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A dimensionless numbers (or dimensionful number in units of the cut-off ) in the action 

which  is much less than one  we will call this a


 Dirac Fine Tuning

  A Dirac fine tuning which is not radiatively stable we will call a t’Hooft fine tuning.

Naturalness Terminology 

Dirac fine tunings of relevant operators which are not protected by symmetry are t’Hooft fine tuned

Some Examples:

Dirac t’Hooft

Fermion masses in the SM, the Theta 
parameter

Higgs mass, CC

(This talk)



• Enhanced Symmetry (SUSY).


• Strong coupling dynamics shifts 
relevant to marginal.    (RS)


• No dimension 2 scalar operators 
(Technicolor).      

Resolutions to Naturalness Problems

``UV Solutions’’

• Relaxation Mechanisms. PQ  Mechanism mechanism 
(strong CP), Abbot (CC),  Relaxion (EW Hierarchy)      

``IR Solutions’’



Relaxation Mechanisms

<latexit sha1_base64="/uf3tWDSYFszrNuwPL5ePLNBQik=">AAAB/HicdVDJSgNBEO1xjXEbzVGRxiB4ChMJJh6EoBA8eEjALJCE0NOpSZr0LHT3KMMQb36HFw+KeJV8hze/wZ+wkyi4Pih4vFdFVT074Ewqy3o1Zmbn5hcWE0vJ5ZXVtXVzY7Mm/VBQqFKf+6JhEwmceVBVTHFoBAKIa3Oo24PTsV+/BCGZ712oKIC2S3oecxglSksdM3WOj3Er6DNcwq0r6PYAlzpm2spYR4V8Lod/k2zGmiBd3B5V3m52RuWO+dLq+jR0wVOUEymbWStQ7ZgIxSiHYbIVSggIHZAeNDX1iAuyHU+OH+I9rXSx4wtdnsIT9etETFwpI9fWnS5RffnTG4t/ec1QOYV2zLwgVODR6SIn5Fj5eJwE7jIBVPFIE0IF07di2ieCUKXzSuoQPj/F/5PaQSZ7mMlVdBonaIoE2kK7aB9lUR4V0RkqoyqiKEK36B49GNfGnfFoPE1bZ4yPmRT6BuP5HZwmlzM=</latexit>

L = �F ^ F
<latexit sha1_base64="ZWC+JSE3xJ2XePpJfpsokEiYQTU=">AAACBXicdVDLSgNBEJz1bXxFPephiAiKEHYlGL1FvXhUcBMhG8LspDcZMvtgpldZghcv/oAf4cWDIl79B2/5GyeJgs+ChqKqm+4uP5FCo233rbHxicmp6ZnZ3Nz8wuJSfnmlquNUcXB5LGN14TMNUkTgokAJF4kCFvoSan73eODXLkFpEUfnmCXQCFk7EoHgDI3UzK+7W85285B6SrQ7yJSKr6gHYYKZBmzmN+yifbBfLpXob+IU7SE2KgVv565fyU6b+TevFfM0hAi5ZFrXHTvBRo8pFFzCdc5LNSSMd1kb6oZGLATd6A2/uKabRmnRIFamIqRD9etEj4VaZ6FvOkOGHf3TG4h/efUUg/1GT0RJihDx0aIglRRjOoiEtoQCjjIzhHElzK2Ud5hiHE1wORPC56f0f1LdLTp7xdKZSeOIjDBD1kiBbBGHlEmFnJBT4hJObsg9eSRP1q31YD1bL6PWMetjZpV8g/X6Dirnm2o=</latexit>

U(1)A ! ;
<latexit sha1_base64="ZmXwJfNYtHBBEEaFPMlbZLstNrI=">AAACC3icdVDLSgNBEJyN7/ha9ehlSBAEIWwkmHgLevGoYEwgG8LspJMMmZ1dZ3oDIeTuxZvf4cWDIl79AW/+jZOH4LOgoaaqm+muIJbCoOe9O6m5+YXFpeWV9Ora+samu7V9ZaJEc6jwSEa6FjADUiiooEAJtVgDCwMJ1aB3OvarfdBGROoSBzE0QtZRoi04Qys13YwvmepIoH7cFdTXswdcJ6JPfewCsqab9XLecalYKNDfJJ/zJsiWM/7B3Xt5cN503/xWxJMQFHLJjKnnvRgbQ6ZRcAmjtJ8YiBnvsQ7ULVUsBNMYTm4Z0T2rtGg70rYU0on6dWLIQmMGYWA7Q4Zd89Mbi3959QTbpcZQqDhBUHz6UTuRFCM6Doa2hAaOcmAJ41rYXSnvMs042vjSNoTPS+n/5Oowlz/KFS5sGidkimWySzJkn+RJkZTJGTknFcLJDbknj+TJuXUenGfnZdqacmYzO+QbnNcPMleeLA==</latexit>
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These paradigms are compelling (though they still suffer 
from Dirac fine-tunings) especially since one need not 

have any new physics beyond the weak scale (testability?) 
But they dont seem very generic

However, perhaps the problem is that we are 
thinking in to narrow a space of QFT’s

Consider any 
macroscopic object

<latexit sha1_base64="31W/G+fnTDj/hXjPK7qym4JZYYQ=">AAAB7nicdVC7SgNBFL3rM66vqKXNYBCslo0EEwsxaGNhEcE8IFnC7OxsMmR2dpmZFcKSj7CxUMTCxj+xtxH/xkmi4PPAhcM553IffsKZ0q77Zs3Mzs0vLOaW7OWV1bX1/MZmQ8WpJLROYh7Llo8V5UzQumaa01YiKY58Tpv+4HTsN6+oVCwWl3qYUC/CPcFCRrA2UrNzbqIB7uYLruMeVsqlEvpNio47QeH42T5KHl/tWjf/0glikkZUaMKxUu2im2gvw1IzwunI7qSKJpgMcI+2DRU4osrLJuuO0K5RAhTG0pTQaKJ+7chwpNQw8k0ywrqvfnpj8S+vneqw4mVMJKmmgkwHhSlHOkbj21HAJCWaDw3BRDKzKyJ9LDHR5kO2ecLnpeh/0th3igdO6cItVE9gihxsww7sQRHKUIUzqEEdCAzgGm7hzkqsG+veephGZ6yPni34BuvpHfkEkwM=</latexit>

⇤ Inter-actomic spacing

<latexit sha1_base64="lvIxmCMeo2JjzCKpJ/REgFCt2LM=">AAAB+XicdVDLSsNAFJ3UV42vqEs3g0VwFRIpti7EohsXIlXsA5pQJpNpO3QyCTOTQgn9Ezciirj1I9y7Ef/Gaavg88DA4Zx7uHdOkDAqleO8GbmZ2bn5hfyiubS8srpmrW/UZZwKTGo4ZrFoBkgSRjmpKaoYaSaCoChgpBH0T8Z+Y0CEpDG/UsOE+BHqctqhGCkttS3rEnqSRvAcemc6FaK2VXBs56BcKhbhb+LazgSFo2fzMLl9Natt68ULY5xGhCvMkJQt10mUnyGhKGZkZHqpJAnCfdQlLU05ioj0s8nlI7ijlRB2YqEfV3Cifk1kKJJyGAV6MkKqJ396Y/Evr5WqTtnPKE9SRTieLuqkDKoYjmuAIRUEKzbUBGFB9a0Q95BAWOmyTF3C50/h/6S+Z7v7dvHCKVSOwRR5sAW2wS5wQQlUwCmoghrAYACuwR24NzLjxngwHqejOeMjswm+wXh6B93RljM=</latexit>

R ⇠ N⇤
<latexit sha1_base64="NmudpAIwVZ4K5Hh8fCSeSN8J+/Q=">AAAB9XicdVDLSgMxFM3UVx1fVZdugkVwNczUYutCLLpxJRXsA9ppyaRpG5pkhiSjlKH/4caFD9z6Ge7diH9j2ir4PHDhcM693HtPEDGqtOu+WamZ2bn5hfSivbS8srqWWd+oqjCWmFRwyEJZD5AijApS0VQzUo8kQTxgpBYMTsZ+7ZJIRUNxoYcR8TnqCdqlGGkjtc5gU1EOPbeV5PZG7UzWddyDYiGfh7+J57gTZI+e7cPo/tUutzMvzU6IY06Exgwp1fDcSPsJkppiRkZ2M1YkQniAeqRhqECcKD+ZXD2CO0bpwG4oTQkNJ+rXiQRxpYY8MJ0c6b766Y3Fv7xGrLtFP6EiijUReLqoGzOoQziOAHaoJFizoSEIS2puhbiPJMLaBGWbED4/hf+Tas7x9p38uZstHYMp0mALbINd4IECKIFTUAYVgIEE1+AW3FlX1o31YD1OW1PWx8wm+Abr6R2hopT7</latexit>

N ⇠ 1023

To determine if this system his fine tuned we need to place it in 
a field theoretical context. Perhaps we can learn about field 

theories which look finely tuned but are not.



Consider the following quantum field theories

<latexit sha1_base64="ubteGJUy4gMquMM3QrvPtLzkiG0="></latexit>

S =

Z
d4x(~̇⇡2 � (~r · ~⇡)2 � @(i⇡j)@(i⇡j)) + V (@i⇡j)

<latexit sha1_base64="wGzSBd7h6XZKbtNiVW8phekzzl8="></latexit>

S =

Z
d2x(

1

2
�̇2
I + C1(r2�I)

2 + V (r�I))



The QFTs which describe these theories are distinguished from the 
class of theories we typically consider when looking for solutions to   

hierarchy problems:

- Spontaneously break space-time symmetries


- Target space have non vanishing boundaries




Effective Field Theory of Solids

Label the atoms by D fields 
<latexit sha1_base64="utUbYKcAhqhIrRRpTIGJGdL9gSw=">AAAB+XicdVDLSsNAFJ3UV62vqEs3Q4tQUUoixdZd0Y3uKtgHNLFMppN26GQSZibFEPoXLt24UMStf+Kuf+O0VfB54MLhnHu59x4vYlQqy5oYmYXFpeWV7GpubX1jc8vc3mnKMBaYNHDIQtH2kCSMctJQVDHSjgRBgcdIyxueT/3WiAhJQ36tkoi4Aepz6lOMlJa6pulEA3pzWVRHzohgeHvQNQtWyTqtVspl+JvYJWuGQi3vHN5Nakm9a745vRDHAeEKMyRlx7Yi5aZIKIoZGeecWJII4SHqk46mHAVEuuns8jHc10oP+qHQxRWcqV8nUhRImQSe7gyQGsif3lT8y+vEyq+6KeVRrAjH80V+zKAK4TQG2KOCYMUSTRAWVN8K8QAJhJUOK6dD+PwU/k+axyX7pFS+0mmcgTmyYA/kQRHYoAJq4ALUQQNgMAL34BE8GanxYDwbL/PWjPExswu+wXh9B9ZgliY=</latexit>

�I(t, ~x) <latexit sha1_base64="RrW6exO0s5rk+xgp8pmLABK8Re8=">AAAB7HicdVDLSgNBEOz1mcRX1KOXwSB4MexKMPEgBPWgtwjmgckSZiezyZDZ2WVmVgxLvsGLB4N49eq/ePNrdJIo+CxoKKq66e7yIs6Utu1Xa2Z2bn5hMZXOLC2vrK5l1zdqKowloVUS8lA2PKwoZ4JWNdOcNiJJceBxWvf6J2O/fk2lYqG41IOIugHuCuYzgrWRqudHzt5pO5uz8/ZhqVgooN/EydsT5MrpaHT1fPNWaWdfWp2QxAEVmnCsVNOxI+0mWGpGOB1mWrGiESZ93KVNQwUOqHKTybFDtGOUDvJDaUpoNFG/TiQ4UGoQeKYzwLqnfnpj8S+vGWu/5CZMRLGmgkwX+TFHOkTjz1GHSUo0HxiCiWTmVkR6WGKiTT4ZE8Lnp+h/UtvPOwf5woVJ4ximSMEWbMMuOFCEMpxBBapAgMEt3MPIEtad9WA9TltnrI+ZTfgG6+kdNDeSCw==</latexit>

I = 1�D

Lagrangian ``Co-moving coordinates’’’

<latexit sha1_base64="vU3sX6ZKg5+o8IGmO09aKB/BVlc=">AAAB8nicdVDJSgNBEO2JW4xb1KOXJkGIKMOMBBNvQS96i2AWmImhp9OTNOlZ6K4RwpC/0IsHRbz6Nd7yN3YSBdcHBY/3qqiq58WCK7CsiZFZWFxaXsmu5tbWNza38ts7TRUlkrIGjUQk2x5RTPCQNYCDYO1YMhJ4grW84fnUb90yqXgUXsMoZp2A9EPuc0pAS0775rLkxgN+BAfdfNEyrdNqpVzGv4ltWjMUawX38G5SG9W7+Te3F9EkYCFQQZRybCuGTkokcCrYOOcmisWEDkmfOZqGJGCqk85OHuN9rfSwH0ldIeCZ+nUiJYFSo8DTnQGBgfrpTcW/PCcBv9pJeRgnwEI6X+QnAkOEp//jHpeMghhpQqjk+lZMB0QSCjqlnA7h81P8P2kem/aJWb7SaZyhObJoDxVQCdmogmroAtVRA1EUoXv0iJ4MMB6MZ+Nl3poxPmZ20TcYr+++VpPp</latexit>

XI(�, t) Eulerian

<latexit sha1_base64="0LxLM5Q8UiKsfLEzSo7TzH5ZCRc=">AAACDHicdVDLSgMxFM34rPVVdekmtAiCUKZSbF0IRTd2V8E+oNOWO2naCc1khiQjltIPcOPK/3DjQhG3foC7/o1pR8HngcDJOeeS3OOGnClt2xNrbn5hcWk5sZJcXVvf2ExtbddUEElCqyTggWy4oChnglY105w2QknBdzmtu4OzqV+/olKxQFzqYUhbPvQF6zEC2kidVMbhIPqcYif0WLuMHRlfT7ADPPQAX7fLJmVn7eNiIZ/Hv0kua8+QKaWdg7tJaVjppN6cbkAinwpNOCjVzNmhbo1AakY4HSedSNEQyAD6tGmoAJ+q1mi2zBjvGaWLe4E0R2g8U79OjMBXaui7JumD9tRPbyr+5TUj3Su2RkyEkaaCxA/1Io51gKfN4C6TlGg+NASIZOavmHgggWjTX9KU8Lkp/p/UDrO5o2z+wrRximIk0C5Ko32UQwVUQueogqqIoBt0jx7Rk3VrPVjP1kscnbM+ZnbQN1iv7684ncM=</latexit>

h�Ii = ↵xI Ground state solution

Broken spacte-time symmetries but leaves 
unbroken diagonal sub-groups

<latexit sha1_base64="sxEAZ11agNAKFbHOXKzbkv85tTU=">AAACAHicbVDLSgMxFM3UV62vURcu3ASLIAhlRoq6LLqxuwr2Ae203EkzbWhmMiQZtQzd+CtuXCji1s9w59+YPhbaeuDCyTn3knuPH3OmtON8W5ml5ZXVtex6bmNza3vH3t2rKZFIQqtEcCEbPijKWUSrmmlOG7GkEPqc1v3B9div31OpmIju9DCmXgi9iAWMgDZSxz54bJdbkvX6GqQUD9g8T6Fdxh077xScCfAicWckj2aodOyvVleQJKSRJhyUarpOrL0UpGaE01GulSgaAxlAjzYNjSCkyksnB4zwsVG6OBDSVKTxRP09kUKo1DD0TWcIuq/mvbH4n9dMdHDppSyKE00jMv0oSDjWAo/TwF0mKdF8aAgQycyumPRBAtEms5wJwZ0/eZHUzgrueaF4W8yXrmZxZNEhOkInyEUXqIRuUAVVEUEj9Ixe0Zv1ZL1Y79bHtDVjzWb20R9Ynz/fepXw</latexit>

xI ! xI + aI

Assumption: of homgeneity and isotropy on large scales

<latexit sha1_base64="dii/KMSYiODBSyKw3FZ/G1D3xBI=">AAACBnicbVDLSgMxFM3UV62vUZciBIvgxjIjRV0W3dhdBfuAzrRk0kwnNJMMSUYpQ1du/BU3LhRx6ze4829MHwttPXDhcM693HtPkDCqtON8W7ml5ZXVtfx6YWNza3vH3t1rKJFKTOpYMCFbAVKEUU7qmmpGWokkKA4YaQaD67HfvCdSUcHv9DAhfoz6nIYUI22krn3oJRHtVD1J+5FGUooHOFVOUacKu3bRKTkTwEXizkgRzFDr2l9eT+A0JlxjhpRqu06i/QxJTTEjo4KXKpIgPEB90jaUo5goP5u8MYLHRunBUEhTXMOJ+nsiQ7FSwzgwnTHSkZr3xuJ/XjvV4aWfUZ6kmnA8XRSmDGoBx5nAHpUEazY0BGFJza0QR0girE1yBROCO//yImmcldzzUvm2XKxczeLIgwNwBE6ACy5ABdyAGqgDDB7BM3gFb9aT9WK9Wx/T1pw1m9kHf2B9/gB1OZh4</latexit>

�I ! �I � aI

<latexit sha1_base64="2yOsEkjKVy/D+gHM5hpRZvRCuRA="></latexit>

TST ⌦ TI ⌦ SO(3)I ⌦ SO(3)ST ! TI+ST ⌦ SO(3)T+ST



Only three 
Goldstones

                                                  Inverse Higgs Constraints

Power Counting:    
<latexit sha1_base64="GWjObxV1bRaRRx/dMba/X92MTVM=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCqzIjRV0W3bisYB/QGUomzbShSSYkGaEOxV9x40IRt/6HO//GTDsLbT1w4XDOvcm9J5KMauN5305pZXVtfaO8Wdna3tndc/cP2jpJFSYtnLBEdSOkCaOCtAw1jHSlIohHjHSi8U3udx6I0jQR92YiScjRUNCYYmSs1HePAomUoYjBQI4oDDTl0O+7Va/mzQCXiV+QKijQ7LtfwSDBKSfCYIa07vmeNGGWv4wZmVaCVBOJ8BgNSc9SgTjRYTbbfgpPrTKAcaJsCQNn6u+JDHGtJzyynRyZkV70cvE/r5ea+CrMqJCpIQLPP4pTBk0C8yjggCqCDZtYgrCidleIR0ghbGxgFRuCv3jyMmmf1/yLWv2uXm1cF3GUwTE4AWfAB5egAW5BE7QABo/gGbyCN+fJeXHenY95a8kpZg7BHzifP3l7lJg=</latexit>

@� ⇠ 1
<latexit sha1_base64="o4Z4qHeGY2wFMn2bYvNhQy4NWFA=">AAACA3icbVDLSgMxFM3UV62vUXe6CRbBVZkpRV0W3bisYB/QGUsmzbShSSYkGaGUght/xY0LRdz6E+78GzPtLLT1wIXDOfcm955IMqqN5307hZXVtfWN4mZpa3tnd8/dP2jpJFWYNHHCEtWJkCaMCtI01DDSkYogHjHSjkbXmd9+IErTRNyZsSQhRwNBY4qRsVLPPQokUoYidl+FgRxSGGjKYcAY9Htu2at4M8Bl4uekDHI0eu5X0E9wyokwmCGtu74nTTjJ3seMTEtBqolEeIQGpGupQJzocDK7YQpPrdKHcaJsCQNn6u+JCeJaj3lkOzkyQ73oZeJ/Xjc18WU4oUKmhgg8/yhOGTQJzAKBfaoINmxsCcKK2l0hHiKFsLGxlWwI/uLJy6RVrfjnldptrVy/yuMogmNwAs6ADy5AHdyABmgCDB7BM3gFb86T8+K8Ox/z1oKTzxyCP3A+fwBlo5a4</latexit>

@2� ⇠⌧ 1

We usually consider solids that admit homogeneous ground states—again, in the continuum

limit. This corresponds to choosing the comoving coordinates to be aligned with the spatial

ones on such homogeneous ground states, h�I
i / xI , and to impose a shift (internal translation)

invariance �I
! �I+aI on the action. In this way, the ground state corresponds to a configuration

that breaks the shift symmetry along with spatial translations down to the diagonal subgroup.

Notice that the shift symmetry implies that there is at least one derivative per field. Fur-

thermore, the ground state field configuration has nonzero first-derivatives. These two properties

suggest that we should choose our power counting such that single derivatives of the fields are

order-one while higher derivatives are suppressed. The most general action to lowest order then

will take the form

S =

Z
G(BIJ) d4x , (2.1)

where

BIJ = @µ�
I@µ�J , (2.2)

and G is a generic function, related to the solid’s equation of state 1.

If the solid’s ground state features also some rotational symmetry group H � SO(3), such

as the cubic group, this should be imposed as an internal symmetry acting directly onto the �I

fields, thereby restricting the form of G. The ground state h�I
i / xI will then break the internal

H and spatial rotations down the diagonal H subgroup. For simplicity, below we will consider

isotropic solids only, so that there is an internal SO(3) acting on our fields, but much of what we

say applies to anisotropic solids as well.

Notice that the action (2.1), regardless of the actual G we choose, always admits generic

physically homogeneous solutions of the form

h�I
i = ↵I

µ x
µ , (2.3)

for arbitrary constant ↵I
µ. Despite formally breaking spacetime translations, these solutions

are homogeneous in that physical quantities such as the stress-energy tensor and the currents

associated with the internal symmetries are constant in spacetime. This is what we mean when

we talk about homogeneous solids.

A nonzero ↵I
0 corresponds to a nontrivial speed for our comoving coordinates, that is, to a

moving solid. Let us choose a frame where the solid is at rest. We are left with

h�I
i = ↵I

j x
j , (2.4)

where the 3⇥ 3 matrix ↵I
j , since it belongs to GL(3,R), can be written as the composition of a

rotation, a shear, and a dilation (see for instance [14]).

We will be considering ground states with no shear. As to the rotation part, it can be undone

by re-orienting the spatial axes, similarly to the choice of frame we made above. We are thus left

with a single dilation parameter ↵, which can be thought of as the compression level—or scale

factor—of our solid:

h�I
i = ↵ �Ijx

j . (2.5)

1
This action is also derivable using the coset construction [8].

– 3 –

This is akin to minimizing a potential: if the potential has no minimum, there are no static

solutions. Specifically, the bulk stress-energy tensor reads

T̃µ⌫ = �2
@G

@BIJ
@µ�

I@⌫�
J + ⌘µ⌫G = 0 . (2.12)

On the ground state (2.5) we have BIJ = ↵2�IJ , and, because of isotropy, @G
@BIJ = A(↵)�IJ ,

for some A(↵). Then, calling G(↵) the value of G evaluated on the ground state, we have

G0(↵) = 6↵A(↵). So, the relaxation condition (2.11) can be rewritten as

3G(↵)�G0(↵)↵ = 0 . (2.13)

For any given solid, its G function is fixed. So, this equation should not be interpreted as a

di↵erential equation for G, but rather as an algebraic equation for ↵. As we mentioned, it should

be thought of as the analog of finding the minimum of a potential. Indeed, if we plug the static

ansatz (2.5) directly into our action (2.6), we get an e↵ective potential for ↵: 3

Ve↵(↵) = �V G(↵)↵�3 , (2.14)

where V ⌘
R
d3� ✓(F (�)) is the comoving volume of the solid, which is a constant. Minimizing

Ve↵ w.r.t. ↵ is equivalent to imposing our relaxation condition (2.13).

How generic is the existence of a solution to eq. (2.13)? All solids that exist in nature at zero

(or negligible) external pressures find that special value of ↵ and call that their ground state. For

others, that special value might not exist: for instance, at zero temperature solid helium only

exists at pressures above ⇠ 25 atm, and it melts if the pressure drops to lower values.

Consider now the dynamics of excitations about the ground state,

�I(x) = ↵
�
xI + ⇡I(x)

�
. (2.15)

If we expand the bulk action, we find

Sbulk =

Z
d4x

✓
G0 +

@G

@BIJ

����
0

sIJ +
1

2

@G

@BIJ@BKL

����
0

sIJsKL + . . .

◆
, (2.16)

where sIK is the generalized strain defined as

sIK = (@µ�
I@µ�K

� ↵2�IK) = ↵2
�
2 @(I⇡K) + @µ⇡

I@µ⇡K
�
, (2.17)

and the subscript zero reminds us to evaluate G and its derivatives on the ground state. The

symmetries of the original bulk action and of the background imply certain relationships among

the Wilson coe�cients of the expanded action. However, in general the relaxation condition

(2.13) will imply additional relationships, which are not just a consequence of symmetry. These

will look like fine tunings.

3
In general, the reduced variational problem one gets by plugging an ansatz into an action is equivalent to the
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spatial solids, we were motivated by explaining fine tunings in an action. Even in the case

of time solids the constraints on the vacuum energy will lead to relations between couplings

in the action that are not protected by symmetry.
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A Constraints on the dynamics of a relaxed 3D solid

Consider the general expansion (2.16) for the bulk action of a 3D solid around the state (2.5).

Using the relaxation condition (2.13) and dropping a constant term in (2.16), we are left with

Sbulk =

Z
d4x

✓
1

2↵2
G0s

II +
1

2

@G

@BIJ@BKL

����
0

sIJsKL + . . .

◆
, (A.1)

where the second term and all the subsequent ones are constrained by the symmetries of the

action and of the ground state, but not by the relaxation condition. The structure of the first

term, on the other hand, is completely determined by the relaxation condition (2.12), which has

been utilized in this equation. Still, since the expansion of sIJ stops at quadratic order in the

fluctuation field ⇡I—see (2.17)—such a term only a↵ects the action up to second order, and so

the consequences of the relaxation condition stop at quadratic order, at least as far the bulk

dynamics are concerned. What are they?

To answer this question, we expand all the terms above up to second order in ⇡I , and ignore

a total derivative linear term (/ ~r · ~⇡). We get:

Sbulk '

Z
d4x


1

2
G0 @µ⇡

i@µ⇡i + 2C0 (~r · ~⇡)2 + 2D0 @(i⇡j)@(i⇡j)

�
, (A.2)

where we have parametrized the second derivatives of G(BIJ) in the most general way compatible

with isotropy,
@G

@BIJ@BKL

����
0

=
1

↵4

�
C0 �IJ�KL +D0 �I(K�L)J

�
, (A.3)

with generic C0 and D0, and we stopped di↵erentiating between internal (I-type) and spatial

(i-type) indices, because the unbroken rotations act on them in the same way.

Upon integrating by parts, one recognizes that this action is nothing but the most general

quadratic action consistent with the symmetries:

Sbulk ' �
1

2
G0

Z
d4x

h
~̇⇡ 2

� (c2L � c2T )(~r · ~⇡)2 � c2T @i⇡j@i⇡j
i
, (A.4)

where cL and cT are the longitudinal and transverse phonon speeds,

c2L = 1 +
4(C0 +D0)

G0
, c2T = 1 +

2D0

G0
. (A.5)
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S =

Z
d2�

p
g G(B)

For the 3D solid we are considering, these constraints lead to the statement that the free

energy is independent of the anti-symmetric part of @i⇡J . Physically this is the statement of

the invariance of the free energy under under rotations up to quadratic order. This is discussed

in Appendix A. As we will now see, upon dimensional reduction (see Appendix B), the open

boundary conditions lead to the vanishing of a relevant operator.

3 The oscillating bar

As our simplest and perhaps most surprising example we consider a one-dimensional embedded

solid—a bar. Consider the action for the transverse oscillations ~'(x, t) of such a bar with at least

one open end,

S =

Z
dxdt

1

2

�
~̇' 2

� c1~'
002�+ . . . (3.1)

where c1 is a bar-dependent (dimensionful) coe�cient, primes denote derivatives with respect to

x, and the . . . includes non-linear derivatively coupled interactions (see e.g. [9]). The glaring

absence of a standard two-derivative gradient energy term, ~' 02, would appear to be a fine tuning

as there exists no symmetry explanation4. On the other hand, this well known property was

discovered by Euler and Bernoulli who derived the equations of motion (the “beam equation”)

from microscopic considerations [9]. Eq. (3.1) implies, in particular, that the normal oscillation

frequencies of the bar are inversely proportional to the square of the bar’s length5. Apparently,

the IR renormalized coupling of ~' 02 relaxes to zero independently of the composition of the bar,

i.e. the UV physics.

Let us then consider the e↵ective theory description of this system to understand how this

apparent fine tuning comes about. Unlike for a fundamental string, we can label matter elements

along a material string or bar by a real number �(�, ⌧), where � and ⌧ are generic worldsheet

coordinates. This has to do with the spontaneous breaking of spacetime symmetries along the

string or bar, and is explained at length in ref. [16]. To derive an action we may extend the formal-

ism of the previous section to a one-dimensional solid, with one open end corresponding to, say,

� = �?, embedded in a four-dimensional Minkowski space, parametrized by embedding coordi-

nates Xµ(�, ⌧). In particular, the induced metric on our solid’s worldsheet is g↵� = @↵Xµ@�Xµ,

with y↵ = (�, ⌧). Thus, to lowest order in derivatives the action is the generalization of the

Nambu-Goto action

Sbar =

Z
d⌧d� ✓(�� �?)

p
g G(B) , B ⌘ g↵�@↵�@�� , (3.2)

where, as before, G is an arbitrary function.

The action is reparametrization invariant, and it is convenient to choose “unitary” gauge,

X0 = ⌧ ⌘ t , X1 = � ⌘ x , (3.3)

4
Note that the interaction terms left o↵ in the action have one derivative per field, which are invariant only

under a shift symmetry.
5
We thank Ben Freivogel and Federico Piazza for educating us regarding this. It is thanks to conversations with

them that this project was born.
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which can be done directly at the level of the action. After we do so, we are left with two

transverse degrees of freedom, X2 and X3, and a longitudinal one, �. Generalizing our analysis

of the 3D solid, we want to consider the ground-state solution

X2,3 = 0, � = ↵x, (3.4)

and small oscillations about it. As before, ↵ measures the compression/dilation level of the bar

and, if we leave at least one end free, the bar will relax to a particular value of ↵, corresponding

to zero tension or pressure.

To see this, we can look for instance at the � equation of motion:

�(�� �?)
p
g
⇥
G(B)� 2BG0(B)

⇤
� 2✓(�� �?) @↵

⇥p
gG0(B)g↵�@��

⇤
= 0 . (3.5)

Any configuration of the form (3.4) obeys the bulk part of this equation of motion, but the

boundary part requires

G(B)� 2BG0(B) = 0 , B = ↵2 , (3.6)

which is the one-dimensional analog of (2.13). Notice that this does correspond to a zero ten-

sion/pressure condition, since the world-sheet stress-energy tensor is

T̃↵� = �2G0(B) @↵�@��+ g↵� G(B) , (3.7)

and so, on a configuration like (3.4), we have that the tension is

T = �T̃11 = 2BG0(B)�G(B) , (3.8)

which vanishes when eq. (3.6) is obeyed.

The vanishing of the tension in the ground state now directly implies the vanishing of a

relevant Wilson coe�cient in the excitations’ action. This can be seen by expanding the action

(3.2) around the ground state and using the tension relaxation condition (3.6); but, in fact, there

is a deep structural reason behind it, which makes it manifest: the action (3.2) depends on the

transverse embedding fields ~' = (X2, X3) only through the induced metric g↵� � @↵~' · @� ~',

which is quadratic in them. Thus, to quadratic order in these fields, it is enough to consider the

expansion of the bar action to first order in induced-metric perturbations, which, by definition,

yields the world-sheet stress energy tensor:

Sbar �
1

2

Z
d4x T̃↵� @↵~' · @� ~' . (3.9)

This directly implies that whenever the tension vanishes, so does the coe�cient of ~' 02, thus

explaining the apparent fine tuning we described at the beginning of this section. This connection

is enforced by symmetry, because it follows from the symmetry structure of the action. What is

not a consequence of symmetry is the vanishing of the tension in the first place, which follows

from leaving the boundary conditions free.

If one goes beyond the lowest-derivative action (3.2) and introduces higher-derivative terms,

involving, for instance, the world-sheet extrinsic and intrinsic curvatures weighed by appropriate

powers of the bar’s thickness, one finds all possible higher-derivative corrections to the excitations’

action, such as the ~' 002 term in (3.1). However, none of this will a↵ect eq. (3.9) and the associated

connection between vanishing tension and vanishing coe�cient for ~' 02, since eq. (3.9) follows

directly from the definitions of the induced metric and of the world-sheet stress-energy tensor.
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Ground State

Action for Longitudinal mode:
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in L+L!



1-D Embedded Solid: Need to impose 
boundedness of target space
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corresponding to, say, � = �?, embedded in a four-dimensional Minkowski space, parametrized

by embedding coordinates Xµ(�, ⌧). In particular, the induced metric on our solid’s worldsheet

is g↵� = @↵Xµ@�Xµ, with y↵ = (�, ⌧). Thus, to lowest order in derivatives the action is the

generalization of the Nambu-Goto action

Sbar =

Z
d⌧d� ✓(�� �?)

p
g G(B) , B ⌘ g↵�@↵�@�� , (3.2)

where, as before, G is an arbitrary function.

The action is reparametrization invariant, and it is convenient to fix “unitary” gauge,

X0 = ⌧ ⌘ t , X1 = � ⌘ x , (3.3)

which can be done directly at the level of the action. After we do so, we are left with two

transverse degrees of freedom, X2 and X3, and a longitudinal one, �. Generalizing our analysis

of the 3D solid, we want to consider the ground-state solution

X2,3 = 0 , � = ↵x . (3.4)

and small oscillations about it. As before, ↵ measures the compression/dilation level of the bar

and, if we leave at least one end free, the bar will relax to a particular value of ↵, corresponding

to zero tension or pressure.

To see this, we can look for instance at the � equation of motion:

�(�� �?)
p
g
⇥
G(B)� 2BG0(B)

⇤
� 2✓(�� �?) @↵

⇥p
gG0(B)g↵�@��

⇤
= 0 . (3.5)

Any configuration of the form (3.4) obeys the bulk part of this equation of motion, but the

boundary part requires

G(B)� 2BG0(B) = 0 , B = ↵2 , (3.6)

which is the one-dimensional analog of (2.13). Notice that this does correspond to a zero ten-

sion/pressure condition, since the world-sheet stress-energy tensor is

T̃↵� = 2
p
g G0@↵�@��+

p
g g↵�G , (3.7)

3We thank Ben Freivogel and Federico Piazza for educating us regarding this. It is thanks to conversations with

them that this project was born.
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Now, how are we to alter the solid action (2.1) to take into account that the solid has a fixed

boundary in comoving space and that the boundary is free to move in physical space? The most

convenient approach seems to be [12] to write the action as

S =

Z
✓
�
F (�)

�
G(BIJ)d4x , (2.6)

and leave the variational principle untouched: the ✓-function ensures that only the interior of the

solid contributes to the action, and the fact that no constraint on the field variations is imposed at

the boundary of the solid ensures that the fields are free to vary there, that is, that the boundary

is free to move.

One can derive the equations of motion just by varying the action above; however, for our

purposes, it is more convenient to phrase them in terms of stress-energy conservation. The

stress-energy tensor reads

Tµ⌫ = ✓
�
F (�)

�
T̃µ⌫ , (2.7)

where T̃µ⌫ = 2
@(

p
g G)

@gµ⌫ and we have used that F (�) is independent of the space-time metric.

Stress-energy conservation for a static configuration then implies

@iT
i⌫ = �

�
F (�)

� @F

@�K
(@i�

K)T̃ i⌫ + ✓
�
F (�)

�
@iT̃

i⌫ = 0 . (2.8)

The coe�cient of the ✓-function gives us the usual bulk eom’s for a static system,

@iT̃
i⌫ = 0 . (2.9)

In addition, however we have boundary eom’s coming from the �-function. These are particularly

clear if we specialize to the ground state (2.5) and use the fact that nI(�?) / @F
@�I is the normal

to the boundary at the boundary point �I = �I? 1. We have

ni(�
?) T̃ i⌫(�?) = 0 . (2.10)

Given that T̃µ⌫ in the ground state (2.5) is homogenous and that moving around a closed boundary

nI(�?) explores all possible spatial directions, we then have, in particular,

T̃ ij = 0 everywhere. (2.11)

This is just the relaxation of the tension of the solid when the boundaries are free to fluctuate.

Notice that for a configuration like (2.5), the stress-energy tensor depends on ↵. So, eq. (2.11)

can be obeyed only if there is a value of ↵ for which a certain, G-dependent condition is obeyed.

This is akin to minimizing a potential: if the potential has no minimum, there are no static

solutions. Specifically, the bulk stress-energy tensor reads

T̃µ⌫ = 2
@G

@BIJ
@µ�

I@⌫�
J
� ⌘µ⌫G . (2.12)

1We will drop the I index on �?I from here on to avoid clutter and confusion with indices.
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(On shell)
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3-D  Solid Need to impose boundedness of target space

By changing the external pressure, or tension, we change the value of ↵. Releasing the external

pressure and letting go of the boundaries of the solid, we let ↵ relax to a particular value,

determined by G, as we now show.

Notice that, for a solid, the boundary can move and deform in physical space, but is fixed in

comoving space. So, we can parametrize the boundary of our solid through a constraint equation

of the form F (�) = 0, and the interior through F (�) > 0, for some function F . For instance, for

a spherical solid, we can choose F to be R2
� �I�I , where R is the comoving radius of the solid.

Now, how are we to alter the solid action (2.1) to take into account that the solid has a fixed

boundary in comoving space and that the boundary is free to move in physical space? The most

convenient approach seems to be to write the action as [13]
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e.g. F (�I) = R2 � �I�I

Implement at the level of the action

By changing the external pressure, or tension, we change the value of ↵. Releasing the external

pressure and letting go of the boundaries of the solid, we let ↵ relax to a particular value,

determined by G, as we now show.

Notice that, for a solid, the boundary can move and deform in physical space, but is fixed in
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of the form F (�) = 0, and the interior through F (�) > 0, for some function F . For instance, for

a spherical solid, we can choose F to be R2
� �I�I , where R is the comoving radius of the solid.
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convenient approach seems to be to write the action as [13]
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and leave the variational principle untouched: the ✓-function ensures that only the interior of the

solid contributes to the action, and the fact that no constraint on the field variations is imposed at

the boundary of the solid ensures that the fields are free to vary there, that is, that the boundary

is free to move.
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Given that T̃µ⌫ in the ground state (2.5) is homogenous and that in moving around a closed

boundary we let nI(�?) explore all possible spatial directions, we then have, in particular,

T̃ ij = 0 everywhere. (2.11)

This is just the relaxation of the tension of the solid when the boundaries are free to adjust.

Notice that for a configuration like (2.5), the stress-energy tensor depends on ↵. So, eq. (2.11)

can be obeyed only if there is a value of ↵ for which a certain, G-dependent condition is obeyed.

2
We will drop the I index on �?I

from here on to avoid clutter and confusion with indices.

– 4 –

Equations of motion:
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Notice that, for a solid, the boundary can move and deform in physical space, but is fixed in

comoving space. So, we can parametrize the boundary of our solid through a constraint equation

of the form F (�) = 0, and the interior through F (�) > 0, for some function F . For instance, for

a spherical solid, we can choose F to be R2
� �I�I , where R is the comoving radius of the solid.

Now, how are we to alter the solid action (2.1) to take into account that the solid has a fixed

boundary in comoving space and that the boundary is free to move in physical space? The most

convenient approach seems to be to write the action as [13]

S =

Z
✓
�
F (�)

�
G(BIJ)d4x , (2.6)

and leave the variational principle untouched: the ✓-function ensures that only the interior of the

solid contributes to the action, and the fact that no constraint on the field variations is imposed at

the boundary of the solid ensures that the fields are free to vary there, that is, that the boundary

is free to move.

One can derive the equations of motion just by varying the action above; however, for our

purposes, it is more convenient to phrase them in terms of stress-energy conservation. The

stress-energy tensor reads

Tµ⌫ = ✓
�
F (�)

�
T̃µ⌫ , (2.7)

where T̃µ⌫ = �
2p
g
@(

p
g G)

@gµ⌫ and we have used the fact that F (�) is independent of the space-time

metric. Stress-energy conservation for a static configuration then implies

@iT
i⌫ = �

�
F (�)

�
@iF (�) T̃ i⌫ + ✓

�
F (�)

�
@iT̃

i⌫ = 0 . (2.8)

The coe�cient of the ✓-function gives us the usual bulk eom’s for a static system,

@iT̃
i⌫ = 0 . (2.9)

In addition, however, we have boundary equations of motion coming from the �-function. Con-

sidering a ground state of the form (2.5) and using the fact that ni(�?) / @iF (�)
��
�? is the normal

to the boundary at the boundary point �I = �I? 2 we have

ni(�
?) T̃ i⌫(�?) = 0 . (2.10)

Given that T̃µ⌫ in the ground state (2.5) is homogenous and that in moving around a closed

boundary we let nI(�?) explore all possible spatial directions, we then have, in particular,

T̃ ij = 0 everywhere. (2.11)

This is just the relaxation of the tension of the solid when the boundaries are free to adjust.

Notice that for a configuration like (2.5), the stress-energy tensor depends on ↵. So, eq. (2.11)

can be obeyed only if there is a value of ↵ for which a certain, G-dependent condition is obeyed.

2
We will drop the I index on �?I

from here on to avoid clutter and confusion with indices.
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Static 
Configuration:



By changing the external pressure, or tension, we change the value of ↵. Releasing the external

pressure and letting go of the boundaries of the solid, we let ↵ relax to a particular value,

determined by G, as we now show.

Notice that, for a solid, the boundary can move and deform in physical space, but is fixed in

comoving space. So, we can parametrize the boundary of our solid through a constraint equation

of the form F (�) = 0, and the interior through F (�) > 0, for some function F . For instance, for

a spherical solid, we can choose F to be R2
� �I�I , where R is the comoving radius of the solid.

Now, how are we to alter the solid action (2.1) to take into account that the solid has a fixed

boundary in comoving space and that the boundary is free to move in physical space? The most

convenient approach seems to be to write the action as [13]

S =

Z
✓
�
F (�)

�
G(BIJ)d4x , (2.6)

and leave the variational principle untouched: the ✓-function ensures that only the interior of the

solid contributes to the action, and the fact that no constraint on the field variations is imposed at

the boundary of the solid ensures that the fields are free to vary there, that is, that the boundary

is free to move.

One can derive the equations of motion just by varying the action above; however, for our

purposes, it is more convenient to phrase them in terms of stress-energy conservation. The

stress-energy tensor reads

Tµ⌫ = ✓
�
F (�)

�
T̃µ⌫ , (2.7)

where T̃µ⌫ = �
2p
g
@(

p
g G)

@gµ⌫ and we have used the fact that F (�) is independent of the space-time

metric. Stress-energy conservation for a static configuration then implies

@iT
i⌫ = �

�
F (�)

�
@iF (�) T̃ i⌫ + ✓

�
F (�)

�
@iT̃

i⌫ = 0 . (2.8)

The coe�cient of the ✓-function gives us the usual bulk eom’s for a static system,

@iT̃
i⌫ = 0 . (2.9)

In addition, however, we have boundary equations of motion coming from the �-function. Con-

sidering a ground state of the form (2.5) and using the fact that ni(�?) / @iF (�)
��
�? is the normal

to the boundary at the boundary point �I = �I? 2 we have

ni(�
?) T̃ i⌫(�?) = 0 . (2.10)

Given that T̃µ⌫ in the ground state (2.5) is homogenous and that in moving around a closed

boundary we let nI(�?) explore all possible spatial directions, we then have, in particular,

T̃ ij = 0 everywhere. (2.11)

This is just the relaxation of the tension of the solid when the boundaries are free to adjust.

Notice that for a configuration like (2.5), the stress-energy tensor depends on ↵. So, eq. (2.11)

can be obeyed only if there is a value of ↵ for which a certain, G-dependent condition is obeyed.

2
We will drop the I index on �?I

from here on to avoid clutter and confusion with indices.
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�?
(Boundary value)

Homogeneity of 
ground state:

By changing the external pressure, or tension, we change the value of ↵. Releasing the external

pressure and letting go of the boundaries of the solid, we let ↵ relax to a particular value,

determined by G, as we now show.

Notice that, for a solid, the boundary can move and deform in physical space, but is fixed in

comoving space. So, we can parametrize the boundary of our solid through a constraint equation

of the form F (�) = 0, and the interior through F (�) > 0, for some function F . For instance, for

a spherical solid, we can choose F to be R2
� �I�I , where R is the comoving radius of the solid.

Now, how are we to alter the solid action (2.1) to take into account that the solid has a fixed

boundary in comoving space and that the boundary is free to move in physical space? The most

convenient approach seems to be to write the action as [13]

S =

Z
✓
�
F (�)

�
G(BIJ)d4x , (2.6)

and leave the variational principle untouched: the ✓-function ensures that only the interior of the

solid contributes to the action, and the fact that no constraint on the field variations is imposed at

the boundary of the solid ensures that the fields are free to vary there, that is, that the boundary

is free to move.

One can derive the equations of motion just by varying the action above; however, for our

purposes, it is more convenient to phrase them in terms of stress-energy conservation. The

stress-energy tensor reads

Tµ⌫ = ✓
�
F (�)

�
T̃µ⌫ , (2.7)

where T̃µ⌫ = �
2p
g
@(

p
g G)

@gµ⌫ and we have used the fact that F (�) is independent of the space-time

metric. Stress-energy conservation for a static configuration then implies

@iT
i⌫ = �

�
F (�)

�
@iF (�) T̃ i⌫ + ✓

�
F (�)

�
@iT̃

i⌫ = 0 . (2.8)

The coe�cient of the ✓-function gives us the usual bulk eom’s for a static system,

@iT̃
i⌫ = 0 . (2.9)

In addition, however, we have boundary equations of motion coming from the �-function. Con-

sidering a ground state of the form (2.5) and using the fact that ni(�?) / @iF (�)
��
�? is the normal

to the boundary at the boundary point �I = �I? 2 we have

ni(�
?) T̃ i⌫(�?) = 0 . (2.10)

Given that T̃µ⌫ in the ground state (2.5) is homogenous and that in moving around a closed

boundary we let nI(�?) explore all possible spatial directions, we then have, in particular,

T̃ ij = 0 everywhere. (2.11)

This is just the relaxation of the tension of the solid when the boundaries are free to adjust.

Notice that for a configuration like (2.5), the stress-energy tensor depends on ↵. So, eq. (2.11)

can be obeyed only if there is a value of ↵ for which a certain, G-dependent condition is obeyed.

2
We will drop the I index on �?I

from here on to avoid clutter and confusion with indices.
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Generates a constraint on Wilson 
coefficients of the action

Most Striking for the case of 
the string

which can be done directly at the level of the action. After we do so, we are left with two

transverse degrees of freedom, X2 and X3, and a longitudinal one, �. Generalizing our analysis

of the 3D solid, we want to consider the ground-state solution

X2,3 = 0, � = ↵x, (3.4)

and small oscillations about it. As before, ↵ measures the compression/dilation level of the bar

and, if we leave at least one end free, the bar will relax to a particular value of ↵, corresponding

to zero tension or pressure.

To see this, we can look for instance at the � equation of motion:

�(�� �?)
p
g
⇥
G(B)� 2BG0(B)

⇤
� 2✓(�� �?) @↵

⇥p
gG0(B)g↵�@��

⇤
= 0 . (3.5)

Any configuration of the form (3.4) obeys the bulk part of this equation of motion, but the

boundary part requires

G(B)� 2BG0(B) = 0 , B = ↵2 , (3.6)

which is the one-dimensional analog of (2.13). Notice that this does correspond to a zero ten-

sion/pressure condition, since the world-sheet stress-energy tensor is

T̃↵� = �2G0(B) @↵�@��+ g↵� G(B) , (3.7)

and so, on a configuration like (3.4), we have that the tension is

T = �T̃11 = 2BG0(B)�G(B) , (3.8)

which vanishes when eq. (3.6) is obeyed.

The vanishing of the tension in the ground state now directly implies the vanishing of a

relevant Wilson coe�cient in the excitations’ action. This can be seen by expanding the action

(3.2) around the ground state and using the tension relaxation condition (3.6); but, in fact, there

is a deep structural reason behind it, which makes it manifest: the action (3.2) depends on the

transverse embedding fields ~' = (X2, X3) only through the induced metric g↵� � @↵~' · @� ~',

which is quadratic in them. Thus, to quadratic order in these fields, it is enough to consider the

expansion of the bar action to first order in induced-metric perturbations, which, by definition,

yields the world-sheet stress energy tensor:

Sbar �
1

2

Z
d4x T̃↵� @↵~' · @� ~' . (3.9)

This directly implies that whenever the tension vanishes, so does the coe�cient of ~' 02, thus

explaining the apparent fine tuning we described at the beginning of this section. This connection

is enforced by symmetry, because it follows from the symmetry structure of the action. What is

not a consequence of symmetry is the vanishing of the tension in the first place, which follows

from leaving the boundary conditions free.

If one goes beyond the lowest-derivative action (3.2) and introduces higher-derivative terms,

involving, for instance, the world-sheet extrinsic and intrinsic curvatures weighed by appropriate

powers of the bar’s thickness, one finds all possible higher-derivative corrections to the excitations’

action, such as the ~' 002 term in (3.1). However, none of this will a↵ect eq. (3.9) and the associated

connection between vanishing tension and vanishing coe�cient for ~' 02, since eq. (3.9) follows

directly from the definitions of the induced metric and of the world-sheet stress-energy tensor.
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From the points of view of RG flow this is quite remarkable

Consider dimensional reduction: IRRELEVENT
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IN FREE FIELD THEORY

Highly non-trivial RG flow as a consequence of boundedness of target 
space



Can see it from explicit calculation

and the boundary constraints as

@2⇡1 = �
c

b
@1⇡2 (B.8)

@2⇡2 = �
a

a+ b+ c
@1⇡1 . (B.9)

Putting everything together, and freely integrating by parts along x and t, we finally find

the e↵ective action for our x- and t-dependent fields:

Se↵ '
�

2

Z
dxdt

h
~̇⇡ 2

i �

⇣b2

c
� c

⌘
(@1⇡2)

2
� (@1⇡1)

2
⇣
a+ b+ c�

a2

a+ b+ c

⌘i
. (B.10)

Now we can use the specific values (B.2) for a, b, and c. In particular b and c are equal, and

this makes the propagation speed of the transverse mode ⇡2 vanish at this order in derivatives!

This is of course what we were expecting, given the analysis of sect. 3, but it provides a quite

nontrivial cross-check of our formalism and results.

Also interesting is the fact that the longitudinal mode, ⇡1, has a lower propagation speed

than it had in the bulk. We can summarize the RG flow of the speeds as:

c2T ! 0 , c2L ! c̄2L ⌘ 4c2T
�
1� c2T /c

2
L

�
. (B.11)

As an independent check, we computed the phonons’ two-point function on the infinitely long

strip of thickness �. For simplicity, we restricted to t-indepedent and y-dependent sources, so the

two-point function we are talking about actually is

Gij(x) ⌘

Z
dtdydy0hT⇡i(x, y, t)⇡j(0, y0, 0)i , (B.12)

where the y and y0 integrals extend between ��/2 and +�/2. After a tedious Green’s function

computation, aided by Mathematica, we find

G̃12 = G̃21 = 0 (B.13)

G̃11(k) = �i
�

c2L k2


1 +

(c2L � 2c2T )
2

(c2L � c2T )c
2
T

f+(k�)

�
(B.14)

G̃22(k) = �i
�

c2T k2


1 +

c2L
c2L � c2T

f�(k�)

�
, (B.15)

where

f±(⇠) ⌘
2 sinh2(⇠/2)�
sinh ⇠ ± ⇠

�
⇠
. (B.16)

In the deep UV, we recover the correct bulk behavior of the static two-point functions:

G̃11(k � 1/�) ' �i
�

c2L k2
, G̃22(k � 1/�) ' �i

�

c2T k2
. (B.17)

In the deep IR however, things change dramatically, especially for ⇡2:

G̃11(k ⌧ 1/�) ' �i
�

c̄2L k2
, G̃22(k ⌧ 1/�) ' �i

�

c̄2L/c
2
L

1

�2k4
, (B.18)

where the infrared longitudinal speed c̄2L is the same as defined above. We thus see that in moving

from the UV to the IR, the transverse propagator changes from ⇠ 1/k2 to ⇠ 1/k4, in agreement

with all that we have discussed above.
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Full Theory (2+1) Propagator:

B The bar as an EFT puzzle: dimensional reduction

Consider a relaxed rectangular solid. As discussed above, it will feature a gradient energy ⇠

(@⇡)2 for all of its perturbations ~⇡. Now consider shrinking some of the sides to form a rod

(or bar, or beam—we will use these characterizations interchangebly). As proved in sect. 3, in

the dimensionally reduced theory the transverse oscillations ~' do not have a standard gradient

energy, but only a higher-derivative one that scales as (@2~')2.

From the viewpoint of EFT, this is rather puzzling since typically dimensional reduction

does not change the low-energy dispersion relation in this way: one might get a KK mass term

in addition to the original gradient energy, which can be thought of as a relevant deformation

of the original theory, but not a replacement of the original gradient energy with an apparently

irrelevant higher-derivative one. In this sense, this theory has a very unusual renormalization

group trajectory. The problem does not lie with the reduced theory but with the full theory: the

reduced theory is only valid for length scales much longer than the thickness of the rod, but the

full theory must be treated with care at long distances.

We can gain some intuition by understanding how the energetics change as we match from

the full theory to the IR one. Physically, the vanishing of the standard gradient energy for a

bar is a consequence of leaving open boundary conditions and an asymmetry in the geometry, as

discussed in [9], for example . However, given our setup and results, we can make this more clear

by explicitly performing the dimensional reduction. For simplicity, we consider a rectangular

solid in 2+1 dimensions. We will call L the long side (along x) and � the short one (along y).

We are interested in the case L � �. We can even take the infinite L limit, as long as we let the

solid relax to zero tension. The quadratic action thus is eq. (A.7), with ✓(F ) nonzero only within

our L-by-� rectangle, which we call R.

In fact, it is instructive to keep the relative coe�cients of the quadratic action generic,

S =
1

2

Z

R
dxdydt

⇣
~̇⇡ 2

� a
�
~r · ~⇡

�2
� b(@i⇡j)(@j⇡i)� c(@i⇡j)(@i⇡j)

⌘
, (B.1)

and refrain from using their actual values,

a = c2L � 2c2T , b = c = c2T , (B.2)

until the end of the computation. Notice that, given that cL and cT are generic, the only real

constraint coming from the relaxation condition is b = c. Notice also that we are ignoring the

overall normalization of the action, which is irrelevant for classical questions.

Now we come to the interesting twist compared to more standard dimensional reductions:

the fact that we are leaving the boundary conditions open, implies that we cannot perform a

mode expansion such as a KK decomposition and retain only the zero modes. In fact, the zero

modes do not correspond to allowed solutions.

To see this, we can vary the action without imposing that the variations vanish at the

boundary. The variation of the action then has a bulk term and a boundary term, and these

must separately vanish. The boundary term is

�

I

@R
n̂i �⇡j

h
a�ij ~r · ~⇡ + b @j⇡i + c @i⇡j

i
. (B.3)
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and the boundary constraints as

@2⇡1 = �
c

b
@1⇡2 (B.8)

@2⇡2 = �
a

a+ b+ c
@1⇡1 . (B.9)

Putting everything together, and freely integrating by parts along x and t, we finally find

the e↵ective action for our x- and t-dependent fields:

Se↵ '
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2

Z
dxdt

h
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i �

⇣b2

c
� c

⌘
(@1⇡2)

2
� (@1⇡1)

2
⇣
a+ b+ c�

a2

a+ b+ c

⌘i
. (B.10)

Now we can use the specific values (B.2) for a, b, and c. In particular b and c are equal, and

this makes the propagation speed of the transverse mode ⇡2 vanish at this order in derivatives!

This is of course what we were expecting, given the analysis of sect. 3, but it provides a quite

nontrivial cross-check of our formalism and results.

Also interesting is the fact that the longitudinal mode, ⇡1, has a lower propagation speed

than it had in the bulk. We can summarize the RG flow of the speeds as:

c2T ! 0 , c2L ! c̄2L ⌘ 4c2T
�
1� c2T /c

2
L

�
. (B.11)

As an independent check, we computed the phonons’ two-point function on the infinitely long

strip of thickness �. For simplicity, we restricted to t-indepedent and y-dependent sources, so the

two-point function we are talking about actually is

Gij(x) ⌘

Z
dtdydy0hT⇡i(x, y, t)⇡j(0, y0, 0)i , (B.12)

where the y and y0 integrals extend between ��/2 and +�/2. After a tedious Green’s function

computation, aided by Mathematica, we find

G̃12 = G̃21 = 0 (B.13)

G̃11(k) = �i
�

c2L k2


1 +

(c2L � 2c2T )
2

(c2L � c2T )c
2
T

f+(k�)

�
(B.14)

G̃22(k) = �i
�

c2T k2


1 +

c2L
c2L � c2T

f�(k�)

�
, (B.15)

where

f±(⇠) ⌘
2 sinh2(⇠/2)�
sinh ⇠ ± ⇠

�
⇠
. (B.16)

In the deep UV, we recover the correct bulk behavior of the static two-point functions:
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In the deep IR however, things change dramatically, especially for ⇡2:

G̃11(k ⌧ 1/�) ' �i
�

c̄2L k2
, G̃22(k ⌧ 1/�) ' �i

�

c̄2L/c
2
L

1

�2k4
, (B.18)

where the infrared longitudinal speed c̄2L is the same as defined above. We thus see that in moving

from the UV to the IR, the transverse propagator changes from ⇠ 1/k2 to ⇠ 1/k4, in agreement

with all that we have discussed above.

– 18 –

<latexit sha1_base64="G8bqSPj9q+UC2B8GxtQyPeKxTLo=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmZnO8mY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaC9RklxkrNboTckF654lW9Gdxl4uekAjnqvfJXN5I0jVEYyonWHd9LTJARZRjlOCl1U40JoSMywI6lgsSog2x27cQ9sUrk9qWyJYw7U39PZCTWehyHtjMmZqgXvan4n9dJTf86yJhIUoOCzhf1U+4a6U5fdyOmkBo+toRQxeytLh0SRaixAZVsCP7iy8ukeVb1L6sX9+eV2k0eRxGO4BhOwYcrqMEd1KEBFB7hGV7hzZHOi/PufMxbC04+cwh/4Hz+AJTMjyY=</latexit>

� Thickness

and the boundary constraints as

@2⇡1 = �
c

b
@1⇡2 (B.8)

@2⇡2 = �
a

a+ b+ c
@1⇡1 . (B.9)

Putting everything together, and freely integrating by parts along x and t, we finally find
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Now we can use the specific values (B.2) for a, b, and c. In particular b and c are equal, and

this makes the propagation speed of the transverse mode ⇡2 vanish at this order in derivatives!

This is of course what we were expecting, given the analysis of sect. 3, but it provides a quite

nontrivial cross-check of our formalism and results.

Also interesting is the fact that the longitudinal mode, ⇡1, has a lower propagation speed

than it had in the bulk. We can summarize the RG flow of the speeds as:
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As an independent check, we computed the phonons’ two-point function on the infinitely long
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two-point function we are talking about actually is
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Note that radiative stability is a consequence of the fact 
that we are working at the level of the effective action. 

Calculating at any given order simply shift the boundary 

For this to be effective it was crucial that the action enjoy 
a shift symmetry, so radiative corrections preserver the 

local structure of the effective action
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This mechanism does not seem that useful for model building since it 
causes vanishing coefficients as opposed to hierarchally small coefficients

However, we have been too cavalier!!!!

When we opposed the boundary we 
broke the shift symmetry:
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L ! L+ �(F (�))LB + .... Surface physics:

4 Surface Tension E↵ects

Let us go back to the 3D case. The alert reader will have no doubt recognized that our analysis

has not been systematically consistent, as the existence of the bounding ✓-function breaks the

shift invariance acting on �I . While bulk shift symmetry is preserved, there is nothing that stops

us from writing down terms that are proportional to delta functions, and derivatives thereof,

localized at the boundary of our solid. Such terms will be responsible for a surface tension, and

we must consider their e↵ect on our analysis and conclusions.

By appealing to some somewhat implicit geometric principle or intuition, surface tension

in solids and liquids is usually modeled via a higher-dimensional, non-relativistic version of the

Nambu-Goto action (see e.g. [17]). However, we believe that the most general symmetry-based

characterization of surface tension and other surface terms will be more complicated than that.

For instance, the example we studied in the previous section shows explicitly that, in the case of

material submanifolds, there is more to physics than just the geometry of the submanifold: the

field �, which has nothing to do with the embedding coordinates and thus with the geometry of

the bar, is the one responsible for letting the tension of a bar relax to zero; in contrast, for the

Nambu-Goto action the tension is a constant parameter.

We leave developing a general framework and understanding the systematics of this to future

work. For the time being, we just want to get a sense of the order of magnitude we can generically

expect for surface tension-like e↵ects. To this end, let’s trade the theta function cut-o↵ for a

smooth function ✓` with a finite thickness (membrane depth) `, say of order of the inter-atomic

spacing, i.e. the UV cut-o↵. For instance, for a spherical solid of comoving radius R we could

choose

✓`
�
F (�)

�
=

1

2

⇣
1 + tanh

R� |�I
|

`

⌘
=

1

1 + e�2(R�|�I |)/` . (4.1)

Now, the derivative expansion can be thought of as an expansion in the UV cuto↵, ` in our

case. Unfortunately, the function above is non-analytic in ` at ` = 0. In fact, any `-dependent

smooth function of � that reduces to a ✓-function for ` ! 0 must be non-analytic in `, since the

✓-function is trivial everywhere apart from its “jump”—|�I
| = R in the example above—where

it is singular. We thus have to interpret the ` ! 0 limit and the associated expansion in powers

of ` in a distributional sense.

In general, for a one-dimensional step-function of thickness `, we can expect an expansion of

the form

✓`(x) = ✓(x) + C1 ` �(x) +
1

2!
C2 `

2�0(x) + . . . , (4.2)

where, barring accidents or symmetry reasons, the Cn coe�cients are dimensionless numbers of

order one, as shown in Appendix C. It so happens that, owing to the tanh’s being odd about its

midpoint, for the explicit ✓` function above all Cn’s with odd n vanish, but in more general cases

they won’t.

Let’s then see what this implies in our case. For simplicity, let’s stop at first order in `. We

expect, for example,

✓`
�
F (�)

�
= ✓

�
F (�)

�
+ C1 ` �

�
F (�)

�
|@F |+ . . . , C1 = O(1) , (4.3)
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In our case:

Ensures independence of F

where the extra factor of |@F | ⌘
p
@µF @µF ensures that the result is independent of the choice

of function F we choose to parameterize a fixed surface. Notice that our choice for the norm of

@F is equivalent to using BIJ = @µ�I@µ�J as the inverse metric of comoving space. Consistently

with the symmetries, we could have used, instead, �IJ , or a linear combination of �IJ and BIJ .

These are inequivalent choices, which correspond to di↵erent regularizations of the ✓ function.

So, regularizing the ✓-function in (2.6) by giving it a finite thickness ` and allowing for a more

general dependence on the fields close to the boundary, is equivalent to adding the boundary action

Sbdy = `

Z
d4x �(F (�)) |@F | Lbdy

�
BIJ ,�I

�
, (4.4)

where we reabsorbed the C1 coe�cient of eq. (4.3) into ` and for now the boundary Lagrangian

density Lbdy is undetermined. We emphasize once again that we do not know yet how the

symmetries restrict the functional form of Lbdy. The important aspects of this boundary action

for us, however, are the explicit ` in front of it and the fact that, on physical and dimensional

grounds, we can expect Lbdy to be of the same order of magnitude as the bulk Lagrangian density

G(BIJ) in (2.6), which, on a static configuration, is directly related to the energy density ⇢ = T 00

(see eq. (2.12)):

Lbdy ⇠ G = �⇢ . (4.5)

In fact, for non-relativistic solids, apart from the rest-mass contribution to ⇢, all entries of the

stress-energy tensor are expected to be at most of order ⇢c2s, where cs is the speed of sound, which

can be much smaller than one. This implies that the above estimate for Lbdy is, in general, an

upper bound.

Then, the static conservation equation (2.8) will be corrected by new boundary contributions,

implying a relaxation condition like (2.10) but now with a nonzero r.h.s. However, this will be of

order `⇢ times the dimensionally needed power of the typical length scale R associated with the

boundary of our solid, such as its radius of curvature. We thus expect the ground state to have

a net tension which scales like

T̃ij ⇠
`

R
⇢ , (4.6)

which is hierarchically smaller than ⇢ as long as our solid is much bigger than the UV cuto↵ `.

For example, if we take as a crude (but standard) model for the boundary terms (4.4) a

constant energy density,

Lbdy

�
BIJ ,�I

�
= const ⌘ �⇤ , (4.7)

corresponding to a constant surface tension � = ⇤ `, we have a total stress-energy tensor of the

form

Tµ⌫ = ✓
�
F (�)

�
T̃µ⌫ � `⇤ �(F (�))|@F |hµ⌫ , (4.8)

where, as before, T̃µ⌫ is the bulk stress-energy tensor, and hµ⌫ is the induced metric on the

boundary in physical spacetime:

hµ⌫ = ⌘µ⌫ � nµn⌫ , nµ ⌘ �@µF/|@F | . (4.9)

The static conservation equation (2.8) then gets modified to

@iT
i⌫ = �

�
F (�)

�
|@F |


� ni T̃

i⌫
� `⇤

1

|@F |
@i
�
|@F |hi⌫

��
+ ✓

�
F (�)

�
@iT̃

i⌫ = 0 . (4.10)
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Lbdy ⇠ ⇢

where the extra factor of |@F | ⌘
p
@µF @µF ensures that the result is independent of the choice

of function F we choose to parameterize a fixed surface. Notice that our choice for the norm of

@F is equivalent to using BIJ = @µ�I@µ�J as the inverse metric of comoving space. Consistently

with the symmetries, we could have used, instead, �IJ , or a linear combination of �IJ and BIJ .

These are inequivalent choices, which correspond to di↵erent regularizations of the ✓ function.

So, regularizing the ✓-function in (2.6) by giving it a finite thickness ` and allowing for a more

general dependence on the fields close to the boundary, is equivalent to adding the boundary action

Sbdy = `

Z
d4x �(F (�)) |@F | Lbdy

�
BIJ ,�I

�
, (4.4)

where we reabsorbed the C1 coe�cient of eq. (4.3) into ` and for now the boundary Lagrangian

density Lbdy is undetermined. We emphasize once again that we do not know yet how the

symmetries restrict the functional form of Lbdy. The important aspects of this boundary action

for us, however, are the explicit ` in front of it and the fact that, on physical and dimensional

grounds, we can expect Lbdy to be of the same order of magnitude as the bulk Lagrangian density

G(BIJ) in (2.6), which, on a static configuration, is directly related to the energy density ⇢ = T 00

(see eq. (2.12)):

Lbdy ⇠ G = �⇢ . (4.5)

In fact, for non-relativistic solids, apart from the rest-mass contribution to ⇢, all entries of the

stress-energy tensor are expected to be at most of order ⇢c2s, where cs is the speed of sound, which

can be much smaller than one. This implies that the above estimate for Lbdy is, in general, an

upper bound.

Then, the static conservation equation (2.8) will be corrected by new boundary contributions,

implying a relaxation condition like (2.10) but now with a nonzero r.h.s. However, this will be of

order `⇢ times the dimensionally needed power of the typical length scale R associated with the

boundary of our solid, such as its radius of curvature. We thus expect the ground state to have

a net tension which scales like

T̃ij ⇠
`

R
⇢ , (4.6)

which is hierarchically smaller than ⇢ as long as our solid is much bigger than the UV cuto↵ `.

For example, if we take as a crude (but standard) model for the boundary terms (4.4) a

constant energy density,

Lbdy

�
BIJ ,�I

�
= const ⌘ �⇤ , (4.7)

corresponding to a constant surface tension � = ⇤ `, we have a total stress-energy tensor of the

form

Tµ⌫ = ✓
�
F (�)

�
T̃µ⌫ � `⇤ �(F (�))|@F |hµ⌫ , (4.8)

where, as before, T̃µ⌫ is the bulk stress-energy tensor, and hµ⌫ is the induced metric on the

boundary in physical spacetime:

hµ⌫ = ⌘µ⌫ � nµn⌫ , nµ ⌘ �@µF/|@F | . (4.9)

The static conservation equation (2.8) then gets modified to
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Radius of curvature
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More Concretely: 

where the extra factor of |@F | ⌘
p
@µF @µF ensures that the result is independent of the choice

of function F we choose to parameterize a fixed surface. Notice that our choice for the norm of

@F is equivalent to using BIJ = @µ�I@µ�J as the inverse metric of comoving space. Consistently

with the symmetries, we could have used, instead, �IJ , or a linear combination of �IJ and BIJ .

These are inequivalent choices, which correspond to di↵erent regularizations of the ✓ function.

So, regularizing the ✓-function in (2.6) by giving it a finite thickness ` and allowing for a more

general dependence on the fields close to the boundary, is equivalent to adding the boundary action

Sbdy = `

Z
d4x �(F (�)) |@F | Lbdy

�
BIJ ,�I

�
, (4.4)

where we reabsorbed the C1 coe�cient of eq. (4.3) into ` and for now the boundary Lagrangian

density Lbdy is undetermined. We emphasize once again that we do not know yet how the

symmetries restrict the functional form of Lbdy. The important aspects of this boundary action

for us, however, are the explicit ` in front of it and the fact that, on physical and dimensional

grounds, we can expect Lbdy to be of the same order of magnitude as the bulk Lagrangian density

G(BIJ) in (2.6), which, on a static configuration, is directly related to the energy density ⇢ = T 00

(see eq. (2.12)):

Lbdy ⇠ G = �⇢ . (4.5)

In fact, for non-relativistic solids, apart from the rest-mass contribution to ⇢, all entries of the

stress-energy tensor are expected to be at most of order ⇢c2s, where cs is the speed of sound, which

can be much smaller than one. This implies that the above estimate for Lbdy is, in general, an

upper bound.

Then, the static conservation equation (2.8) will be corrected by new boundary contributions,

implying a relaxation condition like (2.10) but now with a nonzero r.h.s. However, this will be of

order `⇢ times the dimensionally needed power of the typical length scale R associated with the

boundary of our solid, such as its radius of curvature. We thus expect the ground state to have

a net tension which scales like

T̃ij ⇠
`

R
⇢ , (4.6)

which is hierarchically smaller than ⇢ as long as our solid is much bigger than the UV cuto↵ `.

For example, if we take as a crude (but standard) model for the boundary terms (4.4) a

constant energy density,

Lbdy

�
BIJ ,�I

�
= const ⌘ �⇤ , (4.7)

corresponding to a constant surface tension � = ⇤ `, we have a total stress-energy tensor of the

form

Tµ⌫ = ✓
�
F (�)

�
T̃µ⌫ � `⇤ �(F (�))|@F |hµ⌫ , (4.8)

where, as before, T̃µ⌫ is the bulk stress-energy tensor, and hµ⌫ is the induced metric on the

boundary in physical spacetime:

hµ⌫ = ⌘µ⌫ � nµn⌫ , nµ ⌘ �@µF/|@F | . (4.9)

The static conservation equation (2.8) then gets modified to
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where the extra factor of |@F | ⌘
p
@µF @µF ensures that the result is independent of the choice

of function F we choose to parameterize a fixed surface. Notice that our choice for the norm of

@F is equivalent to using BIJ = @µ�I@µ�J as the inverse metric of comoving space. Consistently

with the symmetries, we could have used, instead, �IJ , or a linear combination of �IJ and BIJ .

These are inequivalent choices, which correspond to di↵erent regularizations of the ✓ function.

So, regularizing the ✓-function in (2.6) by giving it a finite thickness ` and allowing for a more

general dependence on the fields close to the boundary, is equivalent to adding the boundary action

Sbdy = `

Z
d4x �(F (�)) |@F | Lbdy

�
BIJ ,�I

�
, (4.4)

where we reabsorbed the C1 coe�cient of eq. (4.3) into ` and for now the boundary Lagrangian

density Lbdy is undetermined. We emphasize once again that we do not know yet how the

symmetries restrict the functional form of Lbdy. The important aspects of this boundary action

for us, however, are the explicit ` in front of it and the fact that, on physical and dimensional

grounds, we can expect Lbdy to be of the same order of magnitude as the bulk Lagrangian density

G(BIJ) in (2.6), which, on a static configuration, is directly related to the energy density ⇢ = T 00

(see eq. (2.12)):

Lbdy ⇠ G = �⇢ . (4.5)

In fact, for non-relativistic solids, apart from the rest-mass contribution to ⇢, all entries of the

stress-energy tensor are expected to be at most of order ⇢c2s, where cs is the speed of sound, which

can be much smaller than one. This implies that the above estimate for Lbdy is, in general, an

upper bound.

Then, the static conservation equation (2.8) will be corrected by new boundary contributions,

implying a relaxation condition like (2.10) but now with a nonzero r.h.s. However, this will be of

order `⇢ times the dimensionally needed power of the typical length scale R associated with the

boundary of our solid, such as its radius of curvature. We thus expect the ground state to have

a net tension which scales like

T̃ij ⇠
`

R
⇢ , (4.6)

which is hierarchically smaller than ⇢ as long as our solid is much bigger than the UV cuto↵ `.

For example, if we take as a crude (but standard) model for the boundary terms (4.4) a

constant energy density,

Lbdy

�
BIJ ,�I

�
= const ⌘ �⇤ , (4.7)

corresponding to a constant surface tension � = ⇤ `, we have a total stress-energy tensor of the

form

Tµ⌫ = ✓
�
F (�)

�
T̃µ⌫ � `⇤ �(F (�))|@F |hµ⌫ , (4.8)

where, as before, T̃µ⌫ is the bulk stress-energy tensor, and hµ⌫ is the induced metric on the

boundary in physical spacetime:

hµ⌫ = ⌘µ⌫ � nµn⌫ , nµ ⌘ �@µF/|@F | . (4.9)

The static conservation equation (2.8) then gets modified to
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Suppose:

where the extra factor of |@F | ⌘
p
@µF @µF ensures that the result is independent of the choice

of function F we choose to parameterize a fixed surface. Notice that our choice for the norm of

@F is equivalent to using BIJ = @µ�I@µ�J as the inverse metric of comoving space. Consistently

with the symmetries, we could have used, instead, �IJ , or a linear combination of �IJ and BIJ .

These are inequivalent choices, which correspond to di↵erent regularizations of the ✓ function.

So, regularizing the ✓-function in (2.6) by giving it a finite thickness ` and allowing for a more

general dependence on the fields close to the boundary, is equivalent to adding the boundary action

Sbdy = `

Z
d4x �(F (�)) |@F | Lbdy

�
BIJ ,�I

�
, (4.4)

where we reabsorbed the C1 coe�cient of eq. (4.3) into ` and for now the boundary Lagrangian

density Lbdy is undetermined. We emphasize once again that we do not know yet how the

symmetries restrict the functional form of Lbdy. The important aspects of this boundary action

for us, however, are the explicit ` in front of it and the fact that, on physical and dimensional

grounds, we can expect Lbdy to be of the same order of magnitude as the bulk Lagrangian density

G(BIJ) in (2.6), which, on a static configuration, is directly related to the energy density ⇢ = T 00

(see eq. (2.12)):

Lbdy ⇠ G = �⇢ . (4.5)

In fact, for non-relativistic solids, apart from the rest-mass contribution to ⇢, all entries of the

stress-energy tensor are expected to be at most of order ⇢c2s, where cs is the speed of sound, which

can be much smaller than one. This implies that the above estimate for Lbdy is, in general, an

upper bound.

Then, the static conservation equation (2.8) will be corrected by new boundary contributions,

implying a relaxation condition like (2.10) but now with a nonzero r.h.s. However, this will be of

order `⇢ times the dimensionally needed power of the typical length scale R associated with the

boundary of our solid, such as its radius of curvature. We thus expect the ground state to have

a net tension which scales like

T̃ij ⇠
`

R
⇢ , (4.6)

which is hierarchically smaller than ⇢ as long as our solid is much bigger than the UV cuto↵ `.

For example, if we take as a crude (but standard) model for the boundary terms (4.4) a

constant energy density,

Lbdy

�
BIJ ,�I

�
= const ⌘ �⇤ , (4.7)

corresponding to a constant surface tension � = ⇤ `, we have a total stress-energy tensor of the

form

Tµ⌫ = ✓
�
F (�)

�
T̃µ⌫ � `⇤ �(F (�))|@F |hµ⌫ , (4.8)

where, as before, T̃µ⌫ is the bulk stress-energy tensor, and hµ⌫ is the induced metric on the

boundary in physical spacetime:

hµ⌫ = ⌘µ⌫ � nµn⌫ , nµ ⌘ �@µF/|@F | . (4.9)

The static conservation equation (2.8) then gets modified to
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Induced metric:

where the extra factor of |@F | ⌘
p
@µF @µF ensures that the result is independent of the choice

of function F we choose to parameterize a fixed surface. Notice that our choice for the norm of

@F is equivalent to using BIJ = @µ�I@µ�J as the inverse metric of comoving space. Consistently

with the symmetries, we could have used, instead, �IJ , or a linear combination of �IJ and BIJ .

These are inequivalent choices, which correspond to di↵erent regularizations of the ✓ function.

So, regularizing the ✓-function in (2.6) by giving it a finite thickness ` and allowing for a more

general dependence on the fields close to the boundary, is equivalent to adding the boundary action

Sbdy = `

Z
d4x �(F (�)) |@F | Lbdy

�
BIJ ,�I

�
, (4.4)

where we reabsorbed the C1 coe�cient of eq. (4.3) into ` and for now the boundary Lagrangian

density Lbdy is undetermined. We emphasize once again that we do not know yet how the

symmetries restrict the functional form of Lbdy. The important aspects of this boundary action

for us, however, are the explicit ` in front of it and the fact that, on physical and dimensional

grounds, we can expect Lbdy to be of the same order of magnitude as the bulk Lagrangian density

G(BIJ) in (2.6), which, on a static configuration, is directly related to the energy density ⇢ = T 00

(see eq. (2.12)):

Lbdy ⇠ G = �⇢ . (4.5)

In fact, for non-relativistic solids, apart from the rest-mass contribution to ⇢, all entries of the

stress-energy tensor are expected to be at most of order ⇢c2s, where cs is the speed of sound, which

can be much smaller than one. This implies that the above estimate for Lbdy is, in general, an

upper bound.

Then, the static conservation equation (2.8) will be corrected by new boundary contributions,

implying a relaxation condition like (2.10) but now with a nonzero r.h.s. However, this will be of

order `⇢ times the dimensionally needed power of the typical length scale R associated with the

boundary of our solid, such as its radius of curvature. We thus expect the ground state to have

a net tension which scales like

T̃ij ⇠
`

R
⇢ , (4.6)

which is hierarchically smaller than ⇢ as long as our solid is much bigger than the UV cuto↵ `.

For example, if we take as a crude (but standard) model for the boundary terms (4.4) a

constant energy density,

Lbdy

�
BIJ ,�I

�
= const ⌘ �⇤ , (4.7)

corresponding to a constant surface tension � = ⇤ `, we have a total stress-energy tensor of the

form

Tµ⌫ = ✓
�
F (�)

�
T̃µ⌫ � `⇤ �(F (�))|@F |hµ⌫ , (4.8)

where, as before, T̃µ⌫ is the bulk stress-energy tensor, and hµ⌫ is the induced metric on the

boundary in physical spacetime:

hµ⌫ = ⌘µ⌫ � nµn⌫ , nµ ⌘ �@µF/|@F | . (4.9)

The static conservation equation (2.8) then gets modified to
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Notice that there is no �0(F ) term, thanks to the vanishing of hµ⌫ @µF / hµ⌫ nµ. After some

straightforward manipulations, and restricting for definiteness to the ⌫ = j component, we find

that the delta function term implies that at any point on the boundary we must have

ni T̃
ij = `⇤njK , (4.11)

where K ⌘ Ki
i is the trace of the boundary’s extrinsic curvature tensor, Ki

j = hik@knj . This is

in perfect agreement with the estimate (4.6).

Alternatively, one can have reached the same approximate conclusion by a rough order of

magnitude estimate: the contribution of a constant surface tension to the total action scales like

the area of the boundary of our solid. In contrast, the bulk action scales like the volume. If

the equations of motion imply a balance between boundary and bulk contributions, the relative

importance of the surface tension must scale like the surface-to-volume ratio, that is, the typical

extrinsic curvature of the boundary.

With hindsight, all this is obvious, at least empirically: whenever we quote the bulk properties

of di↵erent materials—their density, thermal and electrical conductivities, etc.—to very good

accuracy we do not expect these to depend on the overall size of the sample, or on its shape,

as long as we are dealing with macroscopic objects6. The estimates above address this question

quantitatively, at least as far internal stresses are concerned.

So, in conclusion, the surface tension balances the bulk stress, which will scale like the cut-o↵

over the radius of curvature. One could protest that we have inserted a small number `/R, in

violation of naturalness, in our action. Indeed, where does this scale R come from? However, if

choosing R � ` is a fine tuning in this field theory, then all macroscopic objects are finely-tuned!

If we take that attitude, it would seem that the standard model hierarchy problem, or even the

cosmological constant problem is just the tip of the (finely tuned) iceberg when it comes to fine

tunings in nature.

5 The superfluid and the supersolid

So far we have shown that bounded target space field theories can lead to apparent fine tunings.

Can we generalize this mechanism to relax, say, the cosmological constant? To do so, we will need

to consider the time-like version of what we discussed above, that is, the combined spontaneous

breaking of time translations and of a U(1) symmetry down to their diagonal combination. This

can be accomplished by considering a superfluid. Its symmetries are non-linearly realized by a

single Goldstone field �, with an action of the form [18, 19]

S =

Z
d4xP (X) , X ⌘ �@µ�@µ� , (5.1)

where P is a generic function determined by the equation state. In particular, the ground state

at chemical potential µ corresponds to a configuration of the form

�(x) = µt , (5.2)

6
Pushing this line of reasoning to its logical conclusions brings us dangerously close to the idea that all di↵erent

shapes of pasta must taste the same.
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⌫ = j



We see that the vanishing of the Wilson coefficient Is a conequence of the 
boundedness of the target space. This is a dynamical relaxation mechanism, 

though we have not had to do ``engineering’’.

How can we generalize this mechanism?

-Space-time symmetry breaking

-Boundedness of Target Space

How can we choose our vanishing Wilson coefficients?



Consider now a static configuration, like in sect. ??. To the l.h.s. of the static conservation

equation (2.8), we should now add

@iT
i⌫
bdy = C1`

h
�
�
F (�I)

�
|@IF |

⇣
@iT̃

i⌫ +
@i |@IF |

|@IF |
T̃ i⌫

⌘
+ �0

�
F (�I)

�
|@IF | @KF @i�

K T̃ i⌫
i
(4.10)

Conservation of the total stress energy implies that in the static ground state

⇤(@I |nK |)TBI⌫(�?) + ⇤ |nK | @IT
BI⌫(�?) + nI T̃

I⌫(�?) = 0. (4.11)

If we take our surface to be uniform with one natural scale (say a sphere with radius R), then

we can se that the bulk tension will scale like T̃ ⇠ ⇤/R and we generate a hierarchically small

coupling. Stated another way, the surface tension balances the bulk stress, which will scale like

the cut-o↵ over the radius of curvature. One could protest that we have inserted a small number

⇤/R, in violation of naturalness, in our action. Indeed, where does this scale R come from?

However, if choosing R � ⇤ is a fine tuning in this field theory, then all macroscopic objects are

finely-tuned! If we take that attitude however, it would seem that the standard model hierarchy

problem, or even the cosmological constant problem is just the tip of the iceberg when it comes

to fine tunings in nature.

5 The superfluid and Supersolid

So far we have shown that bounded target space field theories lead to apparent fine tunings,

but they have only applied to kinetic terms. How can we generalize this mechanism to relax

say, the cosmological constant. To do so we will need to break time-translation invariance which

can be accomplished by considering a superfluid whose symmetry breaking pattern for a zero

temperature superfluid is non-linearly realized by a single Goldstone [] with an action of the form

S =

Z
ddxP (X) (5.1)

where X = @µ�@µ� and

� = µt+ ⇡(x). (5.2)

We can thus think of a superfluid as a “time solid” where �(t) is the Lagrangian picture and t(�)

is the Eulerian. The stress energy tensor is given by

Tµ⌫ = 2P 0(X)@µ�@
⌫�� gµ⌫P (X) (5.3)

If we impose the constraint � < �? so that

✓(F (�)) = ✓(�� �?) (5.4)

such that the field is compact, then we find that

hT̃ 0⌫(µt = �?)i = 0. (5.5)

Implying that on the ground state solution � = µt we have the constraint

hT̃00i = 2µ2P 0(µ2)� P (µ2) = 0. (5.6)
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Conservation of the total stress energy implies that in the static ground state
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we can se that the bulk tension will scale like T̃ ⇠ ⇤/R and we generate a hierarchically small

coupling. Stated another way, the surface tension balances the bulk stress, which will scale like

the cut-o↵ over the radius of curvature. One could protest that we have inserted a small number

⇤/R, in violation of naturalness, in our action. Indeed, where does this scale R come from?

However, if choosing R � ⇤ is a fine tuning in this field theory, then all macroscopic objects are

finely-tuned! If we take that attitude however, it would seem that the standard model hierarchy

problem, or even the cosmological constant problem is just the tip of the iceberg when it comes

to fine tunings in nature.
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So far we have shown that bounded target space field theories lead to apparent fine tunings,

but they have only applied to kinetic terms. How can we generalize this mechanism to relax

say, the cosmological constant. To do so we will need to break time-translation invariance which

can be accomplished by considering a superfluid whose symmetry breaking pattern for a zero

temperature superfluid is non-linearly realized by a single Goldstone [] with an action of the form

S =

Z
ddxP (X) (5.1)

where X = @µ�@µ� and

� = µt+ ⇡(x). (5.2)

We can thus think of a superfluid as a “time solid” where �(t) is the Lagrangian picture and t(�)

is the Eulerian. The stress energy tensor is given by
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Conservation of the total stress energy implies that in the static ground state
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If we take our surface to be uniform with one natural scale (say a sphere with radius R), then

we can se that the bulk tension will scale like T̃ ⇠ ⇤/R and we generate a hierarchically small

coupling. Stated another way, the surface tension balances the bulk stress, which will scale like

the cut-o↵ over the radius of curvature. One could protest that we have inserted a small number

⇤/R, in violation of naturalness, in our action. Indeed, where does this scale R come from?

However, if choosing R � ⇤ is a fine tuning in this field theory, then all macroscopic objects are

finely-tuned! If we take that attitude however, it would seem that the standard model hierarchy

problem, or even the cosmological constant problem is just the tip of the iceberg when it comes

to fine tunings in nature.

5 The superfluid and Supersolid

So far we have shown that bounded target space field theories lead to apparent fine tunings,

but they have only applied to kinetic terms. How can we generalize this mechanism to relax

say, the cosmological constant. To do so we will need to break time-translation invariance which

can be accomplished by considering a superfluid whose symmetry breaking pattern for a zero

temperature superfluid is non-linearly realized by a single Goldstone [] with an action of the form

S =

Z
ddxP (X) (5.1)

where X = @µ�@µ� and

� = µt+ ⇡(x). (5.2)

We can thus think of a superfluid as a “time solid” where �(t) is the Lagrangian picture and t(�)

is the Eulerian. The stress energy tensor is given by

Tµ⌫ = 2P 0(X)@µ�@
⌫�� gµ⌫P (X) (5.3)

If we impose the constraint � < �? so that

✓(F (�)) = ✓(�� �?) (5.4)

such that the field is compact, then we find that

hT̃ 0⌫(µt = �?)i = 0. (5.5)

Implying that on the ground state solution � = µt we have the constraint

hT̃00i = 2µ2P 0(µ2)� P (µ2) = 0. (5.6)
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and P (µ2) is the associated pressure.

We can thus think of a superfluid as a “time solid,” with the chemical potential µ in (5.2)

playing the role of the scale factor ↵ in (2.5). The stress energy tensor is given by

T̃µ⌫ = 2P 0(X)@µ�@⌫�+ ⌘µ⌫P (X) . (5.3)

In analogy with the case of the solid, we can now impose that the there is a boundary in �

space, for instance at some large � = �?. We thus have to multiply the Lagrangian density in

(5.1) by

✓(F (�)) = ✓(�?
� �) . (5.4)

Then, on the ground state solution (5.2), we find that

T̃ 0⌫(µt = �?) = 0 , (5.5)

implying, in particular,

T̃ 00(x) = 2µ2P 0(µ2)� P (µ2) = 0 . (5.6)

everywhere.

If the function P (X) is such that this condition can be obeyed for some positive X = µ2, then

the vacuum energy automatically vanishes, as a consequence of the boundedness of the target

space. Notice that this mechanism is independent of the choice for �?. If we include a boundary

action as well, then, as in the case of the solid, the ground state energy can in principle become

non-zero. However, for a flat boundary at t = const., this e↵ect will be absent given that the

boundary’s extrinsic curvature vanishes in that case.

The interpretation of our result (5.6) is not as clear as in the case with a spatial boundary.

There, if the boundary conditions are not met at some initial time, the solid will undergo oscil-

lations and, assuming it can dissipate energy, will asymptotically reach the state that does obey

the boundary conditions. But the superfluid can not be understood in this way. It is obvious

that what we have found should not be called a “relaxation mechanism,” since the boundary

condition only applies at one point in time. To get a handle on this let us consider imposing

initial conditions rather that final ones by putting the �? boundary in the past. So, our action

will be

S =

Z
d4xP (X)f(�� �?) . (5.7)

The only ~x-independent solution seems to be the one with T00 = 0, at all times. Which is to say,

there is no relaxation: the vacuum energy starts at zero and remains so.

Finally, we can combine the solid and the superfluid into a supersolid [20, 21]. This is a solid

with an additional broken U(1) symmetry at finite chemical potential, so that its dynamics can

be described in terms of the solid comoving coordinates �I and the superfluid Goldstone �. The

symmetries act on these fields in precisely the same ways as they act separately in the solid case

and in the superfluid one. By bounding all fields through some general ✓ function that selects a

hypersurface in (�,�I) space,

✓
�
F (�,�I)

�
, (5.8)
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Everywhere

Time Relaxation Constraint
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We can go a step further: Consider 
a Super Solid:
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and going through the same steps as above, we find that, on physically homogeneous configura-

tions of the form

� = µt , �I = ↵xI , (5.9)

all components of the stress energy tensor must vanish. Is this the seed for a solution to the

cosmological constant problem?

6 Conclusions

It has been a generally accepted tenet of quantum field theory that parameters in the action that

are not protected by symmetries should take on values of order of the cut-o↵ of the theory raised

to the appropriate power. As is well appreciated, this situation can be avoided if the parameter

is taken to be dynamical and allowed to relax. It would seem that, in general, generating such

a mechanism takes insightful model building. Here however, we have shown that it can be quite

generic, if one allows oneself to break space-time symmetries, and bound the target space. The

former assumption is not a speculative stretch in the sense that our universe certainly has this

property, but the latter assumption is less generic.

It is reasonable to question the technical naturalness of some of our assumptions—for exam-

ple, the fact that we require very large volumes in field space. Still, the fact that we are literally

surrounded by solid objects with precisely this property, many of which having a very natural

origin, suggests that most of our assumptions are warranted, and natural in any meaningful sense

of the word. Perhaps, when we move to the superfluid/supersolid case, which requires a boundary

in the time-like field direction, some of these assumptions are on less solid footing. Clearly, the

superfluid/supersolid case deserves further study, especially because of its potential relevance for

the CC problem.

We close with a few important points:

1. Throughout the paper we have been dealing only with classical equations of motion and

classical solutions, which, at first sight, seems to suggest that we have not addressed at all

questions of radiative stability of our results.

However, the transition to the quantum case is trivial: we just have to replace our classical

actions (S) with the corresponding quantum e↵ective actions (�), our fields with their

expectation values, and our stress-energy tensors with their expectation values. Since to

lowest order in derivatives the quantum e↵ective actions have, as functions of the fields’

expectation values, the same local structure as the classical actions they come from, our

results are valid to all orders in perturbation theory, and, in fact, non-perturbatively.

The reason this works is that all the field theories we have considered enjoy shift symmetries

(up to boundary e↵ects) for all their fields, and in that case the derivative expansion can be

organized so that @� is of order one, while higher derivatives are suppressed. So, the role

usually played by the e↵ective potential—the quantum e↵ective action to zeroth order in

the derivative expansion—is now played by the quantum e↵ective action truncated to the

level of one derivative per field, which is all one needs in order to study states that feature

constant expectation values for the first derivatives of the fields.
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Bound in both space and time:

and P (µ2) is the associated pressure.

We can thus think of a superfluid as a “time solid,” with the chemical potential µ in (5.2)

playing the role of the scale factor ↵ in (2.5). The stress energy tensor is given by

T̃µ⌫ = 2P 0(X)@µ�@⌫�+ ⌘µ⌫P (X) . (5.3)

In analogy with the case of the solid, we can now impose that the there is a boundary in �

space, for instance at some large � = �?. We thus have to multiply the Lagrangian density in

(5.1) by

✓(F (�)) = ✓(�?
� �) . (5.4)

Then, on the ground state solution (5.2), we find that

T̃ 0⌫(µt = �?) = 0 , (5.5)

implying, in particular,

T̃ 00(x) = 2µ2P 0(µ2)� P (µ2) = 0 . (5.6)

everywhere.

If the function P (X) is such that this condition can be obeyed for some positive X = µ2, then

the vacuum energy automatically vanishes, as a consequence of the boundedness of the target

space. Notice that this mechanism is independent of the choice for �?. If we include a boundary

action as well, then, as in the case of the solid, the ground state energy can in principle become

non-zero. However, for a flat boundary at t = const., this e↵ect will be absent given that the

boundary’s extrinsic curvature vanishes in that case.

The interpretation of our result (5.6) is not as clear as in the case with a spatial boundary.

There, if the boundary conditions are not met at some initial time, the solid will undergo oscil-

lations and, assuming it can dissipate energy, will asymptotically reach the state that does obey

the boundary conditions. But the superfluid can not be understood in this way. It is obvious

that what we have found should not be called a “relaxation mechanism,” since the boundary

condition only applies at one point in time. To get a handle on this let us consider imposing

initial conditions rather that final ones by putting the �? boundary in the past. So, our action

will be

S =

Z
d4xP (X)f(�� �?) . (5.7)

The only ~x-independent solution seems to be the one with T00 = 0, at all times. Which is to say,

there is no relaxation: the vacuum energy starts at zero and remains so.

Finally, we can combine the solid and the superfluid into a supersolid [20, 21]. This is a solid

with an additional broken U(1) symmetry at finite chemical potential, so that its dynamics can

be described in terms of the solid comoving coordinates �I and the superfluid Goldstone �. The

symmetries act on these fields in precisely the same ways as they act separately in the solid case

and in the superfluid one. By bounding all fields through some general ✓ function that selects a

hypersurface in (�,�I) space,

✓
�
F (�,�I)

�
, (5.8)
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<latexit sha1_base64="WCzVY9AE7iHUxwgrev9UMz66n8w=">AAAB9XicbVDJSgNBEK2JW4xb1KOXxiB4GmbE7SIEvXiMkA0yY+jp9CRNenqGXpQw5D+8eFDEq//izb+xsxw0+qDg8V4VVfWijDOlPe/LKSwtr6yuFddLG5tb2zvl3b2mSo0ktEFSnsp2hBXlTNCGZprTdiYpTiJOW9HwZuK3HqhULBV1PcpomOC+YDEjWFvpvt7Ng8SgQJjxled2yxXP9aZAf4k/JxWYo9Ytfwa9lJiECk04Vqrje5kOcyw1I5yOS4FRNMNkiPu0Y6nACVVhPr16jI6s0kNxKm0Jjabqz4kcJ0qNksh2JlgP1KI3Ef/zOkbHl2HORGY0FWS2KDYc6RRNIkA9JinRfGQJJpLZWxEZYImJtkGVbAj+4st/SfPE9c/ds7vTSvV6HkcRDuAQjsGHC6jCLdSgAQQkPMELvDqPzrPz5rzPWgvOfGYffsH5+AaelZHz</latexit>

Tµ⌫ = 0.



So far we have only set the vacuum energy due 
to one field (The GB) to zero.

Generalize: Use GB as ``control field”:

<latexit sha1_base64="cgiV+2Z5ASlV0SMFOuNYQWlKl9s=">AAACDHicbVC7SgNBFJ31GeMramkzGISkCbviqxGCglikiGAekI1hdnKTDJl9MHNXCCEfYOOv2FgoYusH2Pk3TjYpNPHAwOGcc7lzjxdJodG2v62FxaXlldXUWnp9Y3NrO7OzW9VhrDhUeChDVfeYBikCqKBACfVIAfM9CTWvfzX2aw+gtAiDOxxE0PRZNxAdwRkaqZXJli6oiz1AlrvOuVFP5PO01LITeu9GSviQNym7YCeg88SZkiyZotzKfLntkMc+BMgl07rh2BE2h0yh4BJGaTfWEDHeZ11oGBowH3RzmBwzoodGadNOqMwLkCbq74kh87Ue+J5J+gx7etYbi/95jRg7582hCKIYIeCTRZ1YUgzpuBnaFgo4yoEhjCth/kp5jynG0fSXNiU4syfPk+pRwTktnNweZ4uX0zpSZJ8ckBxxyBkpkhtSJhXCySN5Jq/kzXqyXqx362MSXbCmM3vkD6zPH5HsmXM=</latexit>

L = ✓(F (�))L0(�
0)

Automatically sets                  for all fields
<latexit sha1_base64="9jjiE+rX0LAnXNF5IeBUY76vrR0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr4sQ9OIxYl6QLGF2MkmGzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3U395hPXRkSqhuOY+yEdKNEXjKKVHms3brdYcsvuDGSZeBkpQYZqt/jV6UUsCblCJqkxbc+N0U+pRsEknxQ6ieExZSM64G1LFQ258dPZqRNyYpUe6UfalkIyU39PpDQ0ZhwGtjOkODSL3lT8z2sn2L/2U6HiBLli80X9RBKMyPRv0hOaM5RjSyjTwt5K2JBqytCmU7AheIsvL5PGWdm7LF88nJcqt1kceTiCYzgFD66gAvdQhTowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBotuNYw==</latexit>

T = 0


