

Search for the decay $\Xi_b^-(\Omega_b^-) \to \Lambda_c^+h^-h^-$ at LHCb

Bhagyashree Pagare[1], Timothy Gershon[1], Thomas Latham[1], Mark Whitehead[2]

¹University of Warwick, ²University of Glasgow

Why do we search?

- CP violation phenomenon that relates to matter and antimatter asymmetry has never been observed in b baryons
- Studies of b baryons are limited
- Necessary to know the production properties to be able to determine CP asymmetries in future studies
- Provide new insights into charm baryon spectroscopy

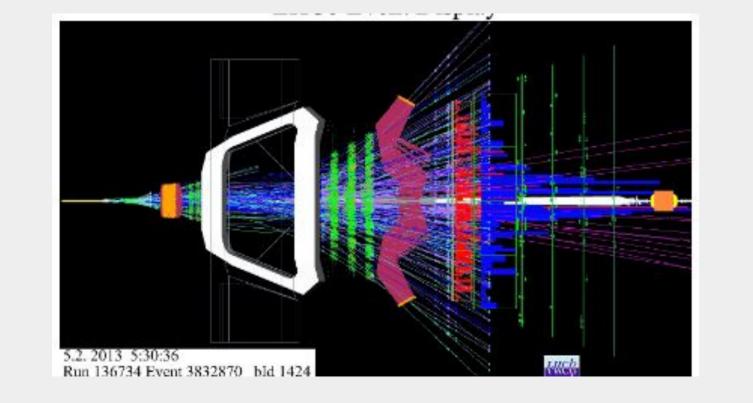
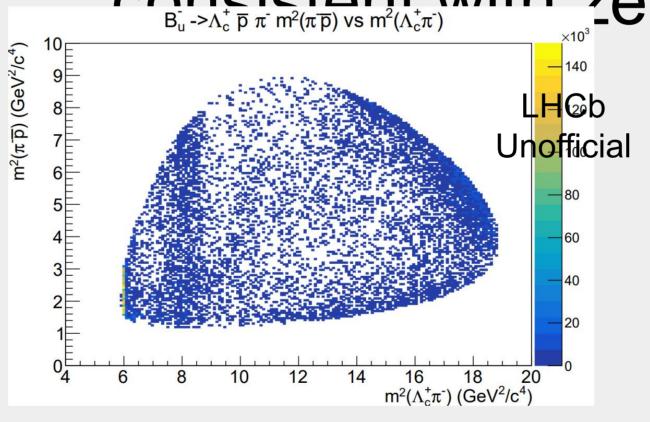



Fig 1. Charge Parity transformation

Where do we search and why?


- We search for it at LHCb
- Designed to study the unprecedented amounts of b baryons from the LHC p-p collisions of 9fb⁻¹
- Excellent vertex, mass and time resolution
- Precise particle identification

What do we observe and study?

- Resonances in the control mode channel corresponding to $\Sigma_{\rm c}$ (2455), $\Sigma_{\rm c}$ (2520), $\Sigma_{\rm c}$ (2840)
- Variation of the production asymmetry with respect to transverse momentum which is Consistent with zero as expected for R

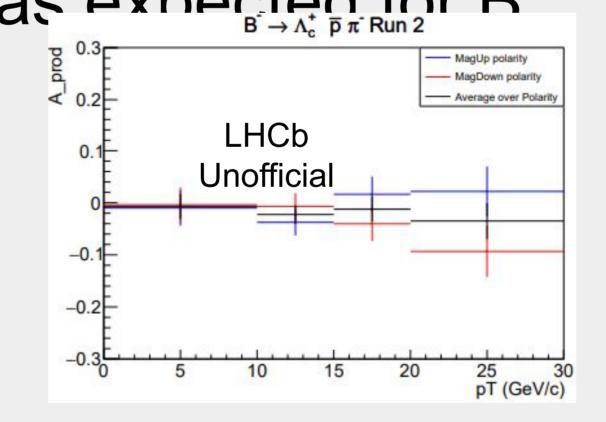
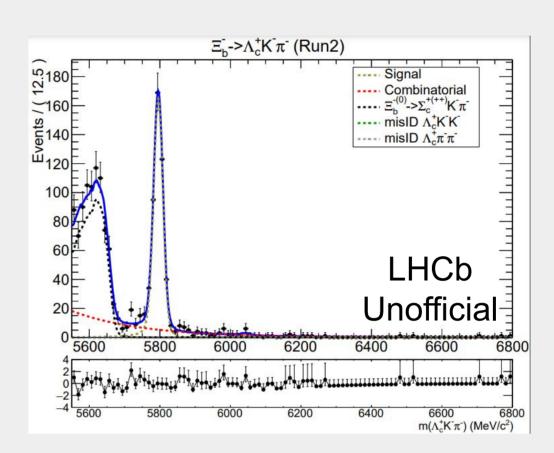


Fig 3. Dalitz plot


Fig 4. Production asymmetry vs transverse momentum

References

- Phys. Rev. D, 78:112003, 2008
- Violation in the b system.
 Reports on Progress in Physics, 80(4):046201, Feb 2017
- LHCb-PAPER-2020-005, CERN-EP-2020-051, arXiv:2004:10563

How do we measure?

- Use B⁻-> Λ_c^+ ph⁻ as the control mode and $\Xi_b^-(\Omega_b^-)$ -> Λ_c^+ h⁻h⁻ as signal modes where h,h' can be K or π
- Simultaneous fit separately for signal modes and control modes
- Blind analysis for signal modes
- Yields for misID background are constrained depending upon the yield of correctly identified signal

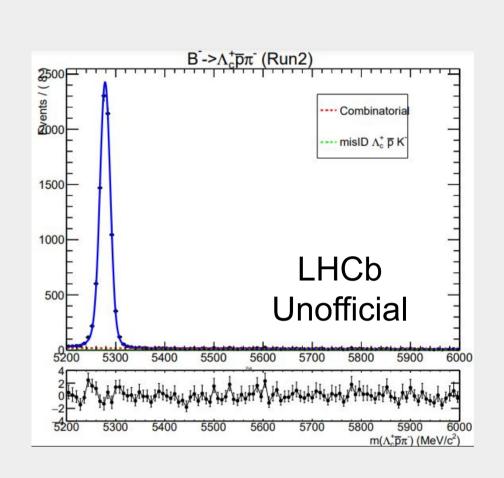


Fig 2. Invariant mass of signal mode and control mode candidates

What do we compute and measure?

 We measure the relative branching fraction from fit yields and efficiency

$$\frac{\mathcal{B}(\Xi_b^- \to \Lambda_c^+ h^- h'^-)}{\mathcal{B}(B_u^- \to \Lambda_c^+ \bar{p} h^-)} \times \frac{f_{\Xi_b^-(\Omega_b^-)}}{f_{B_u^-}} = \frac{\mathcal{N}_{\Xi_b^-(\Omega_b^-)} / \epsilon_{\Xi_b^-(\Omega_b^-)}}{\mathcal{N}_{B_u^-} / \epsilon_{B_u^-}}$$

- The efficiencies are computed from
- The resMtCof the relative branching fraction of the two control modes is given as

$$\frac{\mathcal{B}(B^- \to \Lambda_c^+ \overline{p} K^-)}{\mathcal{B}(B^- \to \Lambda_c^+ \overline{p} \pi^-)} = 0.0398 \pm 0.0023 \, (\text{stat}) \pm 0.0012 \, (\text{syst})$$

- Most precise measurement.
- Results for signal modes are in preparation

