

Compact Muon Solenoid (CMS) High Granularity Calorimeter (HGCAL) Upgrade for End Caps: Project Introduction

Margot Lockwood October 5th, 2022

Values: collaboration, honesty, respect for environment and others, playfulness, exploration, learning Interests: physics (of course), biology, interdisciplinary studies, climbing, yoga, learning, adventure, poetry, art

Why am I here?

- Determine if I want a career in particle physics
- See if I enjoy electrical engineering
- Learn skills useful in science research
- Learn as much as possible about CERN and particle physics
- Learn about living and moving abroad

Why am I here?

- Determine if I want a career in particle physics
- See if I enjoy electrical engineering
- Learn skills useful in science research
- Learn as much as possible about CERN and particle physics
- Learn about living and moving abroad

Eat croissants?

HGCAL Background High-Luminosity (HL) LHC

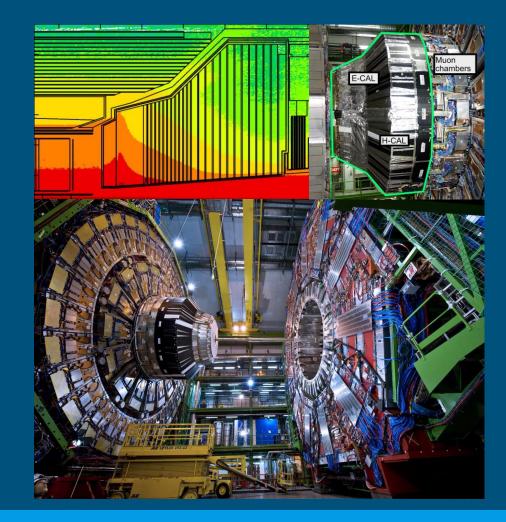
HL-LHC Plan

- Increase in collisions by a factor between 5 & 7 (more data in less time!)
- More data -> More likely to detect rare particles
- Uses less energy per amount of data

HGCAL Background High-Luminosity (HL) LHC

HL-LHC Plan

- Increase in collisions by a factor between 5 & 7 (more data in less time!)
- More data -> More likely to detect rare particles
- Uses less energy per amount of data



- Technical Challenges of Beam Update for Detector:
 - Even harsher radiation environment (1.5MGy)
 - $LD_{50/60}$ is 2.5 Gy for reference
 - More pile up events (140 on average to 200 per beam crossing)
 - Cold environment (same as before)

HGCAL Background HGCAL Current Status

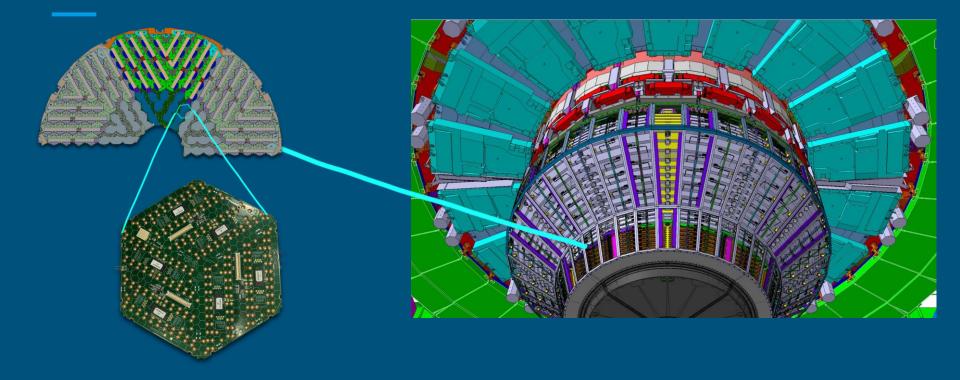
What does HG-LHC mean for the CMS Detector?

- Better electronics are needed
- Better resolution 2d->5d
- 20-ps timing precision over
 600 m² of detector required
- Radiation and cold hardy electronics required

HGCAL Background HGCAL Upgrade Overview

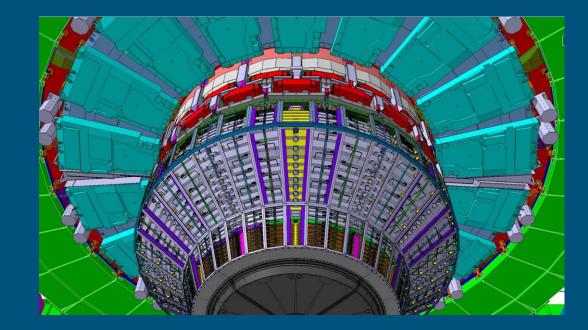
Upgrade will enhance particle identification, energy resolution, and pileup rejection

Electromagnetic Section (CE-E)


- Hexagonal silicon sensors!
- 6M silicon pads (620 m²)
- 26 layers

Hardronic Section (CE-H)

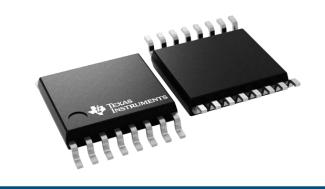
- 240k plastic scintillator tubes replaces lead tungsten crystals
- 21 layers


HGCAL Background Hexagon Sensor

HGCAL Background HGCAL Current Status

Full integration is underway (Lots of little things coming together)

Front end back end communication, trigger system, all components need to work together to communicate, debugging, slow-control being prototyped...



What am I doing? I²C Protocol

- 1. Temperature and Humidity Sensor for beam test
 - a. arduinos, (micro)soldering, pin mapping (reverse engineering PCB), learning acronyms, learning basics relating to electrical engineering, and I²C protocol
- 2. Help take data this next week during beam test (starting today!)
- 3. Use I²C protocol for digital to analog readout for Trophy V3

Beam Test!

Image of the test beam pipe and electronics being tested (set up still in progress)

Thank you

Mercil

Questions?

Sources:

High-Luminosity LHC. CERN. (n.d.). Retrieved October 4, 2022, from https://home.cern/resources/faqs/hig h-luminosity-lhc

Christophe Ochando and CMS Collaboration 2017 J. Phys.: Conf. Ser. 928 012025