Wilson Coefficients and Natural Zeros from the On-Shell Viewpoint

Benedict von Harling

based on 2201.10572 with Luigi Delle Rose and Alex Pomarol

Introduction

Muon g-2 experiment at Fermilab:

$$\Delta a_{\mu} = \frac{(g-2)_{\text{exp}} - (g-2)_{\text{SM}}}{2} = (2.51 \pm 0.59) \times 10^{-9}$$

Plethora of beyond-SM models to explain this. One example:

Consider two vector-like fermions, a singlet S and an SU(2) doublet L with couplings

$$\mathcal{L} = -Y_L \ell S \tilde{H} - Y_R L e H - Y_V \tilde{H}^\dagger L^c S^c - Y_V' L S \tilde{H} - M_S S S^c - M_L L L^c + h.c.$$
 lepton doublet right-handed muon Higgs

K. Kannike, M. Raidal, D. M. Straub, and A. Strumia [arXiv:1111.2551] A. Freitas, J. Lykken, S. Kell, and S. Westhof [arXiv:1402.7065]

Introduction

Expect that leading contribution g-2 of muon arises from (for $Y_V=0$)

N. Arkani-Hamed and K. Harigaya [arXiv:2106.01373]

But muon Yukawa coupling is generated (none at tree-level). Again for $Y_V=0$:

Why is this interesting? Apparent UV/IR conspiracy!

Consider physicist at energy scales $\ll M_S, M_L$. Integrating out S and L gives:

$$\mathcal{L}_{\text{eff}} \supset \frac{Y_L Y_R Y_V'}{M_S^2 M_L^2} (\ell H^{\dagger}) H \mathcal{D}^2 (H e^c)$$

Closing Higgs loop (and attaching photon for g-2), generate ΔY_{ℓ} and Δa_{μ} from quartically and quadratically divergent diagrams, respectively. The former is generated but the latter vanishes!

At intermediate energy scales $\ll M_L, \gtrsim M_S$ integrating out only L gives

$$\mathcal{L}_{\text{eff}} \supset \frac{Y_R Y_V'}{M_L^2} SH \not\!\!\!D (He^c)$$

Closing Higgs and S loop calculable IR contribution $\Delta a_{\mu} \neq 0$ is generated. But now there is additional UV matching contribution that makes total $\Delta a_{\mu} = 0!$

Introduction

 $\Delta a_{\mu}^{(\mathrm{lo})}=0$ can be understood from integrand being total derivative (but depends on labelling of loop momenta).

N. Arkani-Hamed and K. Harigaya [arXiv:2106.01373]

Can also be understood from an exchange symmetry.

N. Craig, I. G. Garcia, A. Vainshtein and Z. Zhang [arXiv:2112.05770]

Here will explain also with exchange symmetry using amplitude methods.

Note that contribution to g-2 arises at higher order in M_S, M_L :

$$\Rightarrow \mathcal{L}_{\mathrm{eff}} \supset \frac{C'_{\gamma}}{M^4} |H|^2 H \ell \sigma^{\mu\nu} e^c F_{\mu\nu}$$

$$\Rightarrow \lim_{Y_L \downarrow Y'_{\gamma'} \downarrow Y'_{\gamma'} \downarrow Y'_{\gamma'}} e^c \qquad \text{with } C'_{\gamma} \neq 0$$

$$\Rightarrow \Delta a_{\mu} \neq 0$$

Outline

- Amplitudes, spinor-helicity variables
- Loops from amplitudes
- g-2 from vector-like fermions S and L
- g-2 from vector-like fermions E and L
- hγγ from vector-like fermions E and L
- Conclusions

Amplitude methods

Instead of Lagrangian, define theory by particle content and certain <u>on-shell building-blocks amplitudes</u>.

The other tree-level amplitudes can be constructed from the building-blocks by requiring proper <u>factorisation</u>.

Spinor-helicity variables

Write momenta as
$$p_{\alpha\dot{\alpha}}=p_{\mu}\sigma^{\mu}_{\alpha\dot{\alpha}}=\begin{pmatrix}p_0+p_3&p_1-ip_2\\p_1+ip_2&p_0-p_3\end{pmatrix}$$

For massless on-shell particles: $\det p = p_{\mu}p^{\mu} = 0$

$$\Rightarrow$$
 Can write: $p_{\alpha\dot{\alpha}}=\lambda_{\alpha}\tilde{\lambda}_{\dot{\alpha}}=|p\rangle[p]$

For real momenta:
$$\lambda_{\alpha} = (\tilde{\lambda}_{\dot{\alpha}})^* = \begin{pmatrix} \sqrt{p_0 + p_3} \\ \frac{p_1 + i \, p_2}{\sqrt{p_0 + p_3}} \end{pmatrix}$$

But useful to keep momenta complex! $\Rightarrow \lambda_{\alpha} \neq (\tilde{\lambda}_{\dot{\alpha}})^*$

Little group ISO(2) acts as simple rescaling

$$|p\rangle \to t |p\rangle \qquad |p] \to t^{-1}|p]$$

Amplitudes expressed in terms of building blocks:

$$\lambda_{i\alpha}\lambda_{j\beta} \,\epsilon^{\alpha\beta} \equiv \langle ij \rangle \qquad \tilde{\lambda}_{i\dot{\alpha}}\tilde{\lambda}_{j\dot{\beta}} \,\epsilon^{\dot{\alpha}\dot{\beta}} \equiv [ij]$$

Scattering amplitude transforms as

$$\mathcal{A}(1^{h_1}\dots n^{h_n}) = \epsilon_{\mu_1}^{h_1}\dots \epsilon_{\mu_n}^{h_n}\,\mathcal{A}^{\mu_1\dots\mu_n} \to \prod_i t_i^{-2h_i}\mathcal{A}(1^{h_1}\dots n^{h_n})$$
 polarisation vectors

with helicity
$$h_i = \begin{cases} \pm \frac{1}{2} & \text{for massless fermions,} \\ \pm 1 & \text{for massless vectors,} \\ \pm 2 & \text{for gravitons.} \end{cases}$$

This scaling fixes all 3-point amplitudes. For example for SM:

Requiring proper factorisation one for example finds:

$$\begin{array}{c} H^{\dagger} \\ \\ \\ W^{a}_{+} \end{array} \begin{array}{c} e \\ \\ l \end{array} \qquad \qquad \\ \mathcal{A}(1_{H^{\dagger}_{i}}, 2_{W^{a}_{+}}, 3_{l_{j}}, 4_{e}) = y_{e} \, g_{2} \, (T^{a})_{ij} \frac{\langle 43 \rangle \langle 13 \rangle}{\langle 21 \rangle \langle 23 \rangle} \\ \\ \end{array}$$

Spinor-helicity variables for massive particles

For massive particles:

N. Arkani-Hamed, T.-C. Huang, Y.-t. Huang [1709.04891]

$$p_{\alpha\dot{\alpha}} = \epsilon_{IJ} |p\rangle_{\alpha}^{I} [p|_{\dot{\alpha}}^{J} = |p\rangle_{\alpha}^{I} [p|_{\dot{\alpha}I}]$$

I, J = 1, 2 indices under little group SU(2).

Satisfy Dirac equation:

$$[p|p]^I = M|p\rangle^I, \qquad [p|p\rangle^I = M|p]^I$$

For internal particles, SU(2) indices contracted. Useful identities e.g.:

$$|p\rangle_{\alpha}^{I}[-p|_{\dot{\alpha}I} = p_{\alpha\dot{\alpha}} \qquad |p\rangle_{\alpha}^{I}\langle -p|_{I}^{\beta} = M\delta_{\alpha}^{\beta}$$

Often suppress SU(2) indices and use bold variables for massive particles:

$$|p\rangle^I = |\mathbf{p}\rangle \qquad |p]^I = |\mathbf{p}|$$

Loops from amplitudes

Starting point: Passarino-Veltman decomposition

$$\mathcal{A}_{\text{loop}} = \sum_{a} C_{1}^{(a)} I_{1}^{(a)} + \sum_{b} C_{2}^{(b)} I_{2}^{(b)} + \sum_{c} C_{3}^{(c)} I_{3}^{(c)} + \sum_{d} C_{4}^{(d)} I_{4}^{(d)} + R$$
 rational term

with master integrals given by

$$I_n = (-1)^n \mu^{4-D} \int \frac{d^D \ell}{i(2\pi)^D} \frac{1}{(\ell^2 - M_0^2) ((\ell - P_1)^2 - M_1^2) ((\ell - P_1 - P_2)^2 - M_2^2) \cdots}$$

Coefficients C_n can be obtained by performing (generalized) unitarity cuts on both sides of above relation.

R. Britto, F. Cachazo, B. Feng [arXiv:hep-th/0412103]

D. Forde [arXiv:0704.1835]

and others

Each cut puts internal particle on-shell. E.g. 4-cut:

$$\sim \sum_{a} C_1^{(a)} I_1^{(a)} + \sum_{b} C_2^{(b)} I_2^{(b)} + \sum_{c} C_3^{(c)} I_3^{(c)} + \sum_{d} C_4^{(d)} I_4^{(d)} + R$$

Similarly, $C_2^{(b)}$ and $C_3^{(c)}$ obtained from 2- and 3-cuts (after subtracting contributions from triangles and boxes).

Coefficients C_n can be obtained by performing (generalized) unitarity cuts on both sides of above relation.

R. Britto, F. Cachazo, B. Feng [arXiv:hep-th/0412103]

D. Forde [arXiv:0704.1835]

and others

Each cut puts internal particle on-shell. E.g. 4-cut:

$$\begin{array}{c|c} & \stackrel{H^+}{\longrightarrow} & \stackrel{}{\longrightarrow} & \stackrel{}{\longrightarrow} & \sim \mathcal{A}_1 \cdot \mathcal{A}_2 \cdot \mathcal{A}_3 \cdot \mathcal{A}_4 \\ & \stackrel{}{\longrightarrow} & \stackrel{}{\longrightarrow} & \stackrel{}{\longrightarrow} & \stackrel{}{\longrightarrow} & \sim \mathcal{A}_1 \cdot \mathcal{A}_2 \cdot \mathcal{A}_3 \cdot \mathcal{A}_4 \\ & \sim \sum_a C_1^{(a)} I_1^{(a)} + \sum_b C_2^{(b)} I_2^{(b)} + \sum_c C_3^{(c)} I_3^{(c)} + \sum_d C_4^{(d)} I_4^{(d)} + \stackrel{}{\longrightarrow} & \stackrel$$

Similarly, $C_2^{(b)}$ and $C_3^{(c)}$ obtained from 2- and 3-cuts (after subtracting contributions from triangles and boxes).

g-2 from vector-like fermions S and L

Operator in EFT for $M_S, M_L \gg v_{\rm EW}$:

$$\mathcal{L}_{\mathrm{eff}} \supset \frac{C_{\gamma}}{M^2} q_e \, \ell_{\alpha} e_{\beta} H F^{\alpha\beta}$$

Gives rise to amplitude

$$\frac{C_{\gamma}}{M^2} \mathcal{A}_D(1_{\ell}, 2_e, 3_{\gamma_-}, 4_{H^0}) = \frac{C_{\gamma}}{M^2} q_e \langle 13 \rangle \langle 23 \rangle$$

Obtain Wilson coefficient $\,C_{\gamma}\,$ via

$$C_{\gamma} = \frac{1}{\mathcal{A}_{\mathcal{O}_{D}}} \lim_{\frac{P_{i}}{M} \to 0} M^{2} \left(\sum_{a} C_{1}^{(a)} I_{1}^{(a)} + \sum_{b} C_{2}^{(b)} I_{2}^{(b)} + \sum_{c} C_{3}^{(c)} I_{3}^{(c)} + \sum_{d} C_{4}^{(d)} I_{4}^{(d)} + R \right)$$

Important simplification: Set $p_H = 0$.

$$\mathcal{A}_D(1_\ell, 2_e, 3_{\gamma_-}, 4_{H^0}) = q_e \langle 13 \rangle \langle 23 \rangle$$

$$\Rightarrow C_4 \equiv 0$$
 (no boxes)

Only possible triangles arise from cutting one massive and two massless internal lines. Absence of IR divergencies

$$\Rightarrow C_3 \equiv 0$$
 (no triangles)

P. Baratella, C. Fernandez, A. Pomarol [2005.07129]

$$I_2(p^2; M^2, 0) = \frac{1}{\epsilon} + 1 + \log \frac{\mu^2}{M^2} + \frac{2p^2}{M^2} + \dots$$
 $I_1(M^2) = M^2 \left(\frac{1}{\epsilon} + 1 + \log \frac{\mu^2}{M^2}\right) + \dots$

Absence of UV divergence ⇒ tadpoles cancel!

Similarly can show that rational terms do not contribute.

$$\Rightarrow C_{\gamma} = \frac{1}{\mathcal{A}_{\mathcal{O}_D}} \lim_{\frac{P_i}{M} \to 0} M^2 \sum_{a} C_2^{(a)} I_2^{(a)}$$

Kinematics: $p_H = 0 \Rightarrow p_\ell + p_\gamma + p_e = 0$

E.g. keep ℓ and γ massless. $\Rightarrow p_e^2 = (p_\ell + p_\gamma)^2 = 2p_\ell p_\gamma \equiv s \neq 0$

Possible 2-cuts:

 cut_S and cut_L related via

$$M_S \leftrightarrow M_L$$

Amplitudes from cut_S :

$$\mathcal{A}(1_{\ell}, 3_{\gamma_{-}}, 1_{S}', 3_{H^{+}}') = q_{e}Y_{L}M_{S} \frac{[3'\mathbf{1}']}{[3'3][13]} \qquad \qquad \mathcal{A}(3_{\bar{H}^{+}}', 1_{\bar{S}}', 2_{e}, 4_{H^{0}}) = Y_{R}Y_{V}' \frac{[-\mathbf{1}'|p_{1'}|2\rangle}{M_{S}^{2} - M_{L}^{2}}$$

Corresponding bubble coefficient:

$$C_2^{(S)} = -\int d\text{LIPS}\,\mathcal{A}(1_{\ell}, 3_{\gamma_-}, 1_S', 3_{H^+}') \times \mathcal{A}(3_{\bar{H}^+}', 1_{\bar{S}}', 2_e, 4_{H^0})$$

Lorentz-invariant phase space

$$\mathcal{A}(1_{\ell}, 3_{\gamma_{-}}, 1_{S}^{\prime I}, 3_{H^{+}}^{\prime}) \epsilon_{IJ} \mathcal{A}(3_{\bar{H}^{+}}^{\prime}, 1_{\bar{S}}^{\prime J}, 2_{e}, 4_{H^{0}}) = -q_{e} Y_{L} Y_{R} Y_{V}^{\prime} \frac{M_{S}^{2}}{M_{S}^{2} - M_{L}^{2}} \frac{|3^{\prime}| (p_{3} + p_{1})|2\rangle}{[3^{\prime}3][13]}$$

$$= -q_{e} Y_{L} Y_{R} Y_{V}^{\prime} \frac{M_{S}^{2}}{M_{S}^{2} - M_{L}^{2}} \left(\frac{\langle 32 \rangle}{[13]} + \frac{[3^{\prime}1]\langle 12 \rangle}{[3^{\prime}3][13]}\right)$$

Looking for amplitude $\sim \langle 13 \rangle \langle 23 \rangle \Rightarrow \text{ Only first term contributes.}$

dLIPS integral trivial

$$\Rightarrow C_2^{(S)} = Y_L Y_R Y_V' \frac{M_S^2}{M_S^2 - M_L^2} \frac{1}{s_{13}} \mathcal{A}_D(1_l, 2_e, 3_{\gamma_-}, 4_{H^0})$$

Recall that

$$C_{\gamma} = \frac{1}{\mathcal{A}_{\mathcal{O}_D}} \lim_{\frac{P_i}{M} \to 0} M^2 \sum_{a=S,L} C_2^{(a)} I_2^{(a)}$$

Need to multiply $C_2^{(S)}$ with

$$I_2^{(S)}(s_{13}, M_S^2, 0) \simeq \frac{1}{16\pi^2} \left(\frac{1}{\epsilon} + \ln \frac{\mu^2}{M_S^2} + 1 + \frac{s_{13}}{2M_S^2} + \cdots \right)$$

$$\Rightarrow \frac{\Delta C_{\gamma}}{M^2} = \frac{Y_L Y_R Y_V'}{32\pi^2} \frac{1}{M_S^2 - M_L^2}$$

Contribution from cut_L obtained via $M_S \leftrightarrow M_L$

$$\Rightarrow C_{\gamma} = 0$$

Recall

$$\mathcal{L} = -Y_L \ell S \tilde{H} - Y_R L e H - Y_V \tilde{H}^{\dagger} L^c S^c - Y_V' L S \tilde{H} - M_S S S^c - M_L L L^c + h.c.$$

So far $Y_V = 0, Y_V' \neq 0$. What about opposite case $Y_V \neq 0, Y_V' = 0$?

Diagrams in this case:

Relevant amplitudes for cut_S :

$$\mathcal{A}(1_{\ell}, 3_{\gamma_{-}}, 1_{S}', 3_{H^{+}}') = q_{e}Y_{L}M_{S} \frac{[3'\mathbf{1}']}{[3'3][13]} \qquad \mathcal{A}(3_{\bar{H}^{+}}', 1_{\bar{S}}', 2_{e}, 4_{H^{0}}) = Y_{R}Y_{V}\langle -\mathbf{1}'2\rangle \frac{M_{L}}{M_{S}^{2} - M_{L}^{2}}$$

Same amplitudes as in other case, except for extra factor M_L/M_S in $\mathcal{A}(3'_{\bar{H}^+}, 1'_{\bar{S}}, 2_e, 4_{H^0})$

$$\Rightarrow \frac{\Delta C_{\gamma}}{M^2} = \frac{Y_L Y_R Y_V}{32\pi^2} \frac{M_L/M_S}{M_S^2 - M_L^2}$$

Contribution from cut_L again obtained via $M_S \leftrightarrow M_L$

$$\Rightarrow \frac{\Delta C_{\gamma}}{M^2} = \frac{Y_L Y_R Y_V}{32\pi^2} \frac{(M_L/M_S - M_S/M_L)}{M_S^2 - M_L^2} = -\frac{Y_L Y_R Y_V}{32\pi^2} \frac{1}{M_S M_L}$$

Finally contribution from cut_S' arises from extra term to amplitude

$$\mathcal{A}(3_{\bar{H}^+}', 1_{\bar{S}}', 2_e, 4_{H^0}) = -Y_R Y_V \langle -\mathbf{1}'2 \rangle \frac{M_L}{p_2^2 - M_L^2} \simeq Y_R Y_V \langle -\mathbf{1}'2 \rangle \frac{1}{M_L}$$

$$\Rightarrow C_{\gamma} = 0$$

g-2 from vector-like fermions E and L

Now consider vector-like fermions E and L with same quantum numbers as SM leptons:

$$\mathcal{L} = -Y_L \ell E H - Y_R L e H - Y_V H^{\dagger} L^c E^c - Y_V' L E H - M_E E E^c - M_L L L^c + h.c.$$

No Feynman diagram for $Y'_V \neq 0, Y_V = 0. \Rightarrow \text{ study } Y'_V = 0, Y_V \neq 0.$

No boxes \Rightarrow No triangles.

No UV divergence. \Rightarrow Possible tadpoles cancelled.

⇒ Again only bubbles!

Contribution from diagram (a) same as from diagram (b) in other case.

$$\Rightarrow \frac{\Delta C_{\gamma}}{M^2} = \frac{Y_L Y_R Y_V}{32\pi^2} \frac{1}{M_S M_L}$$

Amplitudes for cut in diagram (b):

$$\mathcal{A}(1_{\ell}, 3_{\gamma_{-}}, 1_{E}', 3_{H^{0}}') = q_{e}Y_{L} \frac{M_{E}}{2p_{3}p_{1'}} \frac{\langle 33' \rangle [3'\mathbf{1}']}{[31]} \qquad \mathcal{A}(3_{\bar{H}^{0}}', 1_{\bar{E}}', 2_{e}, 4_{H^{0}}) = Y_{R}Y_{V} \frac{M_{L} \langle -\mathbf{1}'2 \rangle}{p_{2}^{2} - M_{L}^{2}}$$

$$\Rightarrow \mathcal{A}(1_{\ell}, 3_{\gamma_{-}}, 1_{E}^{\prime I}, 3_{H^{0}}^{\prime}) \, \epsilon_{IJ} \, \mathcal{A}(3_{\bar{H}^{0}}^{\prime}, 1_{\bar{E}}^{\prime J}, 2_{e}, 4_{H^{0}}) \, \simeq \, -q_{e} Y_{L} Y_{R} Y_{V} \frac{M_{E}}{M_{L}} \frac{\langle 32 \rangle}{[31]} + \cdots$$

dLIPS integral again trivial. Multiplying with $I_2^{(S)}(s_{13},M_S^2,0)$ gives

$$\frac{\Delta C_{\gamma}}{M^2} = -\frac{Y_L Y_R Y_V}{32\pi^2} \frac{1}{M_S M_L}$$

Contribution from diagram (c) same with $M_E \leftrightarrow M_L$. \Rightarrow Factor 2.

$$\Rightarrow \frac{C_{\gamma}}{M^2} = -\frac{Y_L Y_R Y_V}{32\pi^2} \frac{1}{M_S M_L} \qquad \text{Agrees with result from e.g.} \\ \text{A. Freitas et al. [1402.7065]}$$

hyy from vector-like fermions E and L

Another example of unexpected cancellation: Consider again model with vector-like fermions E and L (but with $Y_L = Y_R = 0$):

$$\mathcal{L} = -Y_V H^{\dagger} L^c E^c - Y_V' L E H - M_E E E^c - M_L L L^c + h.c.$$

Leading contribution to following operator vanishes

e.g. G. Panico, A. Pomarol, M. Riembau [1810.09413]

$$\mathcal{L}_{\text{eff}} \supset \frac{C_{\gamma\gamma}}{M^2} \frac{q_e^2}{2} |H|^2 F_{\mu\nu}^2$$

Corresponds to amplitude:

$$\frac{C_{\gamma\gamma}}{M^2} \mathcal{A}_{H^2F^2}(1_{\gamma_-}, 2_{\gamma_-}, 3_{H^0}, 4_{H^0}) = -\frac{C_{\gamma\gamma}}{M^2} q_e^2 \langle 12 \rangle^2$$

Diagrams:

Choose $Y_V = 0, Y_V' \neq 0$ (discussion for $Y_V \neq 0, Y_V' = 0$ identical).

Set $v \equiv \langle H^0 \rangle \neq 0$. Mass matrix in basis $(E E^{c\dagger} L^- L^{c-})^T$:

$$\begin{pmatrix} 0 & M_E & vY_V' & 0 \\ M_E & 0 & 0 & 0 \\ vY_V' & 0 & 0 & M_L \\ 0 & 0 & M_L & 0 \end{pmatrix} \quad \Rightarrow \quad \text{Two mass eigenstates } \psi_{1,2}.$$

Diagram in mass eigenstate basis:

Now make photon massive, $m_{\gamma}^2 \equiv p^2 \neq 0$. Relevant vertex:

$$\mathcal{A}(1_{\gamma}, \ell_{\psi_{i}}, \ell'_{\psi_{i}}) = \frac{q_{e}}{p} \left(\langle \mathbf{1}\ell \rangle \left[\mathbf{1}\ell' \right] + \left[\mathbf{1}\ell \right] \langle \mathbf{1}\ell' \rangle \right)$$

$$\Rightarrow \mathcal{A}(1_{\gamma}, \ell_{\psi_{i}}^{I}, \ell_{\psi_{i}}^{\prime K}) \, \epsilon_{IJ} \epsilon_{KL} \, \mathcal{A}(\ell_{\bar{\psi}_{i}}^{\prime L}, \ell_{\bar{\psi}_{i}}^{J}, 2_{\gamma}) \, = \, \frac{q_{e}^{2}}{p^{2}} \left[2 \, M_{i}^{2} \langle \mathbf{12} \rangle \left[\mathbf{12} \right] + \left(\langle \mathbf{1}|\ell|\mathbf{2} \right] \langle \mathbf{2}|\ell'|\mathbf{1} \right] + \left(\ell \leftrightarrow \ell' \right) \right) \right]$$

Choose particular basis for photon polarizations:

$$|1^{I=1}\rangle = \sqrt{p} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad |1^{I=2}\rangle = \sqrt{p} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Next project onto particular component of SU(2) tensor:

$$\langle \mathbf{12} \rangle [\mathbf{12}] \rightarrow \langle 1^{I=1} 2^{I=2} \rangle [1^{I=1} 2^{I=2}] = p^2$$

$$\Rightarrow \int d\text{LIPS}\,\mathcal{A}(1_{\gamma}, \ell_{\psi_{i}}, \ell'_{\psi_{i}}) \times \mathcal{A}(\ell'_{\bar{\psi}_{i}}, \ell_{\bar{\psi}_{i}}, 2_{\gamma}) \to q_{e}^{2} \int_{0}^{2\pi} \frac{d\phi}{4\pi} \int_{0}^{\pi} d\theta \, s_{\theta} \left[2\,M_{i}^{2}(1 - c_{\theta}^{2}) + \frac{1}{2}p^{2}(1 + c_{\theta}^{2}) \right] \\ = \frac{2q_{e}^{2}}{3} \left(2M_{i}^{2} + p^{2} \right)$$

Furthermore, from the bubble integral:

$$I_2(p^2, M_1^2, M_1^2) = \frac{1}{16\pi^2} \left(\frac{1}{\epsilon} + \ln \frac{\mu^2}{M_1^2} + \dots \right) = \frac{1}{16\pi^2} \left(\frac{1}{\epsilon} + \ln \frac{\mu^2}{M_E^2} - \frac{|Y_V'|^2 v^2}{M_E^2 - M_L^2} + \dots \right)$$
 expand to order v^2

and $M_E \leftrightarrow M_L$ for M_2 . Match with $\langle 12 \rangle^2 \to \langle \mathbf{12} \rangle^2 \to p^2$:

$$\Rightarrow \frac{C_{\gamma\gamma}}{M^2} = \frac{1}{16\pi^2} \frac{2}{3} |Y_V'|^2 \left(\frac{1}{M_E^2 - M_L^2} + \frac{1}{M_L^2 - M_E^2} \right) = 0$$

Conclusions

- Leading contribution to g-2 and hγγ vanishes in certain models with vector-like fermions. Why?
- Amplitude methods useful to address this question.
- Setting Higgs momenta to zero, calculation of Wilson coefficients for g-2 and hγγ reduces to double cuts.
- Vanishing of Wilson coefficients can then be understood from exchange symmetry acting on amplitude level.
- Also useful to calculate Wilson coefficients in models where they do not vanish.

Backup slide: Absence of rational terms

Rational terms arise in Pasarino-Veltman decomposition from terms of the type ϵ/ϵ .

Accessible via generalized unitarity: Write

$$l^2 = l_{(4)}^2 + l_{(-2\epsilon)}^2 \equiv l_{(4)}^2 - \mu^2$$

and interpret extra-dimensional momentum as 4D mass μ^2 .

Rational term then given by

$$R = -\frac{1}{6} \sum_{i,j} \tilde{C}_2^{(ij)} (s_{ij} - 3(M_i^2 + M_j^2)) - \frac{1}{2} \sum_b \tilde{C}_3^{(b)} - \frac{1}{6} \sum_c \tilde{C}_4^{(c)}$$

To determine $\tilde{C}_2^{(ij)}, \tilde{C}_3^{(b)}$ and $\tilde{C}_4^{(c)}$ shift particle masses by μ^2 and take μ^2 -term for $\tilde{C}_2^{(ij)}, \tilde{C}_3^{(b)}$ and μ^4 -term for $\tilde{C}_4^{(c)}$ in large μ^2 -limit.

We match to EFT at order $1/M^2$. However,

$$\lim_{\mu^2 \to \infty} \frac{1}{s_{ij} - M^2 - \mu^2} = -\frac{1}{\mu^2} + \frac{M^2 - s_{ij}}{\mu^4} + \dots$$

 \Rightarrow No rational terms at order $1/M^2$.