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Introduction

Muon g-2 experiment at Fermilab:
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Plethora of beyond-SM models to explain this. One example:

Consider two vector-like fermions, a singlet S and an SU(2) doublet L with couplings

L=—-YUSH — YrLeH — Yy H'L¢S® — Y,LSH — Mg SS¢ — M, LL° + h.c.

! ! !

lepton doublet  right-handed muon Higgs

K. Kannike, M. Raidal, D. M. Straub, and A. Strumia [arXiv:1111.2551]
A. Freitas, J. Lykken, S. Kell, and S. Westhof [arXiv:1402.7065]



Introduction

Expect that leading contribution g-2 of muon arises from (for Yy = 0)

Hiqfffy = Aa, = 0!
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N. Arkani-Hamed and K. Harigaya [arXiv:2106.01373]

But muon Yukawa coupling is generated (none at tree-level). Again for Yy = 0 :




Introduction N. Arkani-Hamed and K. Harigaya [arXiv:2106.01373]

Why is this interesting ? Apparent UV/IR conspiracy!

Consider physicist at energy scales < Mg, My. Integrating out S and L gives:
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Closing Higgs loop (and attaching photon for g-2), generate AY, and Aa,,
from quartically and quadratically divergent diagrams, respectively.
The former is generated but the latter vanishes!

At intermediate energy scales < My, 2 Mg integrating out only L gives

YrY!
Log D ]TFV SH D (He®)

L

Closing Higgs and S loop calculable IR contribution Aa,, # 0 is generated.
But now there is additional UV matching contribution that makes total Aa,, = 0!
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Aaﬂo) — ( can be understood from integrand being total derivative
(but depends on labelling of loop momenta).

N. Arkani-Hamed and K. Harigaya [arXiv:2106.01373]

Can also be understood from an exchange symmetry.

N. Craig, I. G. Garcia, A. Vainshtein and Z. Zhang [arXiv:2112.05770]

Here will explain also with exchange symmetry using amplitude methods.

Note that contribution to g-2 arises at higher order in Mg, M7, :
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Amplitude methods

Instead of Lagrangian, define theory by particle content
and certain on-shell building-blocks amplitudes.

The other tree-level amplitudes can be constructed from the
building-blocks by requiring proper factorisation.

For example: building-block amplitudes

L

lim s X
s—0



Spinor-helicity variables

+ —1
Write momenta as Pac = pMUZd — (po b3 p2>

p1 +1p2  Ppo — P3

For massless on-shell particles: detp = p,p" =

~

= Canwrite: DPDas = >\oz)\éz — \p} [p\

s Po + D3
For real momenta: Aa = (Ag)" = (\/Z91+ip2 >

VPo+Dp3

But useful to keep momenta complex! = Ay 75 (5\04)*



Little group ISO(2) acts as simple rescaling

p) = tlp) p] =t [p]

Amplitudes expressed in terms of building blocks:

~

NiaNip P = (ij) )\idj\jg' e’ = [ij]

Scattering amplitude transforms as

A onln) =€ n AR “”%Ht 2hi g(1M .

VU /

polarisation vectors

_% for massless fermions,

with helicity h, = { 421 for massless vectors,

+2  for gravitons.



This scaling fixes all 3-point amplitudes. For example for SM:

l > """""""""""" HT A(]-e) 2lz73H;f) — y6<12>
Z <13>2

we A1, 25,3we) = g2 (T);
l i — <12> J
H ..

.............. . 13)(23 q
o W ALy, 21, 3we) = 92< ;i >(T )is
HT - Z 213
Requiring proper factorisation one for example finds:
e
(43)(13)

A(]-Hj'y 2W_7:7 8l3 Y 46) — ye 92 (Ta)'l,] <21><23>




Spinor-helicity variables for massive particles

For massive particles: N. Arkani-Hamed, T.-C. Huang, Y.-t. Huang [1709.04891]

Pac = €rslp)alpli = IP)alplar

I,J =1,2 indices under little group SU(2).

Satisfy Dirac equation:

plp)’ = Mlp)',  plp)" = M|p)!
For internal particles, SU(2) indices contracted. Useful identities e.q.:
D)L =plar = Paa D) (—p|] = MOE

Often suppress SU(2) indices and use bold variables for massive particles:

p)' =1p)  |p]' = Ip]



Loops from amplitudes

Starting point: Passarino-Veltman decomposition

Ao = SOOI + S P LD Y OO10 + 3 1 4 R
b C d

T

rational term

a

with master integrals given by

n, 4—D dDE 1
= O [ s e R R )

] | |

tadpole bubble triangle DOX



Coefficients C,, can be obtained by performing (generalized) unitarity cuts

on both sides of above relation. | |
R. Britto, F. Cachazo, B. Feng [arXiv:hep-th/0412103]

D. Forde [arXiv:0704.1835]
and others

Each cut puts internal particle on-shell. E.g. 4-cut:

LR LS P + Y OO0 + 3 OO + R
a b C d

Similarly, Céb) and C:gc) obtained from 2- and 3-cuts (after subtracting
contributions from triangles and boxes).



Coefficients (), can be obtained by performing (generalized) unitarity cuts

on both sides of above relation. | |
R. Britto, F. Cachazo, B. Feng [arXiv:hep-th/0412103]

D. Forde [arXiv:0704.1835]
and others

Each cut puts internal particle on-shell. E.g. 4-cut:

ot~ A Ay A - Ay
+

~ Z I 4 Z [ Z>< X0<d)>< ><

prOJects to one C( )

Similarly, Céb) and C:gc) obtained from 2- and 3-cuts (after subtracting
contributions from triangles and boxes).



g-2 from vector-like fermions S and L

Operator in EFT for Mg, My > vgw : P N

Cy

£eﬂ‘ D) quﬁaeﬁHFo‘ﬁ +HO

Gives rise to amplitude

Obtain Wilson coefficient C', via

1 . a a b b C C d d
Cy = S, Am M (Zcf 'Y 4"+ e+ of >L§>+R>
a b & d



Important simplification: Set pg = 0. Ap(le,2¢,3_,450) = ge (13)(23)

= (4, =0 (no boxes)

y
H+£f‘r/
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Only possible triangles arise from cutting one massive and two
massless internal lines. Absence of IR divergencies
= (C3=0 (no triangles)
P. Baratella, C. Fernandez, A. Pomarol [2005.07129]

2. 12 1 W 2p* 2 2 (1 w

Absence of UV divergence => tadpoles cancell

Similarly can show that rational terms do not contribute.



1
=C, == lim M>S
"= Ao, AT ML

Kinematics: pg =0 = pr+py +pe =0
E.g. keep ¢ and 7Y massless. = pg = (py +p7)2 = 2pepy =5 # 0

Possible 2-cuts:
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Amplitudes from cutg :

3]

A3 1,20, 450) = YRYY -
3/3][13] Br+: 15 260 4mo) = VrYy

A(lﬁa 3’7_7 1,/5’7 3}—[%—) — QGYLMS

Corresponding bubble coefticient:

i) = —/dLIPSA(u,aM 35 ) X A3, 15, 2., 4p90)

!

Lorentz-invariant phase space

Mz [3|(ps + p1)|2)
I J — 5
AL, 3,016, 3) 10 ABg 1200 4m0) = —aVoYaY) 3oy g

) M2 (32)  [31](12)
= —qeYLYRYy M2 _SMg ([13] " [3’3][13])

Looking for amplitude ~ (13)(23) = Only first term contributes.



dLIPS integral trivial

L O vy — M5 L (1,203, )
2 LRVMg_Mgslg D\1l,«eyIdvy_,THO
Recall that
1
T Ao, P a:ZS,L 2 42
i (S) \i
Need to multiply C577 with
(S) 2 -~ 1 1 ,LLQ S13
]2 (8137M570)— 16’7'('2 (€+1n]\4§,—|—1+2M§+>

AC, YLYRY, 1

= —
M?2 3272 M2 — M?

Contribution from cut, obtained via Mg + M,

= C, =0



Recall

L=-Y tSH —YgLeH — Yy H'L¢S¢ — Y/,LSH — Mg SS° — My LL® + h.c.

So far Yy =0,Y{, # 0. What about opposite case Yy #0,Y;, = 07

Diagrams in this case:

N N - \:
/ \ / \
4 f A
> 7 T 7 < » X | K — T
/ |
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cutg | cuty, |



Relevant amplitudes for cutg :

3'1']
3/3][13]

My,
M2z — M?

A(1e, 34,1, 3+) = ¢ YL Ms | A+ 15, 2¢,4m0) = YRYy(-1'2)

Same amplitudes as in other case, except for extra factor My, /Mg in A(3%+,1%,2¢,4p0)

AC, _ YiYRYy My/Ms
M? 3272 M2 — M?

=

Contribution from cut;, again obtained via Mg < M7,

AC,  YiYrYy (Mp/Ms—Ms/My)  YiYaYy 1
M? 3272 Mz — M? 3272 MgMj,

=N

Finally contribution from cut’y arises from extra term to amplitude

M 1
3., 1%.2..4 = —YrYy(—1'2 ~ YrYy(—1'2)—
A( H+2+S> ’ HO) R V< >p% _Ml% R V< >ML

= C, =0



g-2 from vector-like fermions E and L

Now consider vector-like fermions E and L with same quantum numbers as SM leptons:

L=-Y lEH —YrLeH — Yy H'LE® — Y. LEH — Mg EE® — M LL® + h.c.

No Feynman diagram for Y{, # 0,Yy = 0. = study Yy, =0,Yy # 0.

No boxes => No triangles.
No UV divergence. = Possible tadpoles cancelled.

—> Again only bubbles!



Contribution from diagram (a) same as from diagram (b) in other case.

AC, YiYgYy 1

= —
M? 3272 MMy,

Amplitudes for cut in diagram (b):

Mg (33/)[3'1/] M (—1'2)

A(]-K?S’Y_?l/E? /}[0) — QGYL A(3,1f1071/E_'72674H0) — YRYV

2psp1r 31 py — M}
Mpg (32
= A(14,3,_, 1%, 3%0) €10 A(3'50, 12, 26, 4p0) =~ —q.YLYRYV g (32) 4.
My, [31]
dLIPS integral again trivial. Multiplying with IQ(S)(SB,M@,O) gives
AC,  YrYrYy 1
M2 3272 MgMjy
Contribution from diagram (c) same with Mg <+ M. = Factor 2.
C, Y YrYy 1 Agrees with result from e.g.

T M2 3272 MoM, A Freitas et al. [1402.7065]



hyy from vector-like fermions E and L

Another example of unexpected cancellation: Consider again model with
vector-like fermions E and L (but with Y, =Yg = 0):

L=—-YyHL‘E® — Y. LEH — Mg EE® — My LL® + h.c.

Leading contribution to following operator vanishes
e.g. G. Panico, A. Pomarol, M. Riembau [1810.09413]

Cyy G7
L. 7 Ze \HI?F?

Corresponds to amplitude:

Coyry C
Ve AH2F2(17_727_73H074H0) — ]\}g qg <12>2
Diagrams:
e SO N M E -7
L Ll\ L
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E E ! \\ E ;
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Choose Yy =0,Yy, # 0 (discussion for Yy # 0,Y{, = 0 identical).
Set v = (H") # 0. Mass matrix in basis (E E“TL—L¢)T .

[0 Mp oYy 0
Mg 0 0 0
oY, 00

= Two mass eigenstates ¥1 2.
1% My, |
\ 0 0 M, 0 )

Diagram in mass eigenstate basis:

P12
p°#0 p> #0
1.2

Now make photon massive, m?2 = p* # 0. Relevant vertex:

2
ALy, Ly, €,) = 2 (10) (1] + [1016))

2

= A(Ly, by, 057 ) ersexs A(LG Ly, 2y) = Z—Z 2 M7 (12)[12] + ((1[€12)(2]¢'[1] + (€ > )]



Choose particular basis for photon polarizations:

_ 1 _ 0
v-vap) . = ()
Next project onto particular component of SU(2) tensor:

(12)[12] - (17512122 [11=121=7 = 52

27 T
d 1
= /dLIPS ALy, Ly, Ly,) X «4(5'%,6%,27) o qg/o ﬁfo df sg {2 M?(1 —c3) + §p2(1 + cg)}

Furthermore, from the bubble integral:

1 /1 2
Lo(p?, M2, M?) = (—+1n“—+...):

1 12 V7|20
| _
1672 \e ' M2 T 1672 ( - *

e T MZ T M2 - M2

expand to order v?

and Mg < My, for M. Match with (12)% — (12)% — p* :

LGy 12 1 1

= ~|Y{)? =0
T Tem 3 v (M,%-Mg N M%—M%)




Conclusions

* |Leading contribution to g-2 and hyy vanishes in certain models
with vector-like fermions. Why?

* Amplitude methods useful to address this question.

¢ Setting Higgs momenta to zero, calculation of Wilson
coefticients for g-2 and hyy reduces to double cuts.

* Vanishing of Wilson coefficients can then be understood from
exchange symmetry acting on amplitude level.

 Also useful to calculate Wilson coefficients in models where
they do not vanish.



Backup slide: Absence of rational terms

Rational terms arise in Pasarino-Veltman decomposition from terms of the type 6/6.

Accessible via generalized unitarity: Write

2 2
= Uy + U00) = 1y —

and interpret extra-dimensional momentum as 4D mass ,uz.

Rational term then given by

1 ~(i; 1 .
R:—EZZ;C;”(%—B(MZMMQ —52 ZC”

b

To determine CS7),C{" and C{® shift particle masses by 1® and take
p2-term for 59 680 and  p-term for G4 in large p-limit.

We match to EFT at order 1/M?. However,

i 1 1 X M2 — Sij
1m = ——
pt—oo 855 — M2 — p? s pt

—> No rational terms at order 1/M?.



