HLT2 & Alignment and Calibration at LHCb
Nuria Valls Canudas - La Salle URL, Barcelona Y .
On behalf of the LHCb Real Time Analysis Project ~

LHCC Poster Session - 29/11/22

1. Overview of the trigger and real-time analysis 3. Example of an improved reconstruction algorithm: Calo Graph
Clustering
e The data volume generated from the LHCb detector currently reaches 5TB/s [1].
e To record the data to permanent storage, this rate is reduced by a factor 400 by the trigger system [2], o Graph Clustering is the new default solution for ECAL reconstruction, maintaining the
which uses fully reconstructed events to select specific signals of interest. efficiency of the previous algorithm and improving by 65.4% the execution time on average
. : : : . . . . Figure 6).
e This approach is called real-time analysis [3]: requires an offline-quality reconstruction enabled by the (Fig )
alignment and calibration of the detector performed in quasi-real-time (Figure 1): e Ituses graph data structures to store event digits.
e HLT1: Run in GPUs. Performs a partial reconstruction and reduces data volume by a factor 20 [4]. o Usingasetof rules, it inserts the digits into the graph to create cluster structures (Figure 7).
® Allgnment and Calibration: Ensures the thSiCS par‘ameteI‘S dre Computed with the best pOSSible o [t analyses the connected Components Solving the Overlapping cells between clusters in a
resolution. dedicated algorithm.
e HLT2: Run in CPUs. Performs a full offline-quality reconstruction and selection of physics
signatures. 504 * Cellular Automaton
® Graph Clustering
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Figure 1: Online dataflow [5]
4. Alignment and Calibration
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The offline-quality reconstruction is divided into four main components: s W o (|| . >
e Each step is performed with a Time
o Charged particle pattern recognition: Tracking algorithms that use information from VELO, UT different frequency [13, 14]. | ) At A
and SciFi detectors according to different track types (Figure 2). _ VELO alignment
o Full tracking system: _
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evaluated every 2 weeks. procedure.
Track extending (P3, P2, P1) . . . . . . . .
o RICH calibration: evaluated on run basis. Mirror alignment performed for each fill within
o ° ° o 3 some tens of minutes.
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Track seeding (P3, P2, P1) e First alignment of the tracking system on Run 3 data has been evaluated (Figure 9, 10).
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Figure 2: Example of track seeding and extension in the VELO pattern recognition algorithm [11]. %400_ § 800 e
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o Kalman fit: Achieve best accuracy and o Particle identification: Information from the 04 O oV lefutight delta x [mm] o Track x* per d.o.f.
precision of tracks with a Kalman filter two RICH detectors [6], ECAL and the muon Figure 9: Misalignment of the VELO halves evaluated as  Figure 10: Tracking performance for different
based algorithm (Figure 3). system [7] is used to identify charged particles. the difference in x-position of the PVs on each VELO alignment conditions using VELO and SciFi [16].
- Optimal performance is achieved with machine half, for different alignment conditions [12]
b 8 learning algorithms.
- {4 =
\z 1 — —e— HLT?2 Reco. LHCDb simulation — g s x10I3 . | | | |
° | — p distribution HLT2 Reco. 1 5 1 - N % -
0.8~ 1 = | w—p e ECAL calibration requires to adjust the s 6001
0.6 E é 10 B LHCD gain of PMTs using a LED reference value a0
- Sonde o Shis Shin: G after each fill [15]. Z | el
04 I SNS rog-ro-ro-ror e e i &) c 0.8 - - 400 _
4 Jd = - . . . L. 9 - =135.3240.01 MeV']
i 1 5 > e A more fine-grained calibration is based 5 Run 253597 H=135 o
B - > = 0.6 - - =11.391£0.02 MeV 7
0.2 1 % S upon the observed ™’ mass on each cell = 2001 0 -
_ - o) ] n -
B O i & 0.4 (Figure 11). I |
0 10 20 30 40 50 i — i
P [GeV] 0.2 1 e ! PRI T T 07 ot s s et on SR T W N S SRR
0 50 100 150 200 250
. . . 1 m,,, [MeV]
Figure 3: Relative momentum resolution of 0.0+ i m ‘
reconstructed tracks as a function of momentum 10910(X2opa/NdOf) Figure 11: mDi-photon invariant mass after
[10]. _ _ per-cell calibration.
Figure 4: Spectrum of the ¥ 2 CORR, normalised to the
degrees of freedom, for muons and protons samples.
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