

Searches for lepton-flavour-violating decays of the Higgs boson into $e\tau$ and $\mu\tau$ in $\sqrt{s}=13$ TeV pp collisions with the ATLAS detector

General strategy

- Searching for two independent signals, $H \to e\tau$ and $H \to \mu\tau$. Considering hadronic and leptonic τ decays.
- Two background estimation methods: MC-template method ($\ell \tau_{\ell}$, and $\ell \tau_{\rm had}$) or Symmetry method (only $\ell \tau_{\ell}$,).
- Loose preselection and further categorization into VBF and non-VBF signal regions.
- Fit over MVA output to enhance sensitivity.

MC-template $\ell au_{\rm had}$

- Backgrounds estimated with MC templates.
- Z → ττ with floating normalization factors. Topquark backgrounds extracted from CRs for each VBF/non-VBF category.
- Misidentified background estimated using data-driven techniques.

ATLAS Preliminary ATLAS Prelim

MC-template $\ell au_{\ell'}$

- Backgrounds estimated with MC templates.
- Normalisation of $Z \rightarrow \tau \tau$ and topquark backgrounds extracted from CRs for each VBF/non-VBF category.
- Misidentified background estimated in a data-driven way.

— Background estimation -

Symmetry $\ell au_{\ell'}$

- SM processes are symmetric under $e \leftrightarrow \mu$.
- $\mathcal{B}(H \to e\tau) \neq \mathcal{B}(H \to \mu\tau)$ would **break** the **symmetry**.
- Data from one channel can be used for the background estimation of the other channel (after corrections for asymmetric experimental effects). The symmetric background contains processes as Z → ττ, top-quark backgrounds and di-boson production, as well as other minor contributions.
- Fakes estimated in a data-driven way.
- Sensitive to branching ratio difference.

MVA and fit strategy

- MVA outputs used as final discriminant to extract signal strength and upper limits.
- For MC-template, final output obtained as combination of individual BDTs trained to discriminate LFV signal against various backgrounds. Non-VBF and VBF categories treated separately.
- For Symmetry method, combination of three NNs used for VBF.
 Multiclassifier NNs used for non-VBF. Signal node used in the fit.
- · Three fit results:
 - **1 POI fit.** Independent fit of $\mathcal{B}(H \to e\tau)$ and $\mathcal{B}(H \to \mu\tau)$. One is assumed to be zero when fitting the other. Combination of Symmetry and MC-based method.
 - **Branching ratio difference.** No assumption of one branching ratio while fitting the other.
 - **2 POI fit.** Simultaneous fit of $\mathcal{B}(H \to e\tau)$ and $\mathcal{B}(H \to \mu\tau)$ with MC-template inputs.

Results

- From **2 POI fit**, the observed (expected) limits are 0.19% (0.11%) for $H \to e\tau$ and 0.18% (0.09%) for $H \to \mu\tau$. Compatibility with SM within 2.2 σ .
- Branching ratio difference measured with the symmetry method in $\ell \tau_{\ell}$, found to be $\mathcal{B}(H \to \mu \tau) \mathcal{B}(H \to e \tau) = 0.25 \pm 10 \%$.

Conclusions

- Small, but not significant excess observed.
- Observed (expected) limits improved by a factor 2.4 (3.1) for $H \to e\tau$ and 1.5 (4.1) for $H \to \mu\tau$ with respect to the previous ATLAS result.
- Check all the results in ATLAS-CONF-2022-060.

