How to understand anomalous di-Higgs production in ATLAS in the $b\bar{b}b\bar{b}$ final state

Based on ATLAS-CONF-2022-035 [1]

Iza Veliscek

Signal Processes

- **ggF Production**
 - Observed coupling
 - $K = K_{\text{SM}}$
 - $K'_{VH} = \text{HHH coupling modifier}$
 - $b\bar{b}b\bar{b}$ final state
 - Largest branching fraction
 - Fully hadronic final state
 - $\Delta R \sim 35\%$

- **VBF Production**
 - $\sigma_{\text{SM}} = 1.73 \text{ fb}$
 - $\sigma_{\text{ggF}} = 31.05 \text{ fb}$

Event Selection

- **Pairing Strategy**
 - Minimize ΔR between jets in leading Higgs Candidate
 - Smooth $m_{H_1} - m_{H_2}$ mass plane
 - Lower accuracy at low m_{H_1}
 - Strong K dependance

- **Construct Higgs Candidates**
 - Central jet [$\eta < 2.5, p_T \geq 40 \text{ GeV}$]
 - b-tagged jet [DL1r @77% WP]

- **Background Estimation**
 - Fully data-driven background estimation
 - $2b + 4b$ events used in all regions
 - ~center of m_H distributions
 - Profile likelihood ratio used to obtain 2σ level constraints

Kinematic Regions

- Signal Region: $X_{HH} < 1.6$
 - X_{HH} non-SM
 - X_{HH} stabilised
 - X_{HH} metastable
 - X_{HH} metastable
 - X_{HH} metastable

Background Composition

- $\sim 90\%$ QCD
- $\sim 10\%$ tt

Additional Categorization

- ggF in ΔH_H and X_{HH} (3x2) per year
- VBF in ΔH_H (2) all years together

Background Estimation

- 2σ constraints: $K_x = [-3.5, 11.3]$ ($[-5.4, 11.4]$)
- $K_{\text{ggF}} = [-0.0, 2.1]$ ($[-0.1, 2.1]$)

Sketch Inspired by [2]

How stable is the vacuum?

Can VH1’s thermal evolution account for baryon excess?

H self-coupling impacts the shape of V(H)

Additional categorization:

- ggF in ΔH_H and X_{HH} (3x2) per year
- VBF in ΔH_H (2) all years together

Profile likelihood ratio used to obtain 2σ level constraints

$$-2\Delta \ln (\hat{L}) = -2\ln \left(\frac{\hat{L}(\hat{\lambda}, \hat{\theta})}{\hat{L}(\hat{\lambda}, \hat{\theta})} \right)$$

Conditional likelihood

Unconditional likelihood

V(H)

- Impacts on the shape of $V(H)$
- Can account for baryon excess?

V(H) needs to be measured!