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Exotic approaches to Naturalness



Naturalness Terminology

A dimensionless numbers (or dimensionful number in units of the cut-off) in the action
which is much less than one we will call this a
Dirac Fine Tuning

A Dirac fine tuning which is not radiatively stable we will call a t’"Hooft fine tuning.

Dirac fine tunings of relevant operators which are not protected by symmetry are t’'Hooft fine tuned

Some Examples:

Dirac t’'Hooft
Fermion masses in the SM, the Theta Higgs mass, CC
parameter

(This talk)



Resolutions to Naturalness Problems

UV Solutions”

* Enhanced Symmetry (SUSY). * No dimension 2 scalar operators

+ Strong coupling dynamics shifts (Technicolor).

relevant to marginal. (RS)

IR Solutions”

* Relaxation Mechanisms. PQ Mechanism mechanism
(strong CP), Abbot (CC), Relaxion (EW Hierarchy)



Relaxation Mechanisms
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These paradigms are compelling (though they still suffer
from Dirac fine-tunings) especially since one need not
have any new physics beyond the weak scale (testability?)
But they dont seem very generic

However, perhaps the problem is that we are
thinking in to narrow a space of QFT’s

Consider any A Inter-actomic spacing
macroscopic object

R~ NA N ~ 10%?

To determine if this system his fine tuned we need to place it in
a field theoretical context. Perhaps we can learn about field
theories which look finely tuned but are not.



Consider the following quantum field theories

g — / d?:c(%q'ﬁ +C1(V287)2 + V(Vér))

0= /4433(7'?2 — (V- 7) = 0y 0umy)) + V(0im))




The QFTs which describe these theories are distinguished from the
class of theories we typically consider when looking for solutions to
hierarchy problems:

- Spontaneously break space-time symmetries

- Target space have non vanishing boundaries



Effective Field Theory of Solids

Label the atoms by D fields gbl (i, f) I=1—D

Lagrangian = Co-moving coordinates’

X! (¢, t) Eulerian
I\ I :
<¢ > = QX Ground state solution

Assumption: of homgeneity and isotropy on large scales

Broken spacte-time symmetries but leaves ! — 2! +al
unbroken diagonal sub-groups 5 o — ol

Is 1T ® 50(3)] X SO(S)ST — T1is7 & SO(S)T—|—ST



S = /G(B”) d*z Only three

Goldstones
BIJ __ aluj¢la,u¢¢] 7 Inverse Higgs Constraints
Power Counting: 8¢ ~ 1 82¢ ~< 1 ¢I(£IZ) — Oé(CEI —+ WI(CC))
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This is NOT what you will find in Landau+Lifshitz ! AS
part should be absent.



Ground State

Consider a “Beam” (string) Embedded

Again NOT what is
in L+L!



1-D Embedded Solid: Need to impose
boundedness of target space

¢ |< L

Shar = /d7d09(¢ _ ¢*) \/gG(B) ) B = gaﬁaa¢8ﬁ¢




3-D Solid Need to impose boundedness of target space

F(¢) >0 e.g. F(¢") = R*> — ¢’ ¢/

Implement at the level of the action S = / 0 (F(¢)) G(Blj)d4113

Equations of motion: pr =0 (F(¢)) Tluy

Static v -
Configuration:



n; (¢*) TiV (¢*) — () ¢* (Boundary value)

Homogeneity of

ground state: T =0 everywhere

Generates a constraint on Wilson

coefficients of the action

Most Striking for th f 1 LT ] 7]
Ost Striking Tor the case o Sbar D §/d xTOéﬁ ﬁago : 8590 — 0
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From the points of view of RG flow this is quite remarkable

Consider dimensional reduction: (v ¢) 2 IRREl EVENT

(V2)?  RELEVENT

IN FREE FIELD THEORY

Highly non-trivial RG flow as a consequence of boundedness of target
space



Can see it from explicit calculation

§ =5 [ dudydr (72— a(V - 7)* = bOim,)(@ym0) = c(Oim))017) )

Full Theory (2+1) Propagator:

GY (z) = /dtdydy'(Twi(a:,y,t)wj((),y’,O)>

0 | (c7 Cr, — QCT) _
ae'ta-aa
0| | C% )
Zc% k2 _1 | C% —C?r f_(kd)_ .
~ 2sinh?(£/2)
f:(f) - (Sinhf:: f)g |

0 Thickness




Note that radiative stability is a consequence of the fact
that we are working at the level of the effective action.
Calculating at any given order simply shift the boundary

For this to be effective it was crucial that the action enjoy
a shift symmetry, so radiative corrections preserver the
local structure of the effective action

oV (a)

- —0 Equivalent to n-1 =0.
Qv




This mechanism does not seem that useful for model building since it
causes vanishing coefficients as opposed to hierarchally small coefficients

However, we have been too cavalier!!!!

When we opposed the boundary we
broke the shift symmetry:

L—L+6F(p))Lp—+.... Surface physics:
1
Replace theta function with finite 1 ( R—|¢| )
thickness boundary Oc (F(¢)) - L+ tan /4

0u(x) = 0(x) + Oy £5(z) - 21! Cy 25 (2) + . ..



In our case: O0c(F(¢)) =0(F(p)) + C1l6(F(9)) |OF| + ..., C1 =0(1)

T~

Ensures independence of F
Spay = ¢ / 142 5(F(6)) |0F| Luay (B, &)

For a static configurations:

»dey ~ p

Ti Iy R Radius of curvature



Suppose:

Ly =

Induced metric:

0T = 6(F(¢))|0F|

—n;, T — IA

More Concretely:

Lhdy (B”, ¢I) — const = —A

0(F(6)) Ty — LA S(F(6))|OF | by

h,uu — Npy — Ny Ny

1
OF|

TL; Tij — /A TLjK

0; (|OF|h™)

n, = —0,F/|0F

~ o

+0(F(¢)) 0T =0



We see that the vanishing of the Wilson coefficient Is a conequence of the
boundedness of the target space. This is a dynamical relaxation mechanism,
though we have not had to do "“engineering”.

How can we generalize this mechanism?

-Space-time symmetry breaking

-Boundedness of Target Space

How can we choose our vanishing Wilson coefficients?



Consider a Superfluid

Shift Symmetry: O — O+ a

S = /dde(X) X = 0,00"¢

JH =2P'0,¢ <Q>£0,<J >=0

<¢> Y t Time versions of

solid vev

Analogy: " time solid”

Bound target space 0(F'(¢)) =



nH

Time Relaxation Constraint

~

T = 2P (X)0u$0y ¢ + 1w P(X)

~

n, " (¢*) =0

T%°(z) = 2u”P' (%) — P(*) = 0

Everywhere



We can go a step further: Consider
a Super Solid:

Tsr T ®SO3) ® SOB)sT — TrisT ® SO(3)risT

U(1) — 9
¢ — :ut ; ¢I — 0533[
Bound in both space and time: () (F( ¢7 ¢I ))

T = 0.



So far we have only set the vacuum energy due
to one field (The GB) to zero.

Generalize: Use GB as " control field”:

L =0(F(¢))Lo(¢)

Automatically sets 7'=0 for all fields



