’V
‘ New Techniques for Jet Energy Scale
- Measurements in the ATLAS Detector
) i

Jets are collimated groups of particles that result from the fragmentation of high energy quarks and gluons. The calibration of
jets corrects the measured jet energy and direction for imperfections in the ATLAS detector response and plays an important
role in most ATLAS analyses.

This poster presents new strategies for the Jet Energy Scale (JES) calibration that were developed and tested with LHC Run
2 data, to lay the foundation for their use in the Run 3 jet calibration.

The ATLAS jet calibration chain
involves a number of steps:
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Provides a calibration function for the energy response as a function of the Further calibration on jet resy r individual factors such as distribution of energy in the jet, distribution of
pseudorapidity n and the reconstructed jet energy Ereco. energy across different calorimeter layers, and flavour dependence.
« The individual JES, r, is defined for each reconstructed jet that is matched to a truth jet || Quark and gluon responses are different on average. Two options B E ATLAS Simulation Prolimi T =
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+ Two methods are used for the fit functions: For low energies, the spline method from input variables. I_Enables use of correlated variables so allows for 0-05§
- Polynomial fits provides better closure than the more observables as inputs. 0.05
- Penalized Splines (new) polynomial fit.

GNNC provides better results than the GSC for jet response and s
jet resolution.

— Better uncertainties on flavour response and flavour composition.
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A calibration that corrects for differences in data/MC. Correction only applied to data. The New MC calibration methods were validated with insitu Iy
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n-intercalibration uses well-measured central jets (|ndet < 0.8) to correct for forward jets (0.8 < |ndel < || Residual calibration of central jets within the range |n| < 0.8 is obtained through pT balance between a
4.5) that are calibrated relative to each other in every | ndet| region. jet recoiling with a well-calibrated object such a photon/Z-boson.
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The measul of the bal: b a b-jet and a well-calibrated photon is tested and compared to inclusive jet balance.
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The b-tagged ratio underestimates the JES (relative to the
. . . - ) i inclusive) by: 0.95|
« Samples of b-jets and c-jets are selected using a multi-variate b-tagging algorithm DI1r.
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b-tagging efficiencies available correspond to the worki ints (WP) 60% ,70% ,77% Pythia — 1% (WPEO), 1.6% (WP70), 2.2% (WP77), 1.1% (WP8S) f ]
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