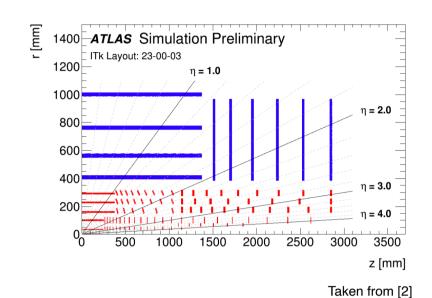


Clustering and tracking in dense hadronic environments with the ATLAS ITk

Cluster merging

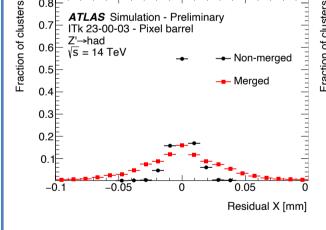
> In environments with a high density of charged particles such as the center of high-p_T jets, silicon clusters can merge

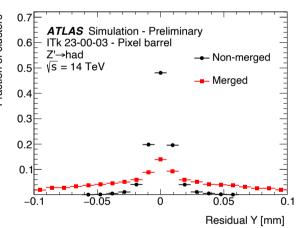


Taken from [1]

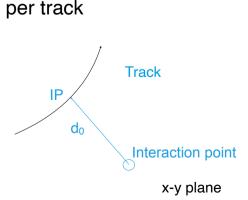
- Merged clusters usually end on multiple tracks
- >Tracks sharing clusters are penalised in the reconstruction, hence tracking efficiency is reduced
- > Merged clusters reduce the quality of tracking
 - >Track parameter resolution worsens and this affects jet flavour tagging
 - >Flavour tagging is crucial for many measurements and searches
- Merged clusters are identified (Number Network) and split (Mixture Density) Network) with the current detector
 - >Will dedicated handling of merged clusters be needed for ITk?

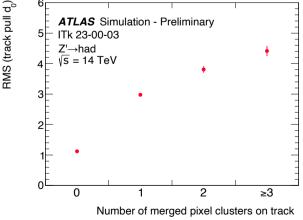
The ITk

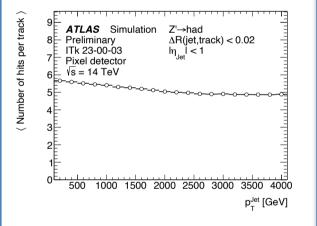

- > All-silicon ATLAS tracker for High-Luminosity LHC
- > Pixel and Strip sub-detectors
- > Finer granularity than current ID (but higher occupancy)

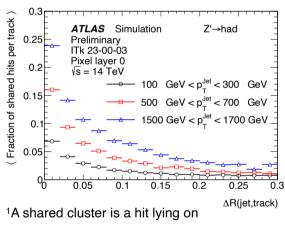


Pixel pitch	Innermost layer	Other layers
lTk	25 μ m $ imes$ 100 μ m	$50 \mu \mathrm{m} imes 50 \mu \mathrm{m}$
Current ID	50 μ m $ imes$ 250 μ m	50 μ m $ imes$ 300 μ m


Effects of cluster merging

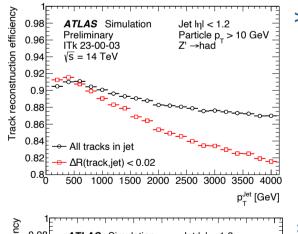

- > Cluster position residuals
 - >Residual = $x_{reco} x_{truth}^{particle}$
- > Reconstructed position of merged clusters is degraded

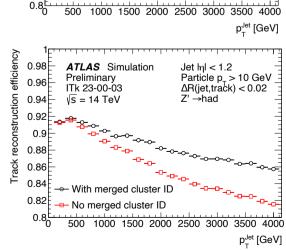

- > Impact parameter d_0
 - >Transverse component of the point of closest approach between the track and the interaction point
- > Pull on d_0 :
- > d_0 resolution degrades with increasing number of merged clusters



Tracks inside of jets

> Number of clusters in the Pixel detector decreases with jet p_T




Fraction of Shared¹ clusters increases in jet core

multiple tracks

> Efficiency of track reconstruction

- No classification of merged clusters
 - > Reconstruction efficiency reduction in jet core
 - > Better expected performance than current Inner Detector [3]
- Perfect vs no classification of merged clusters
 - > Focus on jet core
- No identification of merged clusters leads to efficiency loss in jet core
 - >~3% at 2.5 TeV

References

- > [1] ATLAS Collaboration, Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2, Eur. Phys. J. C 77 (2017) 673
- > [2] ATLAS Collaboration, Expected tracking and related performance with the updated ATLAS Inner Tracker layout at the High-Luminosity LHC, tech. rep. ATL-PHYS-PUB-2021-024
- > [3] ATLAS Collaboration, Modelling of Track Reconstruction Inside Jets with the 2016 ATLAS $\sqrt{s} = 13$ TeV pp Dataset, tech. Rep. ATL-PHYS-PUB-2017-016

