

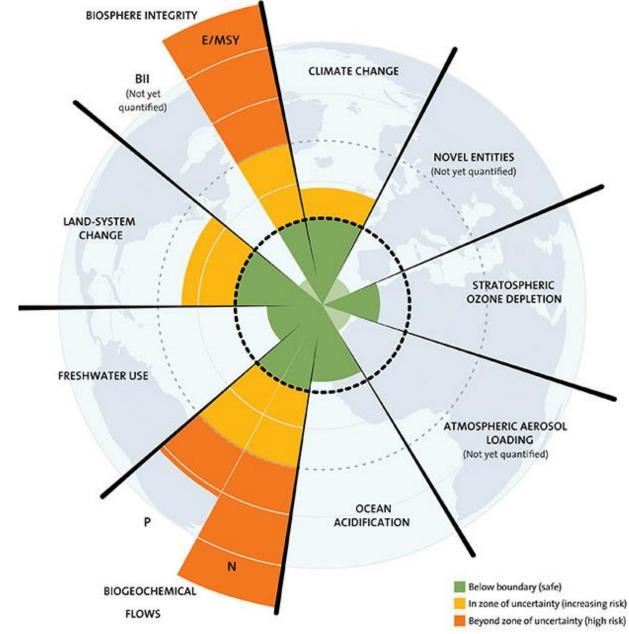
Highlight Talk Nr.5

i.FAST 2nd Annual Meeting / April 20th 2023 / Triest, Italy

Denise Völker / DESY / i.FAST WP 11

Content

- The Challenge
- Example: Permanent Magnets
 - Life Cycle Assessment (LCA)
 - Recycling
 - CoC Certification
- Next steps



The Challenge

IFAST

The Challenge

| Planetary Boundaries (including Climate Change) Credit: J. Lokrantz/Azote based on Steffen et al. 2015

Public Perception

Sünden für die Forschung

Expeditionen, Teleskope und Großgeräte belasten das Klima. Langsam kommt es zum Umdenken

Reisen oder nicht? Diese Frage stellen sich viele Forscherinnen und Forscher. Denn: Die pandemiebedingten Beschränkungen sind weitgehend abgeschafft, sie könnten wieder durchstarten zu Expeditionen. Speziallaboren und Konferenzen. Doch die Reisen belasten das Klima und vergrößern weiter den CO₂-Fußabdruck der je nach Disziplin ohnehin oft deutlich über dem Durchschnitt liegt.

Das liegt unter anderem an großen Forschungsbauten aus Beton und Stahl, die zudem viel Strom verbrauchen. Die Astronomie mit ihren Teleskopen und Rechenzentren gehört eindeutig zu den großen Emittenten. Doch auch die Teilchenphysik mit ihren Beschleunigern und die

Umweltforschung

Universum

einschließlich Herstellung, eines Ge-Dienstreisen, kann

geschätzt werden. Studien haben daher eine gewisse Unsicherheit, können Tendenzen jedoch deutlich machen.

Demnach sind in der Astronomie die

Infrastrukturen der dominierende Fak- Fahrt fürs Klima. Der Polarstern hat auf der "Mosaic"-Expedition rund 7000 Tonnen Schiffsdiesel verbraucht.

Foto: dpa/A WI

Brandbrief für Klimaschutz

02.09.2020. 17:34 Uhr

Dicke Luft bei Helmholtz

Mitarbeiter der Forschungsorganisation fordern weitreichende Maßnahmen für sofortigen

Klimaschutz. VON JAN KIXMÜLLER

Die Standorte, wie hier am GFZ Potsdam, sollen klimaneutral werden, FOTO: SEBASTIAN GABSCH PNIN

SPIEGEL Wissenschaft

Studie zu Emissionen

Wie klimaschädlich darf **Grundlagenforschung sein?**

How climate-damaging is basic research allowed to be?

In China soll ein riesiges Neutrino-Observatorium entstehen. Schon von Daubeginn wird uber ökologische Auswirkungen diskutiert. Das Beispiel zeigt: Die Klimakrise ist bei den Astronomen und Astronominnen angekommen.

Von Christoph Seidler 16.01.2021, 19.12 Uhr

Categories of Sustainability for RI's

energy related research

mobility & business travel

research infrastructure system efficiency

efficient technologies

water consumption

waste management & recycling

office/lab energy consumption

energy procurement

grid energy consumption

heating & waste heat recycling

use of materials and resources

Permanent Magnets

IFAST

Energy Consumption

- Increasing use of PM in new lattices
- PMs run without electricity
- Hugh power savings

ESRF: before upgrade after upgrade

16.9 GWh / year 8.5 GWh / year

• PSI:

SLS SLS2.0 6.4 GWh / year 2.6 GWh / year

HZB:

BESSY III

5.1 GWh / year < 1.3 GWh / year

I

J.Chavanne, Permanent accelerator magnets for light sources, 5th ESSRI Workshop 2019, https://indico.psi.ch/event/6754/contributions/18013/

I M.Seidel, Technologies for Sustainable Accelerators, First iFAST annual meeting, 2022, https://indico.cern.ch/event/1138690/contributi ons/4782721/

J.Völker, Overview permanent magnets at accelerator facilities, iFAST REE workshop 2023, https://indico.desy.de/event/35655/timetable/# 20230206.detailed

Current Situation

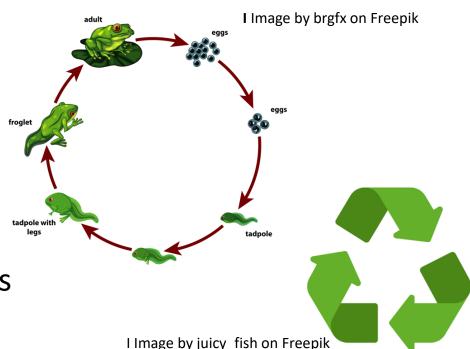
- Rare earths (REE) are mined and processed under destructive social and environmental conditions
- No alternative sources or certified mining and processing available
- So far no sufficient progress on recycling of old PM

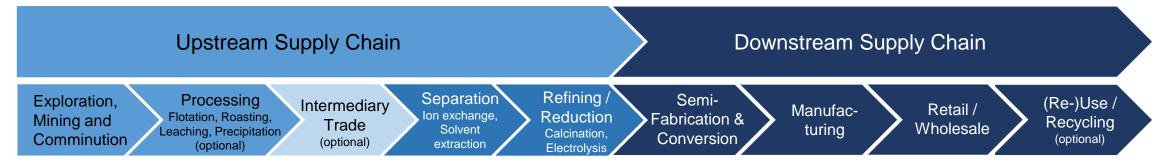
I ORF, 2015, Auf der dunklen Seite des Fortschritts: https://orf.at/v2/stories/2272650/2272651/

I UK Guardian: article on shocking working conditions in cobalt mining, cobalt is also to be used in PM

Children as young as seven mining cobalt used in smartphones, says Amnesty

Amnesty International says it has traced cobalt used in batteries for household brands to mines in DRC, where children work in lifethreatening conditions




I Spektrum, 2020, Politik bedroht unberührte Amazonasgebiete, https://www.spektrum.de/ne ws/politik-bedrohtunberuehrteamazonasgebiete/1754314

What to do?

- Implement life cycle management already in planning phase of new RIs
- Find best practice for recycling of these materials
- Support development of certification system for mining and processing of critical materials

I from M.Erdmann: https://indico.desy.de/event/35655/contributions/137541/



Permanent Magnets

→ Life Cycle Assessment

What is LCA?

"LCA is a tool for the analysis of the environmental burden of products at all stages in their life cycle"

- + Social
- + Governance

European Commission, Joint Research Centre, Cristobal-Garcia, J., Pant, R., Reale, F., et al., *Life cycle assessment for the impact assessment of policies*, Publications Office, 2017, https://data.europa.eu/doi/10.2788/318544

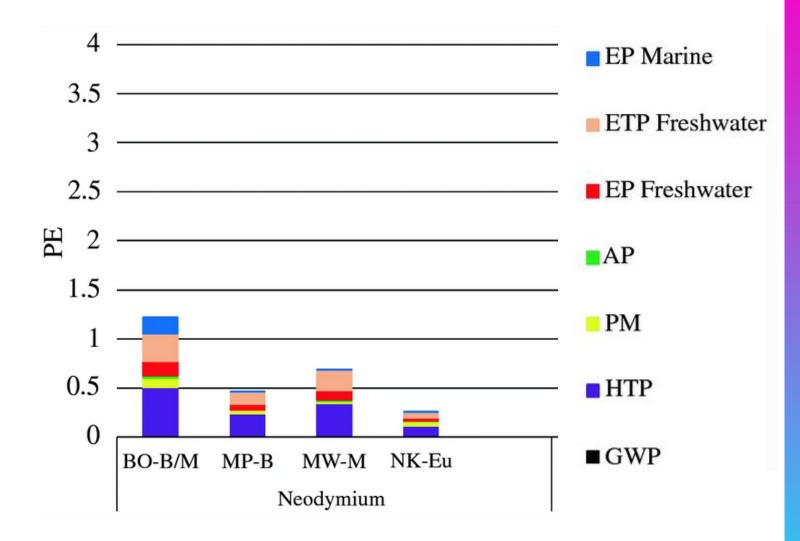
What is being looked at?

Indicator Climate Change Potential (Global Warming)			Unit
•	Climate Change Potential (Global Warming)	GWP	kg CO ₂ eq.
•	Eutrophication Potential (Over-fertilization)	EP	kg P eq./kg N eq.
•	Photochemical Ozone Depletion Potential (Summersmo	g) POCP	kg Ethene eq.
•	Ozone Depletion Potential (Ozone hole)	ODP	kg CFC-11 eq.
•	Acidification Potential land and ocean (Acid rain)	AP	kg SO ₂ eq.
•	Human toxicity	HTP	kg 1,4-DCB eq.
•	Ecotoxicity	FAETP / MAETP / TETP	kg 1,4-DCB eq.
•	Abiotic Resource Depletion (Resource scarcity)	ADP	kg Cu eq.
•	Water scarcity		m ³ world eq.
	Land use		m²a

Neodymium

Normalized impacts of 1 kg of neodymium.

BO-B/M: Bayan Obo bastnäsite/monazite


(China)

MP-B: Mountain Pass bastnäsite (U.S.)

MW-M: Mt. Weld monazite

(Australia/Malaysia)

NK-Eu: Norra Kärr eudialyte (Sweden)

P. Zapp, A. Schreiber, J. Marx and W. Kuckshinrichs: Environmental impacts of rare earth production; MRS Bulletin *2022* Vol. 47 Issue 3 Pages 267-275

Permanent Magnets

→ Recycling

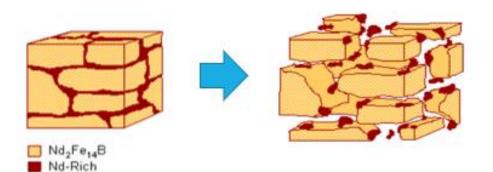
iFAST

Rare Earth Recycling

Short loop

Recycling is technically feasible

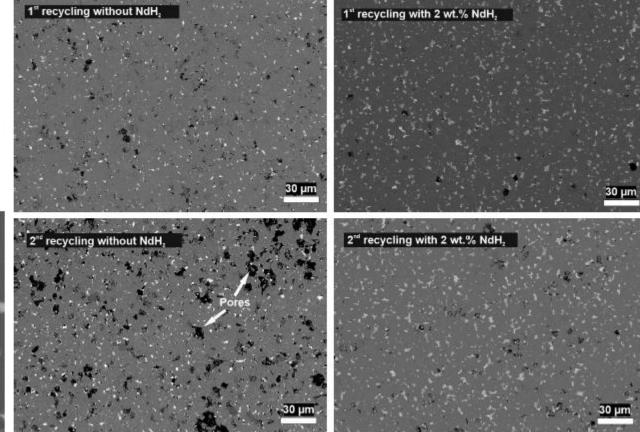
- High yield
- High quality
- Low carbon footprint

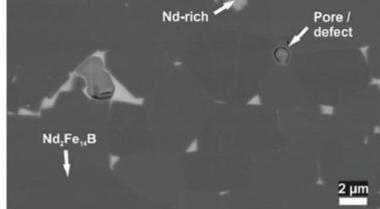


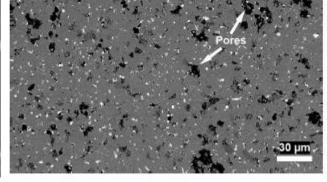
Source: Speight, J.; Climate Change from a Materials Perspective, The University of Birmingham, 02.08.2019

I from C.Burkhardt: https://indico.desy.de/ event/35655/contribut ions/137453/

16 / 46


DESY Workshop - Critical Materials and LCA: Rare Earths, ⊕ Prof. Dr. Carlo Burkhardt




Rare-earth permanent magnet recycling

Sintered magnets multiple recycling

- Number of pores increases from scrap magnet to 1st and 2nd recycled one
- NdH₂ leads to a decrease of porosity and increase in density

I from J.Gassmann: https://indico.desy.de/ event/35655/contribut ions/137452/

© Fraunhofer IWKS

M. Schönfeldt et al., Journal of Alloys and Compounds, 939 (2022) 168709

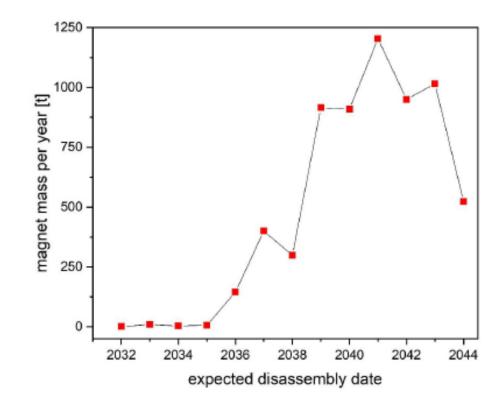
RE Magnets Recycling

Technical issues

Other technology metals (Ag, Pt, Pd) have recycling rates of ~30%

- Recycling rate of Nd is <1%
 - → Large diversity of End-of-Life Magnets:
 - SmCo, Ferrite, NdFeB....
 - no design for recycling
 - → Underdeveloped recycling schemes

I from C.Burkhardt: https://indico.desy.de/ event/35655/contribut ions/137453/



Rare-earth permanent magnet

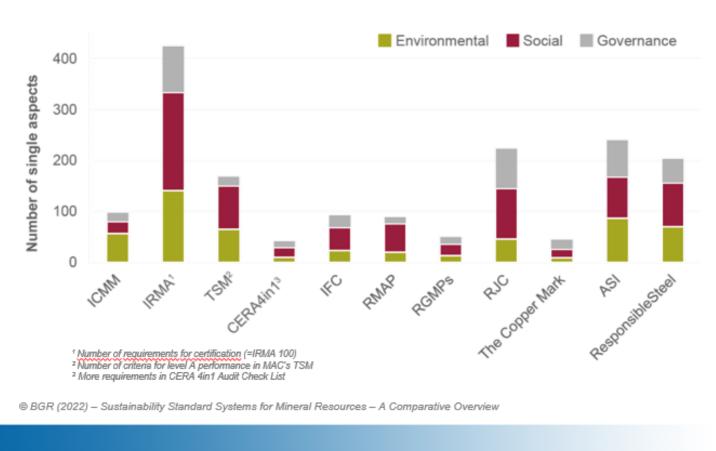
Wind turbine application

Scrap magnets at the EoL from wind turbines in Germany

- Wind turbines seams to be a great candidate for scrap magnets
 - Huge amount of magnets per device (approx. 500 kg per MW)
 - Big block magnets
 - Homogeneity in chemical composition
 - No dissipation losses
 - Wind turbines can be tracked easily
- First significant amount of PM driven turbines will be disassembled in the mid 30th in Germany
- Circular economy for magnets from wind turbines needs to be implemented when the device reach the EoL

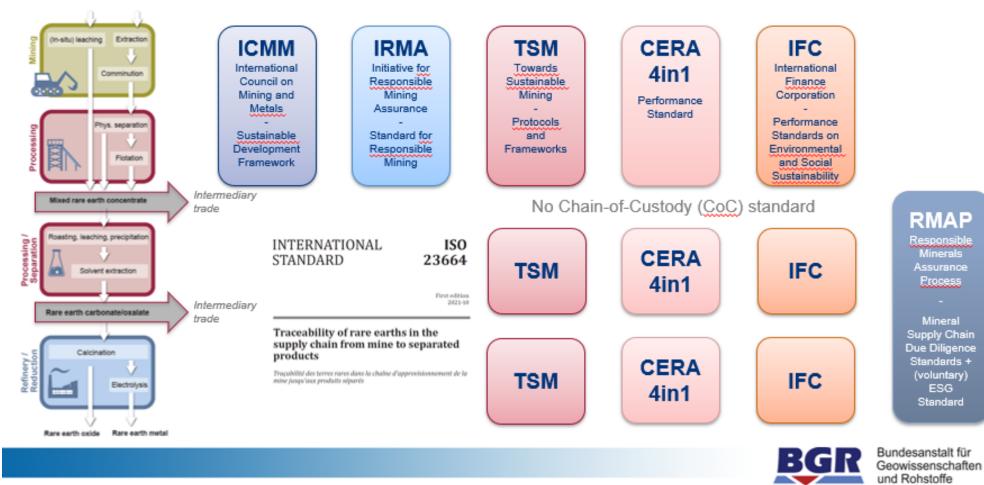
te 16 07.02.2023 © Fraunhofer IWKS

Own calculation with data from www.marktstammdatenregister.de


Permanent Magnets

→ Certification/Auditing

Voluntary Sustainability Standard Systems for Mineral Resources



I from M.Erdmann: https://indico.desy.de/ event/35655/contribut ions/137541/

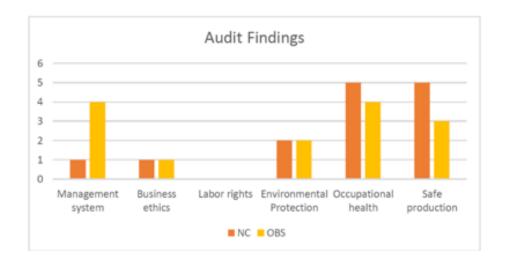
18

General Applicability of Standard Systems* for the Rare Earth Supply Chain

"Standard systems that have been analyzed in BGR (2022) - Sustainability Standard Systems for Milneral Resources - A Comparative Overview

I from M.Erdmann: https://indico.desy.de/ event/35655/contribut ions/137541/

21


Step 5: Certification Audit

CSR element	Full points	Applicable points	Scores	%	5 grading system
Management System	200	200	122	61%	3.05
Business Ethics	50	40	32	80%	4
Labor Rights	150	120	120	100%	5.00
Environmental Protection	250	215	181	84%	4.21
Occupational Health	300	200	121	61%	3.03
Safe Production	550	395	333	84%	4.22
Total	1500	1170	909	78%	3.88

Created by: Lutz Berners | 07 February 2023 | DESY Workshop on Magnets © 2023 Berners Consulting GmbH. All rights reserved



I from L.Berners: https://indico.desy.de/ event/35655/contribut ions/137504/

Next Steps

IFAST

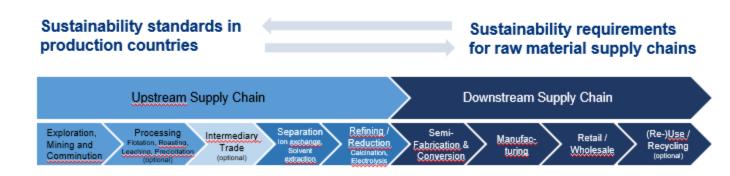
Next steps LCA

- Analyse existing LCA on rare earth
- Develop further down the supply chain

I from A.Lotan: https://indico.desy.de/event/35655/contributions/137465/

Next steps Recycling

- Include questions of RC already in design
- Help make REE recycling a successful business case
- Cooperation with institutes and industry developing REE RC


European Commission, Joint Research Centre, Cristobal-Garcia, J., Pant, R., Reale, F., et al., *Life cycle assessment for the impact assessment of policies*, Publications Office, 2017, https://data.europa.eu/doi/10.2788/318544

Next steps Certification

- Raise awareness
- Get better data/transparency
- develop and establish a first set of criteria to be specified in the procurement tenders → together
- start with transparency, auditability and initial questions on the biggest issues
- become more stringent over time
- Support political processes for CoC Certification

Approaches for Sustainable Raw Material Supply Chains

- Governance in resource rich countries
- Technological development
- Commitment to international standards
- Business initiatives in the mining industry
- etc.
- I from M.Erdmann: https://indico.desy.de/event/35655/contributions/137541/

- Regulations
- Supply chain initiatives
- Pilot projects from OEMs
- etc.

Scources

• Infos taken from several presentations given at the iFAST Workshop "Critical Materials and Life Cicly Management: The example of Rare Earths – curse or blessing" 06.-08.02.2023 at DESY; indico: https://indico.desy.de/e/ree

