

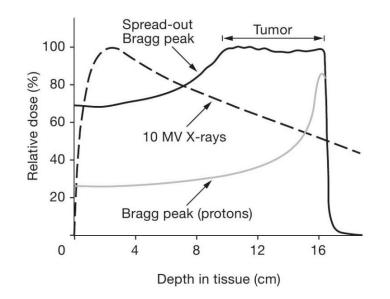
This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

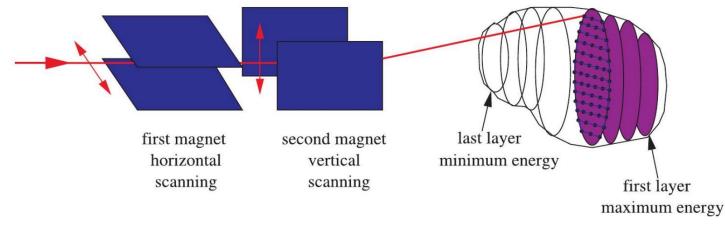
Magnetization and other losses in CCT SC magnets for hadrontherapy and perspecitve for IRIS

Highlight Talk Nr1

Stefano Sorti, UNIMI-INFN

İFAST

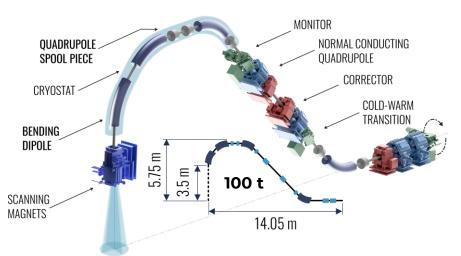

- Introduction to hadrontherapy
- Challenges for magnets in hadrontherapy
- Activity on power losses for LTS CCT (I.FAST 8.2)
- Activity on power losses for HTS CCT (I.FAST 8.3)
- Knowledge transfer to other projects (PNRR-IRIS)



Images reprinted from: Grevillot, Loïc. Monte Carlo simulation of active scanning proton therapy system with Gate/Geant4. Diss. Lyon, INSA, 2011.

Hadrontherapy

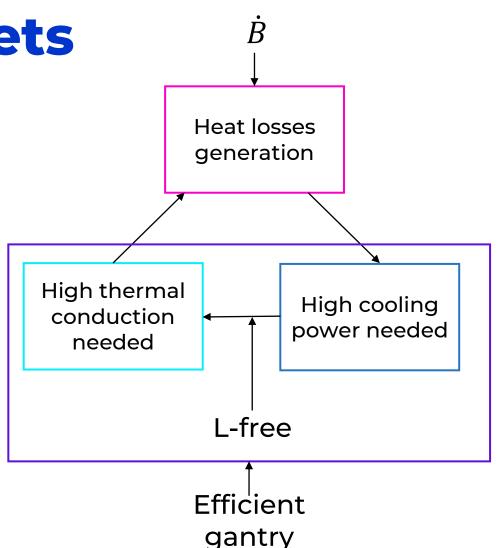
- Hadrontherapy is a form of radiotherapy that, unlike traditional radiotherapy, based on X-rays or electrons, involves the use of protons and carbon ions.
- Among charged particles, the main difference between protons and carbon ions regards the radiobiological effectiveness (RBE).



Stefano Sorti – Highlight Talk Nr1 – Losses in CCT SC magnets for hadrontherapy

Hadrontherapy

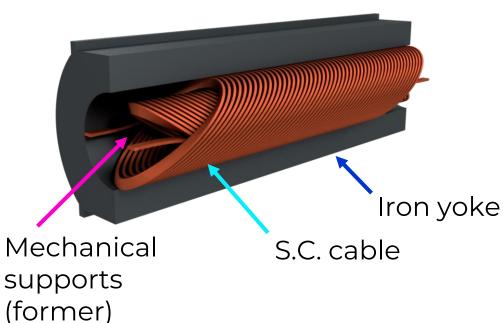
- More specifically, we focus on "pencil scanning" with a rotating structure (gantry).
- Rotation allows for desired medical angle without moving the patient (up to 360°).
- Depending on the depth and on the particle, different beam rigidity: $E[GeV] = 0.3 \rho[m]B[T]$ **Protons:** 220 MeV for 30 cm, $B\rho = 2.3 \text{ T m}$ **Carbon lons:** 4.8 GeV for 30 cm, $B\rho = 6.6 \text{ T m}$
- The gantry in CHIBA (Japan), made by Toshiba, is the only working superconducting ion gantry in the world. That's due to serious challenges.



SIG ion gantry (running project)

Challenges for magnets in Hadrontherapy

- Higher *B* means lower ρ , thus smaller gantry. → Need for **superconductivity** (so, **cryogeny**).
- Performance = operating temperatures where cryocoolers are inefficient
 → Need for High-T_c Superconductivity
- Scanning at different depth = different particle energies. → Need for >100 mT/s ramp-rate
- Rotating structure is better operated if no liquid is flowing in the structure
 → Need for liquid-free cooling

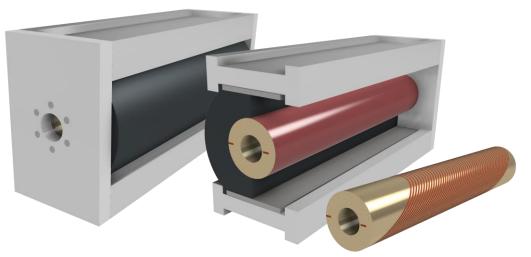


IFAST

Note: Challenges above motivate other research paths, such as highmomentum acceptance magnets [1], or novel concepts as GaToroid [2].

Losses in Superconducting Magnets

Typical layout of CCT in WP8:


- Losses also in resistive magnets: eddy currents in conductive materials (Faraday's law) and yoke magnetization (iron hysteresis), if any
- 2. Losses **from warm ambient** (conduction trough supports, radiation even in vacuum)
- 3. Losses from **resistive current leads**

4. Losses in **superconductors** (magnetization, inter-filament, etc..)

not shown

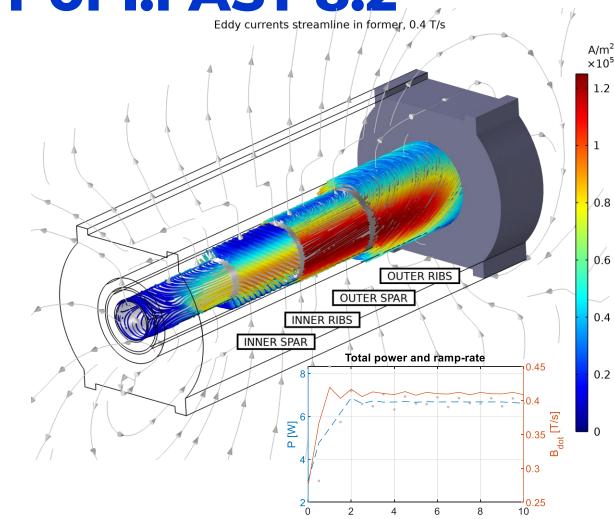
- Main reference is D8.2: LTC CCT employs a Nb-Ti low-losses 6+1 rope, with an Aluminium-Bronze support.
- T_{op} = 4.7 K means ~2 W per cryocooler. Magnet cannot go above 6.3 K

	•	Magnet Parameters	Values
4.5	22 mm	Dipole field B_o	4
		dB/dt	0.4
		Magnetic and physical length	0.8,1
		Bore diameter	80
		Operation temperature	4.7
		Current in rope cable	1.3
IFAST Stefano Sorti – Highlight Talk Nr1	– Losses in CC1	۲SC magnets for hadrontherapy	

unit

Т

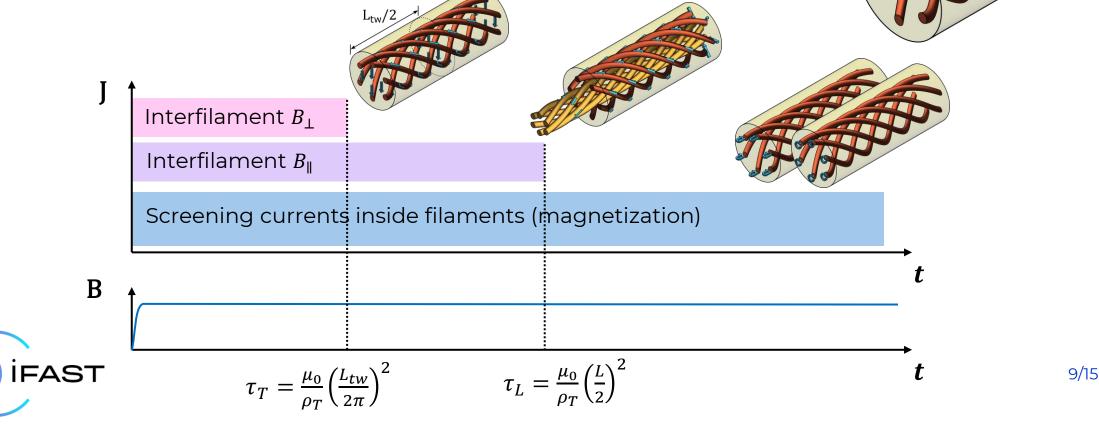
T/s

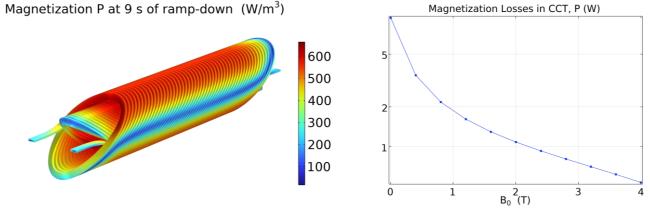

m

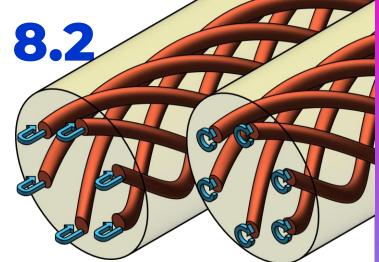
mm

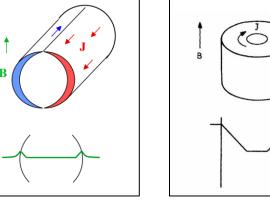
Κ

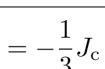
kΑ


- Eddy Currents in former: metallic material employed for the sake of thermal conduction. Aluminium-Bronze is in between stainless steel and aluminium.
- 4-mm-spar design simulated in 3D time-domain simulation with nonlinear (non-conductive) yoke. Total power 6 W.
- Magnet in D8.2 (8-mm former) has around 14 W.
- → solutions under investigation to reduce eddy currents

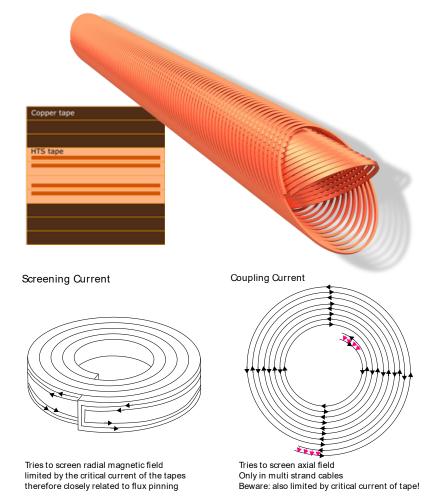



Stefano Sorti – Highlight Talk Nr1 – Losses in CCT SC magnets for hadrontherapy


• **Superconductor losses** are a topic by themselves. For CCT in LTS, we have multi-filaments conductors. Different losses contributions arise. There are losses also inside rope cable, still under investigation.

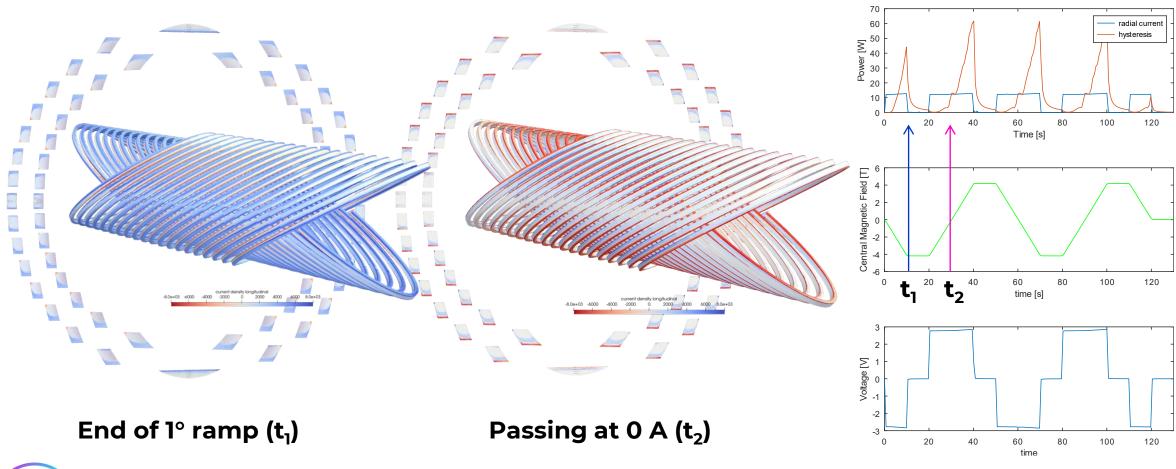

- We profit from INFN Discorap project and employ the same low-losses conductor (2.5 µm filaments, resistive CuMn barriers in between filaments).
- Estimated major contribution is **magnetization**. Analytical formulas (Wilson) are employed on top of a 3D simulation:

 $M_{\perp} = \frac{4}{3\pi} J_{\rm c} \qquad M_{\parallel} = -\frac{1}{3} J_{\rm c}$



 Total power during ramp is on average 2 W. WIP magnetization effects on field quality

FAST

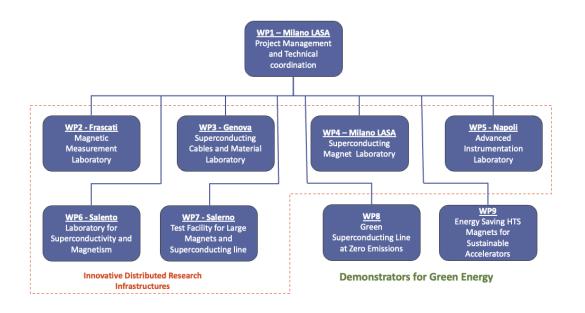

- The same loss components ideally hold for HTS magnet, also. Iron yoke is not included.
- Main difference is that superconductor is in the shape of tapes → higher s.c. losses.
- Main solution for HTS magnet is the higher operation temperature, set at 20 K (T_{max} = 30 K). Cryocoolers at this level can absorb around 40 W.
- Main reference is D8.3. Collaboration with Jeroen van Nugteren (Little Beast Engineering). Both coupling and screening currents are included in a 3D numerical model. Estimated 50 W cycle-av.
- Magnet can sustain 1 cycle w/out cooling ($\Delta T = 8 K$)

IFAST WP8: AC losses calculation for HTS Magnet, pt. II

current distribution in subscale model (20 turns) for a ±4 T cycle

Stefano Sorti – Highlight Talk Nr1 – Losses in CCT SC magnets for hadrontherapy

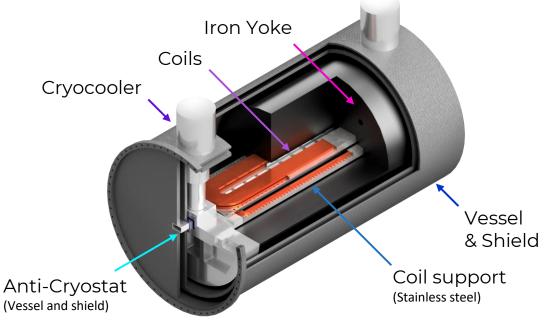
12/15



A distributed research infrastructure

A wide range of objectives

- 1. Fundamental Physics instrumentation
- 2. Societal Applications
 - Green: energy transport at zero emission and energy saving magnets;
 - Medical: Superconductivity could play a key role in heavy ion therapy by enabling a rotatable gantry;
- 3. Two full-scale demonstrators.
- 4. Final deadline is 30 October 2025.



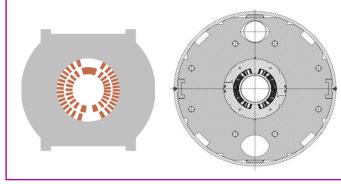
HTS demonstrator in IRIS

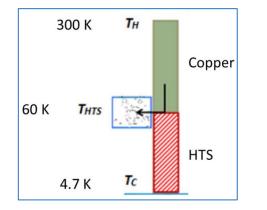
- This wide-purposes demonstrator wants to address some of the main challenges for future-accelerators magnets.
- Despite it expects a slow ramp-rate (a few mT/s), superconductor behavior still needing accurate evaluation.
- Expected cooling by cryocoolers, same challenges as I.FAST 8.3.

Q [W]	At 60 K	At 20 K	
Mechanical supports	12	1	
Radiation between layers	9	0.1	
Current-Leads	80	0.5	
Joints inside HTS tapes	0	0.5	
TOTAL	101	2.1	
But S.C. losses not considered here!			

Summary and conclusions

- Hadrontherapy poses serious challenges due to the need for tumor scanning through a hundreds-tons rotating gantry (fast-ramping, liquid-free magnets)
- Losses in LTS are critical with respect to the limited cooling budget available. IFAST 8.2 CCT is operated at 4.7 K, where 4 W + P_{fomer} are to be taken by 2W cryocoolers
- Losses in HTS are easier to manage on paper, thanks to the higher operation temperature (20 K), so that even >50 W can be taken away with a pair of cryocoolers. Nevertheless, HTS pose other challenges (such as protection, not discussed here)
- Challenges addressed in hadrontherapy magnets can be of interest also for accelerators in other fields, fostering accelerator science and technology.


THANKS FOR THE ATTENTION!



This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

- We can go through the list at slide 7 to discuss each contribution:
- 1. The **eddy currents** in former are evaluated numerically (next slide), **yoke magnetization** is conservatively estimated by results of INFN Discorap project [1] in up to 0.72 W for the magnet (laminated, low-losses iron).
- 2. The **losses from warm ambient** are to be computed after gantry integration (still, room for optimization).
- 3. Losses from **resistive current leads** come from analytical solution for optimal current leads (46 W/kA), leading to 120 W (but can be intercepted at 60 K by thermal shield employing mixed Cu-HTS leads)
- 4. Losses in **superconductors** are computed with a mixed analyticalnumerical approach (following slides)

FAST

[1] Alessandria et al., Technical