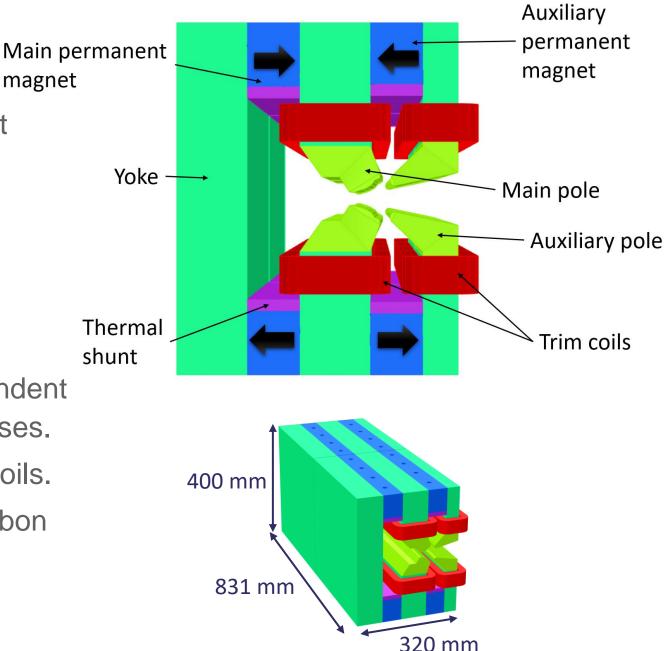


I.FAST 2nd Annual Meeting– Task 11.3 Permanent Magnet Quadrupoles & Combined Function Magnets for Ultra Low-Emittance Rings

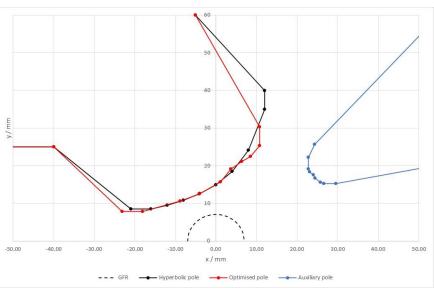
Alex Hinton, ASTeC, STFC Daresbury Laboratory I.FAST 2nd Annual Meeting, Trieste 20/04/2023

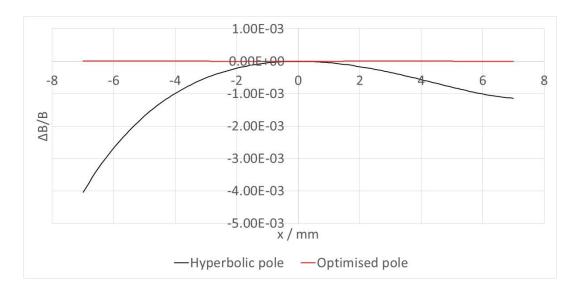
Introduction

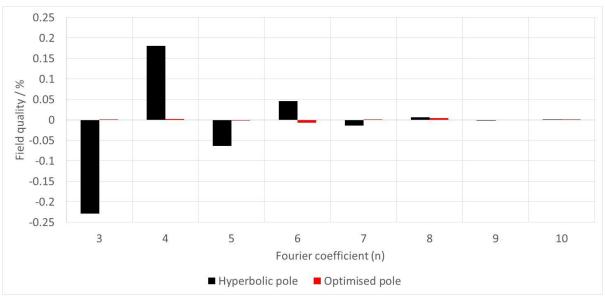
- Fourth generation synchrotron light sources make use of multi-bend achromat lattices to reduce beam emittance and increase radiation brightness.
- Lattices require combined function dipolequadrupole (DQ) magnets.
- Diamond-II upgrade will require 48 DQ magnets drawing 2.3 kW each.
- Can permanent magnets achieve the same purpose with negligible power?



Design Overview

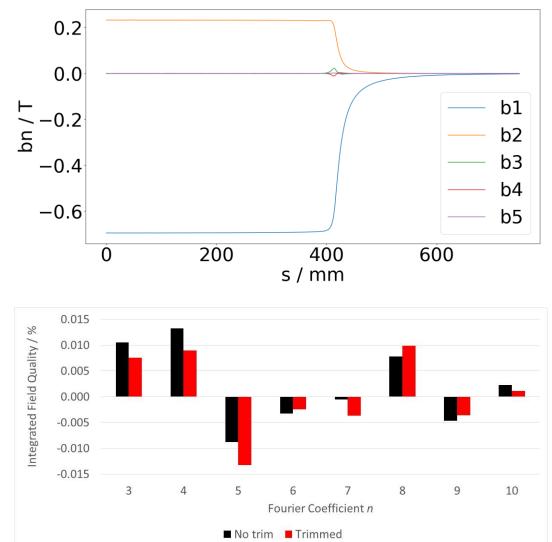

- Hybrid Electromagnet-Permanent Magnet Tuneable Optics (HEPTO).
- Dipole = 0.7 T, Gradient = 33 T/m.
- Effective length = 0.870 m.
- Main source of field = NdFeB permanent magnet blocks
- Dipole and gradient fields require independent tuning of ±2.5% for commissioning purposes.
- Field tuning achieved by air-cooled trim coils.
- Yoke and poles made from XC06 low-carbon steel.





Pole Shape Optimisation

- Pole tip design optimised in Opera 2D.
- Pole shaping algorithm used to minimise multipole errors [1].
- Required field quality $\Delta B/B < 5 \times 10^{-4}$.

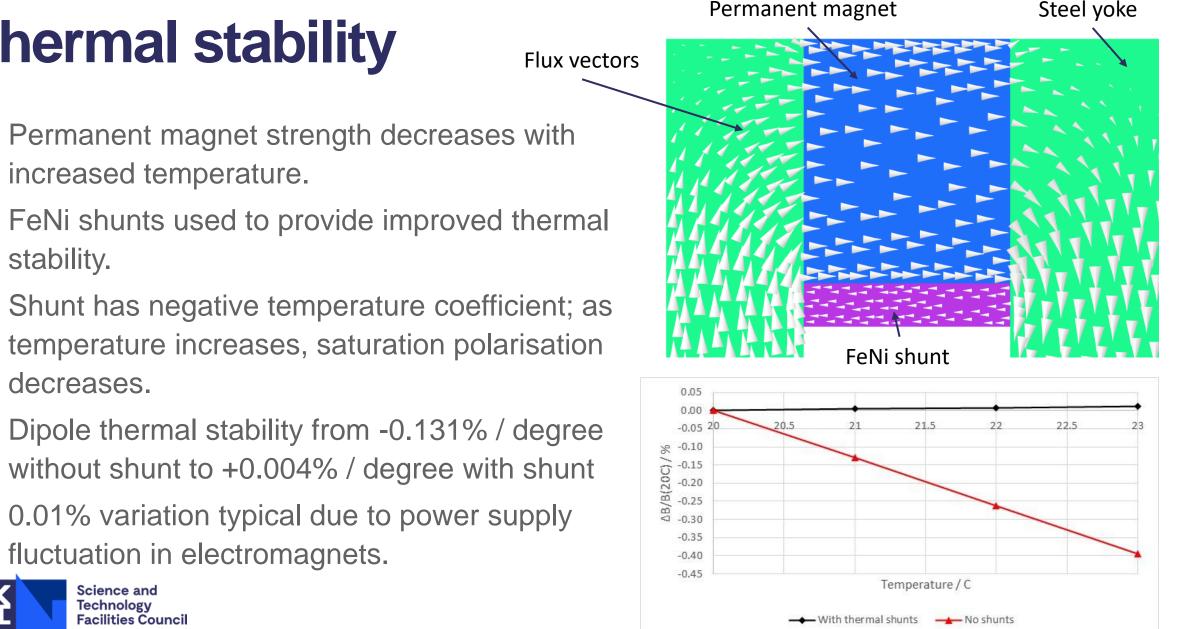


[1] G. Le Be, J. Chavanne and P. N'gotta, "Shape optimization for the ESRF II magnets," in *IPAC 2014: Proceedings of the 5th International Particle Accelerator Conference*, 2014.

3D Field Quality

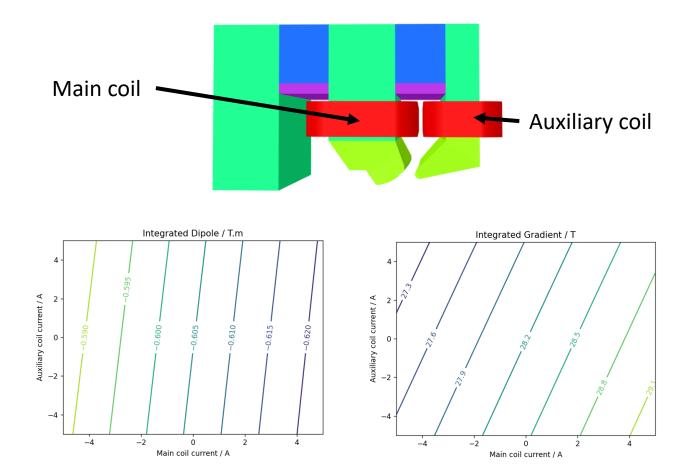
- Integrated field quality assessed in Opera 3D.
- Pole tips curved to follow beam trajectory and give constant dipole field.
- Effective length of quadrupole shorter than dipole.
- Central gradient increased and pole profile adjusted slightly to give target field integrals.
- Trim coils reduce integrated sextupole, octupole terms.

Thermal stability


•

 \bullet

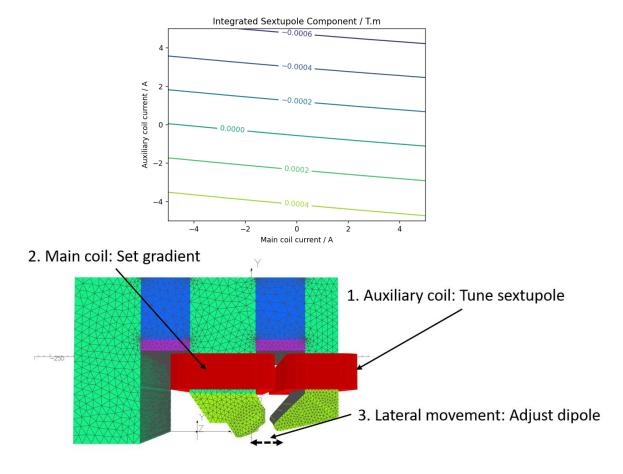
stability.


decreases.

Science and Technology **Facilities** Council

Tuning Range

- Air cooled coils used to independently trim dipole and quadrupole fields by ±2.5%.
- Currents limited to 5 A to allow air cooling.
- Tuning is inefficient due to permanent magnets in magnetic circuit.
- Required tuning range cannot be achieved with air-cooled coils.


Change in integrated	Change in integrated	Required main coil	Required auxiliary				
dipole field from	gradient field from	current / A	coil current / A				
nominal / %	nominal / %						
0	0	-0.020	0.051				
-2.5	0	5.718	16.597				
+2.5	0	-5.759	-16.494				
0	-2.5	-1.465	-16.741				
0	2.5	1.424	16.843				

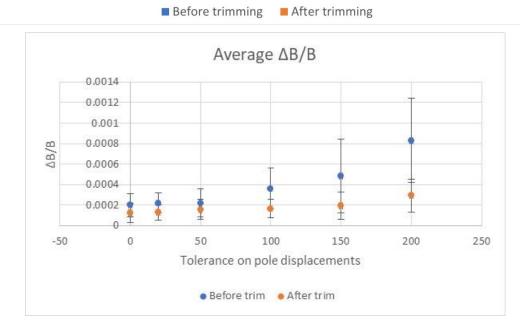
Mechanical Tuning

- Main and auxiliary coils cannot achieve independent field tuning in isolation.
- Lateral movement of magnet can tune on-axis dipole independent of gradient without coil currents.
- Auxiliary coil used to tune sextupole field component.
- Main coil used to tune gradient.
- With ±1mm lateral movement of magnet in-situ, required tuning can be achieved with air-cooled coils.

Change in integrated dipole field from nominal / %	Change in integrated gradient field from nominal / %	Estimated required main coil current / A	Estimated required auxiliary coil current / A	Required lateral offset / mm
0	0	-0.225	-0.539	0.02
-2.5	0	-0.225	-0.539	0.56
+2.5	0	-0.225	-0.539	-0.52
0	-2.5	3.985	-1.026	-0.50
0	2.5	-4.435	-0.051	0.56

Tolerance Studies

- Required field quality $\Delta B/B < 5 \times 10^{-4}$.
- Sextupole component $< 10^{-3}$. ${\color{black}\bullet}$
- Machining and assembly tolerances will negatively impact field quality compared to nominal magnetic design.
- Auxiliary coil can trim undesired sextupole component introduced by tolerances.
- Modelling shows required machining \bullet tolerances of $\pm 20 \ \mu m$ on main pole, $\pm 40 \ \mu m$ on auxiliary pole.
- Displacement tolerances $< 200 \ \mu m$.

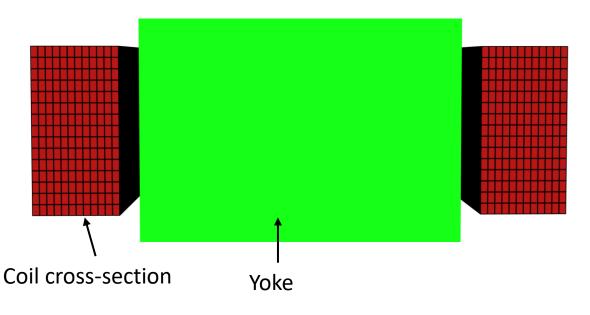


Tolerance on main pole shape = $\pm 20 \mu m$, Tolerance on auxiliary pole shape = $\pm 40 \mu m$, tolerance on main and auxiliary pole displacements = $\pm 50 \, \mu m$ 1.50E-04 7 mm 1.30E-04 © 1.10E-04 error 9.00E-05 7.00E-05 coeffici 5.00E-05 3.00E-05 1.00E-05 -1.00E-05

Fourier coefficient

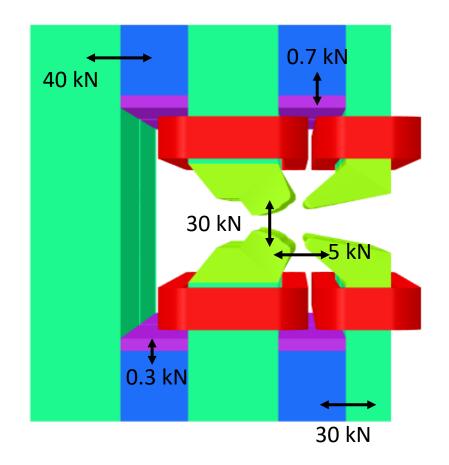
2

3


rms |

10

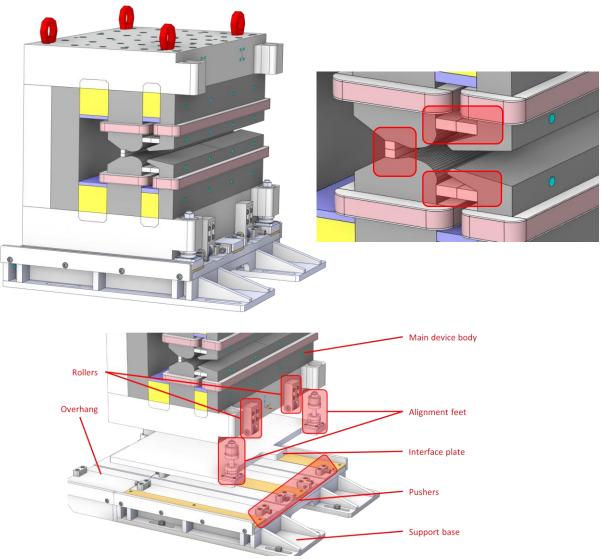
Final Coil Design


- Coils wound from solid insulated copper wire.
- Air cooled coils no need for water cooling infrastructure.
- Some current expected at nominal operation to trim fields (account for magnetisation and machining tolerances
- Nominal power dissipation of equivalent electromagnet = 2.3 kW.
- Bipolar power supply required for field tuning.

	Main coil	Auxiliary Coil						
Coil resistivity / Ω.mm	1.86E-5							
Maximum current / A		5						
Wire width bare (insulated) / mm		2.6 (2.8)						
Wire height bare (insulated) / mm		1.6 (1.8)						
Number of turns	180	180						
Coil height / mm	42	42						
Coil width / mm	21.6 21.6							
Average turn length / mm	1951 1851							
Coil resistance / Ω	3.14	3.01						
Maximum voltage / V	15.7	15.1						
Maximum power dissipation / W	78.5	75.3						
Nominal current / A	-0.225	-0.539						
Nominal power dissipation / W	0.16	0.88						

Assembly and Forces

- Large attractive magnetic forces between permanent magnet blocks and steel yoke.
- Forces need to be considered during assembly of magnet to prevent injury or damage to the magnet.
- Forces between poles in assembled magnet could cause deformation and hence reduced field quality.
- Movement of components must be prohibited.



Mechanical Design Overview

- Conceptual mechanical design for assembling and mounting magnet produced by Kyma.
- Aluminium C-shape support frame.
- Device can be inserted around vacuum chamber.
- Gap spacers control separation of poles subject to attractive forces.
- Support base allows adjustment of displacement and angular alignment.
- Can in-situ lateral adjustment be achieved?

Future Planning

- Time plan correct as of 12/01/2023.
- Delays in procurement of permanent magnet and thermal shunt materials due to high prices.

Name	Name	Duration	Start	Finish	Predecessors	Qtr 1, 2023			Qtr 2, 2023			Qtr 3				
	Name					Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	
1		HEPTO project	193 days	01/12/22 08:00	28/08/23 17:00											▶
2		Magnetic Design HEPTO	6 days	01/12/22 08:00	08/12/22 17:00											
3		Final Magnetic Design Review	1 day	01/12/22 08:00	01/12/22 17:00		ե									
4		Magnet and Pole Specifications	5 days	02/12/22 08:00	08/12/22 17:00	3] i —									
5		Final Mechanical Design	87 days	02/12/22 08:00	03/04/23 17:00						-					
6		Final mechanical design & assembly tools design	80 days	02/12/22 08:00	23/03/23 17:00	3					l					
7		Final design review meeting	1 day	24/03/23 08:00	24/03/23 17:00	6	1			H	Ţ					
8		Mechanical design approval	1 day	01/04/23 08:00	03/04/23 17:00	7FS+5 days	1				Ъ					
9		Production	120 days	13/01/23 08:00	29/06/23 17:00		1							•		
10		Magnetic material production	120 days	13/01/23 08:00	29/06/23 17:00	4FS+25 days	1									
11		Mechanical parts production	60 days	04/04/23 08:00	26/06/23 17:00	8	1				Ľ			հ		
12		Assembly and Measurements	45 days	27/06/23 08:00	28/08/23 17:00		1									,
13		Mehcanical & Magnetic Assembly	30 days	27/06/23 08:00	07/08/23 17:00	11]							.	J	
14		Magnetic Measurements	10 days	08/08/23 08:00	21/08/23 17:00	13	1								_ Ľ _	
15		Final Reports	5 days	22/08/23 08:00	28/08/23 17:00	14	1									

Conclusions and Future Planning

- Magnetic design is complete.
- Mechanical design being finalised.
- Nominal power requirement per magnet (for field trimming) < 2 W.
- Maximum power requirement per magnet (5 A per coil) = 150 W.
- Equivalent electromagnet requires 2.3 kW + water cooling.
- Next steps: procurement of materials for building prototype magnet.
- Some delays due to prices and availability of permanent magnet and thermal shunt material.
- Plan is to construct and test prototype by end of August 2023.

Thank you

Acknowledgements:

- Ben Shepherd (STFC)
- Tadej Milharcic and Mirko Kokole (Kyma), Mechanical Design
- Alfie Shahveh (Diamond Light Source)

Facebook: Science and Technology Facilities Council Twitter:@STFC_matters

YouTube: Science and Technology Facilities Council