

# Case-by-case tailored data compression using machine learning algorithms trained on GPUs



Axel Gallén\*, Alexander Ekman\*, Marta Camps Santasmasas', Nicola Skidmore', Tony Lujia Chen'

' University of Manchester, UK\* Lund University, Sweden





# **Lossy Machine Learning based compression**

- Big size reduction at the cost of losing information.
- Lossy compression needs to be tailored to data type.
- Autoencoder: Neural network trained to optimally compress and decompress your data.



#### **Autoencoder compression**

- Lossy compression comes with a price:
  - Decompressed data is not equal to original data
  - o Lossy compression = bad ?
- Works well in cases where more data is better
  - For example: Particle physics
    - More data compensate for the loss

• **Current analysis** prototype and code available on the Virtual Research Environment (**VRE**) <u>here</u>



## BALER: Python code. Train autoencoders, compress / decompress data.



#### **BALER: example for particle collision data**



## **BALER: Sustainable code development**

- Development currently based on the **Scrum** method
  - $\circ$   $\,$  Sprints which are 2 weeks long
    - Begins with Spring planning meeting
    - Ends with retrospective meeting
  - Good time planning & clear workload structure.

- Software management based on Jira management
  - Allows for easy-to-read backlogs
  - Integration with version control (Git in Bitbucket)
  - Easy to integrate new people to the project
- Modularity testing in progress



# **Objectives of the project: ongoing work**

- Port BALER to GPU
  - Idle GPUs available, potential for faster compression.
- Package BALER for general usage
  - Researchers can apply BALER to their data. Benefit from lossy compression.
- Test case: Apply BALER to computational fluids dynamics data

Flow around a wall mounted cube

