Angular analyses of $b \to s \ell^+\ell^-$ decays at LHCb

Why $b \to s \ell^+\ell^-$ decays?

1. In the SM, electroweak penguin decays are rare since they are forbidden at tree-level.
2. NP can modify significantly the SM predictions.
3. NP can be interpreted with the model independent effective hamiltonian describing $b \to s \ell^+\ell^-$ decays.

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i O_i$$

New Physics (NP)

Why the LHCb detector?

- $b\bar{b}$ pairs produced predominantly in forward region
- Single arm forward spectrometer
- Excellent vertex and momentum resolution
- Good particle identification

Ideal for flavour physics precision measurements

Angular fit of pseudo-experiments

Angular observables are able to characterise NP.

Measure the differential decay width ...

$$\frac{1}{d \Gamma} \frac{d^4 \Gamma}{d \phi d \cos \theta d \cos \theta'} \approx \frac{1}{4} \left(1 + 3 \cos^2 \theta \right) \left(L_{1c} \cos \theta \cos \theta'L_{1c} \cos \theta + L_{2x} \sin \theta \theta' \right)$$

... as a function of the decay angles ...

... and the angular coefficients L.

Angular fit model is chosen to include dominant spin-3/2 and underlying spin-1/2 A resonances.

How to get the angular observables?

Perform an angular fit on realistic pseudo-experiments:

$$\theta' = \frac{1}{d \Gamma} \frac{d^4 \Gamma}{d \phi d \cos \theta d \cos \theta'}$$

Expected yields in $A_b \to (1520) \mu^+\mu^-$ are around 1/10 of the ones in $B^0 \to K^{*0} \mu^+\mu^-$.

Working on angular fit validation with $A_b \to pK^-/\phi(\mu^+\mu^-)$ decays. Exciting possibilities for Run 3 and further thanks to increase of luminosity.

Physics Focus

New Physics (NP)

1. In the SM, electroweak penguin decays are rare since they are forbidden at tree-level.
2. NP can modify significantly the SM predictions.
3. NP can be interpreted with the model independent effective hamiltonian describing $b \to s \ell^+\ell^-$ decays.

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i O_i$$

New Physics (NP)

Why the LHCb detector?

- $b\bar{b}$ pairs produced predominantly in forward region
- Single arm forward spectrometer
- Excellent vertex and momentum resolution
- Good particle identification

Ideal for flavour physics precision measurements

Angular fit of pseudo-experiments

Angular observables are able to characterise NP.

Measure the differential decay width ...

$$\frac{1}{d \Gamma} \frac{d^4 \Gamma}{d \phi d \cos \theta d \cos \theta'} \approx \frac{1}{4} \left(1 + 3 \cos^2 \theta \right) \left(L_{1c} \cos \theta \cos \theta'L_{1c} \cos \theta + L_{2x} \sin \theta \theta' \right)$$

... as a function of the decay angles ...

... and the angular coefficients L.

Angular fit model is chosen to include dominant spin-3/2 and underlying spin-1/2 A resonances.

How to get the angular observables?

Perform an angular fit on realistic pseudo-experiments:

$$\theta' = \frac{1}{d \Gamma} \frac{d^4 \Gamma}{d \phi d \cos \theta d \cos \theta'}$$

Expected yields in $A_b \to (1520) \mu^+\mu^-$ are around 1/10 of the ones in $B^0 \to K^{*0} \mu^+\mu^-$.

Working on angular fit validation with $A_b \to pK^-/\phi(\mu^+\mu^-)$ decays. Exciting possibilities for Run 3 and further thanks to increase of luminosity.

Angular analyses?

Intriguing consistent deviations in $b \to s \mu^+\mu^-$ decays measured.

Measurements deviate from the SM prediction.

Why the LHCb detector?

- $b\bar{b}$ pairs produced predominantly in forward region
- Single arm forward spectrometer
- Excellent vertex and momentum resolution
- Good particle identification

Ideal for flavour physics precision measurements

Angular analyses?

Intriguing consistent deviations in $b \to s \mu^+\mu^-$ decays measured.

Measurements deviate from the SM prediction.

Example $A_b \to (1520) \to pK^- \mu^+\mu^-$

First angular analysis using $A_b \to pK^- \mu^+\mu^-$ at LHCb. Complementary to existing angular analyses.

Several resonances present in the pK^- mass spectrum. Focus on $A(1520)$ resonance being the dominant one.

Angular fit model is chosen to include dominant spin-3/2 and underlying spin-1/2 A resonances.