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Jet Cones With Top Flavour
Measurement of the jet mass and top quark mass in  

hadronic decays of boosted top quarks with CMS
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Boosted  
top quarks

‣ Fully merged top decays contained in R=1.2 jets with pT > 400 GeV

Reconstruction with XCone

Jet Mass Calibration Modelling

Exp. Model

‣ Reconstruct mW using the two  
light-flavoured subjets  

‣ Measure mW in four regions:  
pT < or > 300 GeV and rPT < or > 0.7 
(rPT is the leading subjet pT-fraction) 

‣ Measure jet mass scale (JMS) using 
XCone and jet energy scale corrections

‣ Large uncertainty from modelling of 
final state radiation (FSR) 

‣ Constrain FSR by measuring  
N-subjettiness ratio τ32 =  τ3/τ2 

‣ Adjust fFSR in αSFSR(fFSR µ0), equivalent 
to choosing different αSFSR(MZ)

Uncertainties

Unfolded Measurement

Top Quark Mass
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Table 1: Total and individual uncertainties in the extraction of mt from the normalised differ-
ential cross section. The uncertainties are grouped into statistical, experimental, model and
theory uncertainties. Experimental uncertainties from b tagging, the luminosity measurement,
and the lepton triggers, identification and reconstruction are smaller than 0.01 GeV and are not
listed.

Source Uncertainty [GeV]
Total 0.81
Statistical 0.22
Experimental total 0.57

Jet energy resolution 0.40
Jet mass scale 0.27
Jet mass scale flavour 0.27
Jet energy scale 0.09
Pileup 0.08
MC statistics 0.07
Additional XCone corrections 0.03
Backgrounds 0.01

Model total 0.48
Choice of mt 0.37
hdamp 0.19
Colour reconnection 0.19
Underlying event tune 0.12
µF, µR scales 0.07
ISR 0.06
FSR 0.03

Theory total 0.24
FSR 0.14
Underlying event tune 0.13
Colour reconnection 0.10
µF, µR scales 0.06
hdamp 0.06
ISR 0.06

Performing the extraction on collision data and considering all sources of uncertainties, we
extract mt using the POWHEG simulation,

mt = 172.76 ± 0.22 (stat) ± 0.57 (exp) ± 0.48 (model) ± 0.24 (theo) GeV

= 172.76 ± 0.81 GeV.

With respect to the previous measurement at 13 TeV [34] this corresponds to an improvement
by more than a factor of three in terms of precision. This measurement from boosted top quark
production has an uncertainty comparable with the most precise mt extractions from fully re-
solved final states.

The individual sources of uncertainty and their impact on the mass extraction are detailed in
Table 1. The dominant experimental uncertainties are connected to the calibration of the jet
energy resolution, the JMS calibration and the JEC b flavour uncertainty, also visible in Fig. 10.
The dominant modelling uncertainties arise from the choice of the mt and hdamp parameters in
the tt simulation. Compared to the previous measurement, the dedicated measurement of the
JMS leads to an uncertainty reduced by a factor of 5 in the jet calibration. By constraining the
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