

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Task 7.3: VAriable Dipole for the Elettra Ring

I.FAST Annual Meeting - 20/04/23

Y. Papaphillipou, A. Poyet

VAriable Dipole for the Elettra Ring - VADER

- Task 7.3 within I.FAST WP7: High Brightness Accelerators for Light Sources
- Partners and collaborators:

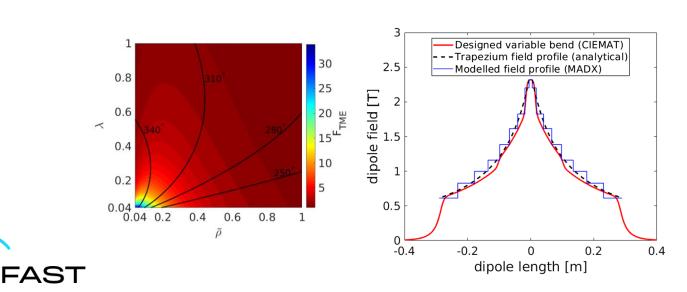
Y. Papaphilippou A. Poyet

Energéticas, Medioambientales y Tecnológicas

> F. Toral M. Dominguez

ra Sincrotrone Trieste

E. Karantzoulis



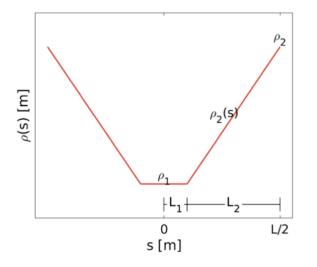
R. Geometrante

VADER objectives

- Fabricate an innovative dipole magnet prototype with longitudinal varying dipole field, including a transverse gradient for the ELETTRA upgrade
- Permanent magnet concept with trapezoidal bending radius, 2.3 T peak field and ~10 T/m gradient, already established (CERN/CIEMAT)
- Proved the horizontal emittance reduction to ultra-low levels of i.e. ~60 pm @ 2.86 GeV, for the CLIC DR (M. A. Domínguez Martinez et al., <u>IEEE Trans. Appl. Supercond. 28, 1, 2018</u>; S. Papadopoulou et al, <u>PRAB 22, 091601, 2019</u>)

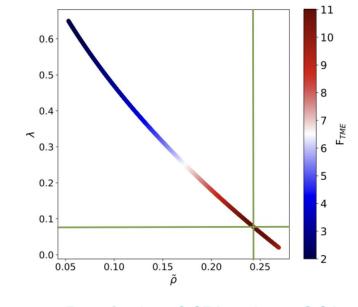
• First demonstrator constructed/qualified by CIEMAT

VADER objectives


- Keep the same S6BA-E lattice for Elettra and replace the LG dipoles by VADER ones.
 - Implement a trapezoidal profile in bending radius
 - Observe a clear emittance reduction
- Some **constraints**:
 - Same geometrical layout
 - Same total bending angle for each dipole
 - Same dipole length
- But also some freedoms:
 - We set the dipole peak field at 2.3 T (as for the CLIC magnet) instead of the current 1.8 T

How to make a VADER?

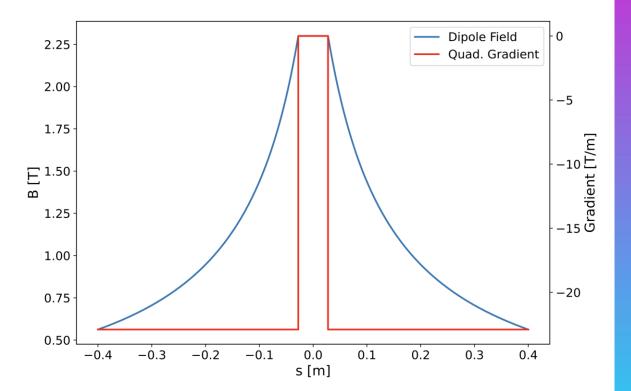
Constrained problem. Trapezoidal profile is given by:


$$\rho(s) = \begin{cases} \rho_1, & 0 < s < L_1\\ \rho_1 + \frac{(L_1 - s)(\rho_1 - \rho_2)}{L_2}, & L_1 < s < L_1 + L_2 = L/2 \end{cases}$$

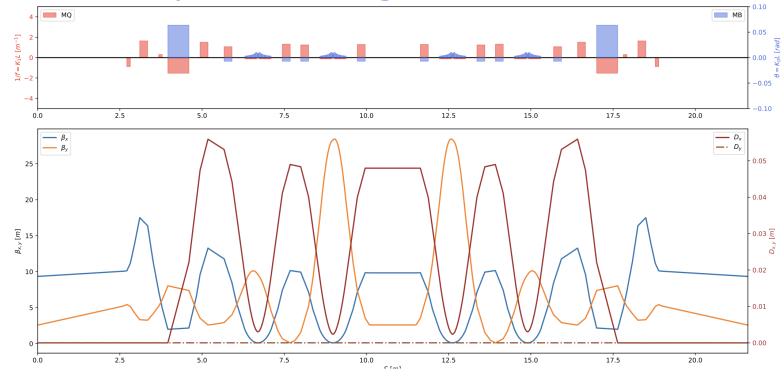
Then, we define 2 parameters such as:

$$\lambda = rac{L_1}{L_2}$$
 and $ilde{
ho} = rac{
ho_1}{
ho_2}$

And we compute the F_{TME} as a function of those parameters:


 \Rightarrow Best for $\lambda = 0.074$ and $\tilde{\rho} = 0.24$.

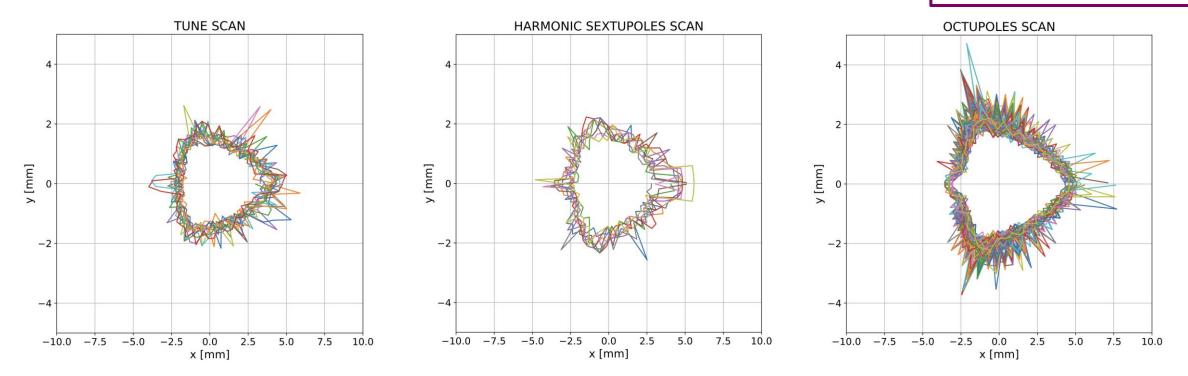
A. Poyet – Task 7.3: VADER – I.FAST Annual Meeting 2023


Profile Design and Magnet Specifications

- Good field region: +/- 6-8 mm
- Gap: 17 mm
- Quadrupolar gradient: 23 T/m
- Profile optimized according to the calculation of the emittance reduction factor
- Magnetic design on-going at CIEMAT

Lattice and optics design

• Optics constraints at the ID are **matched**

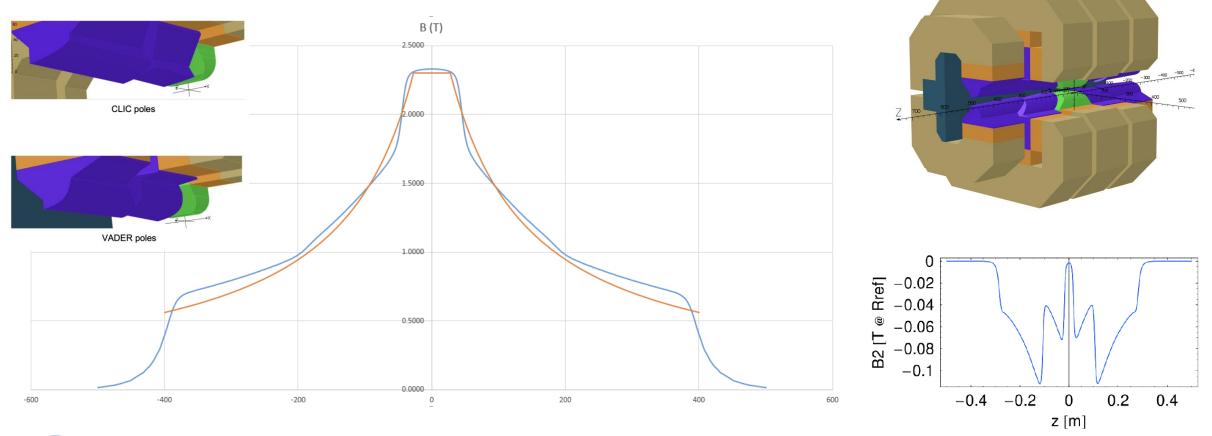

FAST

• Tunes: 34.706 / 22.852

- Horizontal emittance reduction from 212 to 100 pm (more than factor of 2!)
- Chromaticities: -157/-125
- ✓ Non-linear optimization on-going: already good on-momentum DA of about 6 mm

Non-linear Optimization

On-momentum, without error



 \rightarrow Up to ~ 6 mm DA in the horizontal plane, ~ 3 mm in the vertical one

VADER: Magnetic design progress

- Feasibility study with adaptation of the CLIC demonstrator model: close to the final phase
- Increasing permanent magnet (NdFeB) volume around 30% (@ high field region), peak of 2.3T with gap of 19mm (17+2 mm) can be reached

A. Poyet – Task 7.3: VADER – I.FAST Annual Meeting 2023

E. Dominguez

VADER timeline

	Deliverable description	Month	
1	Magnet Specifications based on optics calculations for ELETTRA	12	Milestone MS 26
2	Magnetic and mechanical design (including fabrication drawings)	24	
3	Fabrication of the prototype	42	→ Deliverable D7.3
4	Acceptance tests	48	Milestone MS 27

- **Optics work completed** (CERN/Elettra), non-linear dynamics optimization on-going
- Magnet specification document in final review stage
- Internal meeting between CIEMAT/KYMA to discuss fabrication process in fall
 2022
- Magnetic and mechanical design from CIEMAT on-going with input from KYMA for fabrication, to be ready by summer 2023
- Fabrication of the prototype by KYMA to start on **summer 2023**, ready for acceptance tests by **beginning of 2025**

Conclusions and next steps

- ✓ Magnet profile has been determined
- ✓ **Linear optics design** is done

FAST

- ✓ **Good emittance reduction:** factor 2 reduction compared to the Elettra 2.0 baseline
- ✓ Non-linear optimization on-going: **on-momentum DA of about 6 mm without error**
- Good progress on magnetic design: foreseen start of the assembly in 2024
- Milestone report in being written now
- Next step: MOGA/machine learning optimization using Python optimizers to reach onmomentum DA without error above 7-8 mm
- $\circ~$ Final step: implement real profile in MAD-X and simulate the obtained emittance

IFAST

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.