase viscoelastic ,5\ /'

% fluid (Oldroyd-B model) * | .. 1\
N\, \

/ N
GNN

Optimize GNN
over information
content

J|
\

xAl: Understand system outputs simply and quickly (e.g. why certain regions are
not ventilated). Give confidence in the Al diagnosis by providing clarity of why.
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Neuroscience use-case

WP6 (MED-3, NS1): Atwofold exploitation of xAl techniques, to: 1) uncover computational brain strategies

while non human primates (NHP) perform tasks requiring the inhibition of planned movements; 2) optimally select
dynamical neural models that will be developed to explain the observed task-related cortical dynamics.

Status: designed and realized a specific CNN (fed by electrophysiological signals) based on a ResNet to uncover
an inner decision value increasing in time as a linear ramp eventually allowing to predict at single-trial level the
onset timing of overt movements. Test of various xAl algorithms underway

Reaction time .
distribution ; Saliency map (xAl)
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Good prediction and good understanding of
source of errors and how the NN learns..
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R —

. skaton WP7: xAl-Tools
X O O S ns Survey of all available xAl methcds
|

relevant for usa-cases; devalop xAl usage

pipelinas; analysis of results.
/7 Deliverables: dccument xAl procedures
== and engineering pipelines for general usa.
“/I'm tools, Kaggle challerge for exploi:ation.

WP7 liaises with all other work-packages in iterative mode: — 2

« XAl tools can be categorized depending on whether they

1. Survey of xAl methods (done) - provide global or explanations.

+ Some methods are model-agnostic (they only need the
outputs of the models), other are model-specific.

« Finally, methods can be categorized depending on what type

. : of information they provide in output.
2. Tools delivery to use-cases (in progress) yP P

E.g. for WP1, iterating on usage of Tools such as Captum to understand the way NN learns from

high-level and low-level inputs in data analysis, but also hands—on tutorial and school/hackathon to be
organised in 2023.

3. Engineering pipelines for general xAl applications
ultimate goal of the consortium for all use cases

A few of the tested xAl models:
Learning most important features for a given prediction -> Saliency maps
Estimating training data influence -> Gradient tracing , Datamodels , Tracln
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https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/2002.08484
https://arxiv.org/abs/2202.00622
https://arxiv.org/abs/2002.08484

A closer look to
WP1

Electromagnetic Calorimeters

: Forward Calorimeters
Solenoid

End Cap Toroid

Hadronic Calorimeters

Two benchmark analyses:
Searches for Supersymmetry
Searches for dark photons




Searches for Supersymmetric particles

Benchmark-1: Search for dark matter candidates resulting from the decay of new
particles predicted by Supersymmetry — the typical HEP case:

« Extract small signal of interest from large SM background
« Subtle/complex differences in variable correlations distinguish signal from background
+ Complex numerical instance data, well-defined categories (underlying physics processes)

—This is the classic use-case for ML classification.

Build ML discriminator to distinguish backgrounds from SUSY signals, trained on simulated
Monte Carlo samples, use classifier output score as discriminant variable for hypothesis testing

T T T
mm Single-top mtt

 W+jets B Higgs
otV Z+jets

Diboson B triboson
%4 SM Total

=— = C1N2 Wh 250.0 100.0
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—_—————————

Scale hidden

.................................................
0.9 091 092 093 094 0.95 0.96 097 0.98 099 1
XGB Signal Score

Tested multiple ML classifiers: BDT, NN. Use BDT (XGBoost) for
reduced complexity, constructed from regression tree functions,
using multi-classification with output scores containing the
predicted probability of an event being in each class.

So far, used SHAP (SHapley Adaptive exPlanations, 2017) to
identify variables with largest impact for signal

In progress:
» finalisation of the data analysis

» Building eXplainable Graph data, Use GNNs and New SOTA

Metrics
Goal: Reduce dependencies on modelling from input variables
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Searches for dark photons

Benchmark-2: Search for “dark” photons, light particles belonging to a new hidden sector not yet
discovered because too feebly interacting with ordinary matter:

» In this case, signal leaves different signature in the detector wrt background
« signal signature is effectively an unknown — study of systematics on the signal is non-trivial

« ML discriminator use image classification trained to distinguish background processes from
signal mapping clusters of hadrons (jets) in 3D coordinates

More advanced, also because publication has been finalised

In the ATLAS data-analysis:
Build a map of jet energy deposits in ATLAS detector from: calorimeter cell
positions (eta, phi, sampling layer) and energy
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Low level inputs for jet discrimination

Extract low level information from the ATLAS calorimeter from a single jet in either 3D images or graphs

The ATLAS detector orthogonal view

ID

V.. EMCAL
i I HCAL 1

B MS

_04"0'3—020; : — \01 00 01
. ¢ o i 0.2 0.3 e n
Let’s exploit the calorimeter 3D jet images: Graphs:
granularity to parametrise the » Train a CNN used as reference for the  Train a fully optimised GNN
energy deposits: X, v, z, study « Small cloud space objects
energy » Very sparse images -> sub-optimal « Efficient and easy to manipulate

Additional higher level variable can can be added as features to further improve the network performance, although the goal is to have them
already ‘learned’ by the network by using only the low level inputs
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Optimisation and training

Process RAW data information from ATLAS calorimeter: energy deposits relative position and energy distribution

Dataset bu”ding: | Graph pre-processing

e Node for every cluster in the calorimeter &

¢ Normalised cluster energy as node attribute //

e Edge built if spatial covariant distance between two nodes
is within an optimised distance parameter

e Covariant distance as node weight

Pre-processing:

e Remove isolated and self-connected nodes

¢ Retain largest subgraph only to remove calorimeter noise
Input dataset

Model optimisation and xAl: \

e Test multiple models with Pytorch Geometric libraries S PO, i B o FoL . i v o oL

¢ Performance evaluation and comparison with CNN comemsions [ emenmsor e s
* Add XAl layers el o — — T
L @AV @ o Wi @va @ oL W@V @]

', Graph Conv Skip K1 Graph Conv Skip K2 Graph Conv Skip K,T

Output score




A quick model comparison...

> The GNN model out-performed the CNN model on all performance metrics tested at same signal efficiency score

10! -
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Accuracy = 0.8429
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As expected graph dataset are proven very effective for classification of sparse image of HEP calorimeter detectors!
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]
th e X I n X—AI Exploit explainer layers to better understand the network prediction, to be implemented by WP7

Let’s try estimating training data influence by tracing gradient descent with Tracln!
The model yields dynamic results producing best scoring Proponents/Opponents from training to explain predictions

Training dataset most influential graphs
for this prediction:

2 -0.2 55025
= -03,, 00 ~01 03004, 0@,091‘512’
-0.15 03704 =014, 01 ® 0293 018 n
z 0.2
0.1 n

L 0.3

signal background

This graph is correctly predicted as signal

This class of methods explore the influence of single data points on the prediction, e.g., how much training on a certain point has influenced the
prediction on a separate point (computed across the entire training run)
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Summary

The MUCCA consortium aims to study xAl in heterogeneous use cases from High Energy Physics, medical imaging,
diagnosis of pulmonary, tracheal and nasal disease and neuroscience, with the ultimate goal to quantifying strengths
and solving weaknesses of new state of the art methods.

Status so far:

» successfully implement appropriate Al algorithms for all the use cases

- for WP1 the ATLAS analyses have been either published or are being finalised. For the dark-photon
(published) a GNN that outperforms the current setup has been developed, xAl tools have been used to
identify first shortcomings and ways to improve. We are now finalising this study aiming for publication in
2023

» perform an extensive survey and analysis of state-of-the art xAl methods by WP7
« identify suitable xAl algorithms for the next phase, that now are under implementation

Expected results will allow a systematic understanding of which xAl methods better adapt to specific applications
as well as skill development and training for young researchers.
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Additional slides

Joseph Carmignani | XAl in HEP
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Performance checks
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> Arma-GNN model using Jet selective Graph Dataset out-performed on all most common performance metrics at same
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Some Captum Resulls




Test example:Data(edge_index=[2, 146], x=[14, 4], edge_attr=[146, 1], y=[1])
True label: @
Predicted label: @

Predicted prob: 1.6132928521983558e-06

ArmaGNN Jet tagger trained
on 0.6_0.6 Full dataset
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Test example:Data(edge_index=[2, 135], x=[11, 4], edge_attr=[135, 1], y=[1])
True label: @

Predicted label: @
Predicted prob: 5.9570318455826055e-08

ArmaGNN Jet tagger trained
on 0.6_0.6 Main Subgraphs
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ArmaGNN Jet tagger trained
on 0.3_0.3 Full dataset

Test example: Data(edge_index=[2, 79], x=[11, 4], edge_attr=[79, 1], y=[1])
True label: @

Predicted label: @
Predicted prob: 0.48466432094573975
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Test example: Data(edge_index=[2, 68], x=[8, 4], edge_attr=[68, 1], y=I[1])
True label: @

Predicted label: @
Predicted prob: 0.2386256456375122

N
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