Study of the $\Lambda_b^0 \rightarrow D^0 p K^-$ decay for a future measurement of the CKM angle γ at the LHCb experiment

<u>Chiara Mancuso^{1,2}, Patrick Robbe¹, Nicola Neri²</u>

UNIVERSITÀ DEGLI STUDI DI MILANO

universite

PARIS-SACLAY

¹Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France ²INFN Sezione di Milano, Milano, Italy

3

• The CKM angle γ is, within the unitarity triangle, the angle known with the worst experimental uncertainty

- Theoretically clean measurement
- CP violation never measured in baryons

Technique

[Phys. Lett. B265 (1991), pp. 172–176]

Gronau, London, Wyler (GLW) method $\rightarrow D^0$ decays into **CP eigenstates**

- CP-even eigenstates: K^-K^+ , $\pi^-\pi^+$
- CP-odd eigenstates: $K_S \pi^0, K_S \rho^0, \dots$

Analysis strategy

• Analysis performed on **Runl** and **Runll** (2011 - 2018) data sample collected by LHCb (9 fb⁻¹ of integrated luminosity of pp collisions)

• Wide use of control channel $\Lambda_b^0 \to D^0 p \pi^ B(\Lambda_b^0 \to D^0 p \pi^-) = (6.3 \pm 0.7) \times 10^{-4}$

$$\begin{split} A_{CP} &= \frac{\Gamma(\Lambda_b^0 \to D_{CP} p K^-) - \Gamma(\bar{\Lambda}_b^0 \to D_{CP} \bar{p} K^+)}{\Gamma(\Lambda_b^0 \to D_{CP} p K^-) + \Gamma(\bar{\Lambda}_b^0 \to D_{CP} \bar{p} K^+)} = \frac{2r_B \mathrm{sin} \delta_B \mathrm{sin} \gamma}{1 + r_B^2 + 2r_B \mathrm{cos} \delta_B \mathrm{cos} \gamma} \\ R_{CP} &= \frac{\Gamma(\Lambda_b^0 \to D_{CP} p K^-) - \Gamma(\bar{\Lambda}_b^0 \to D_{CP} \bar{p} K^+)}{\Gamma(\Lambda_b^0 \to D^0 p K^-) + \Gamma(\bar{\Lambda}_b^0 \to \bar{D}^0 \bar{p} K^+)} = 1 + r_B^2 + 2r_B r_D \mathrm{cos} \delta_B \mathrm{cos} \gamma \end{split}$$

The challenge

- Highly contaminating background \rightarrow charmless decays, i.e. $\Lambda_b^0 \rightarrow ph^-h^+h^$ which reduces the sensitivity to γ
- Previously eliminated with rectangular cuts
 → New tool: Boosted Decision Tree (BDT) able
 to discriminate three typologies of events
- Trained with kinematic variables of mother and daughter particles, key to remove the charmless background is the **distance** between Λ_b^0 and D^0 **vertices**

 $B(\Lambda_b^0 \to D^0 p K^-) = (4.6 \pm 0.8) \times 10^{-5}$

• Preselection on PID of $p, h_{D^0}^{\pm}$

$$S_{FoM} = \frac{S}{\sqrt{S+B}} = \frac{\epsilon_S S_0}{\sqrt{\epsilon_S S_0 + \epsilon_B B_0}}$$

The fit

5

To further constrain the possible charmless contribution, a **simultaneous fit** is realised between the Λ_b^0 and D^0 invariant mass distributions

 $m(D^0p\pi^-)$ [MeV/c²]

⁶ Prospects and next steps

• Expected sensitivity on $\gamma = 10^{\circ}$

• Angular analysis of $\Lambda_b^0 \rightarrow D^0 p K^-$ foreseen

• Joint measurement of γ with $\Lambda_b^0 \to D^0 p K^-$, where D^0 is decaying to 4-body

• Analysis on RunIII data

12th LHC students poster session

stay