

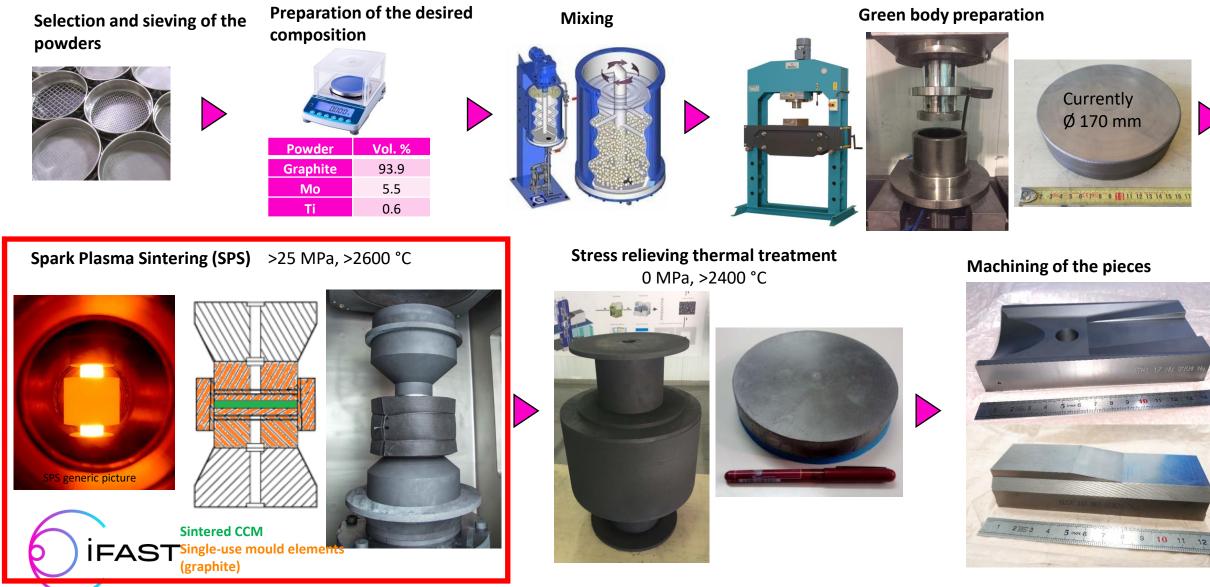
This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Carbide-Carbon Materials for Multipurpose Applications

I.FAST 2nd Annual Meeting 20th April 2023 Trieste, Italy

F. Carra (CERN) On behalf of IFAST WP4.4

İFAST



WP4.4 – Objectives and Participants

- Large scale Carbide-Carbon Materials for multipurpose applications (M1 M48)
 - Promote the use of carbide-carbon materials (CCM) in future particle physics facilities and open up the market to commercial applications
 - Thermal conductivity 2-3 times higher than Cu! Stronger, low density

CCM Production Cycle

Deliverables and Budget

Milestone/Delivera ble Number	Title	Lead beneficiary	Туре	Dissemination level	Due Date (in months)
MS14	Evaluation of a CCM alternative to Molybdenum- Graphite	CERN	Report	Public	16
D4.4	Production of large-size CCM plates	CERN	Demonstrator	Public	24

Milestone MS14 due date August 2022, achieved in June 2022

- Molybdenum-Graphite (MoGr) is sintered at high temperature
 - Very good from the technical point of view, but...
 - Energy consuming → Expensive! (and not only)
 - Destruction of mould at each cycle \rightarrow Expensive!
- Chromium-Graphite (CrGr) proposed (and produced) as a valid alternative to MoGr
 - Sintered at 2000°C instead of 2620°C
 - Allows saving mould for next cycles

FAST

Milestone MS14 – CrGr Characterization

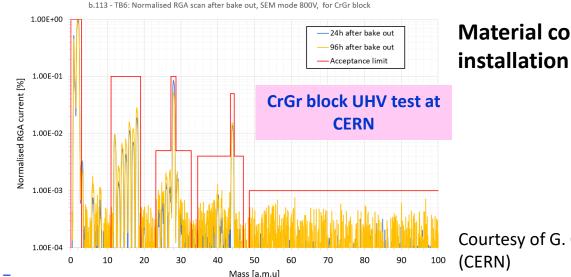
- Full thermomechanical characterization done at CERN Mechanical Lab in April 2022
- Very promising results, some parameters to be improved during the next years of the project. Mechanical strength increased by a factor of 5 wrt ARIES!

	Specification		CrGr Plate #		‡1
Property	ll*	F	II*	F	Unit
Density at 20ºC	2.40 - 2	.60	<mark>2.:</mark>	<mark>32</mark>	[g/cm ³]
Specific heat at 20°C	> 0.6		0.687		[J/(g·K)]
Electrical conductivity at 20°C	> 0.75		1.02		[MS/m]
Thermal Diffusivity 20ºC /at 300ºC	> 350/100	> 20/6	470/120	33/9	[mm^2/s]
Thermal conductivity at 20ºC /at 300ºC	> 500/280	> 35/20	<mark>750</mark> /350	52/27	[W/(m·K)]
Volumetric CTE 20-1000°C	< 7		6.7		F4 0-617-11
Coefficient of thermal expansion 20-1000°C	< 2.9	< 15	<mark>4.0</mark>	12.0	
Young's Modulus at 20ºC	35 < E < 75	5 < E < 8	46	<mark>3</mark>	
Flexural strength at 20°C	> 60	> 10	58	<mark>8</mark>	
Flexural strain to rupture at 20°C	> 2500	> 4000	3280	4200	
Dimensional stability*	< 0.05	< 0.25	-0.05	<mark>0.45</mark>	

Reusable Mold and Parts → Important Cost Reduction

Additional CrGr Characterization

• Component of complex shape and tolerances produced, to prove machinability and test UHV behaviour



CrGr block, machined in the shape of HL-LHC collimator absorber

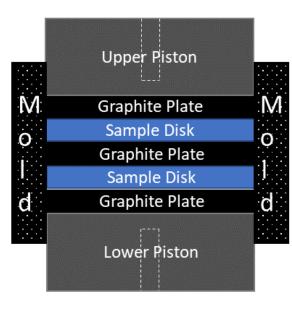
FADI

CrGr block metrology					
	Time interval after machining				
Tolerance*	7 days	1 month	2 months	3 months	
Flatness of back face [mm]	0.010	0.011	0.011	0.012	
Flatness of top face [mm]	0.005	0.011	0.011	0.010	
Parallelism of top face wrt back face [mm]	0.022	0.019	0.021	0.038	
Position of top face wrt back face [mm]	0.025	0.022	0.021	0.042	

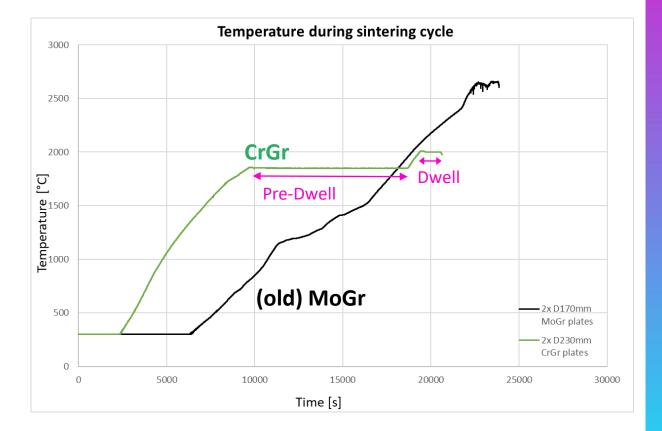
Material compliant for installation in the LHC!

Courtesy of G. Cattenoz

Deliverables and Budget


Milestone/Delivera ble Number	Title	Lead beneficiary	Туре	Dissemination level	Due Date (in months)
MS14	Evaluation of a CCM alternative to Molybdenum- Graphite	CERN	Report	Public	16
D4.4	Production of large-size CCM plates	CERN	Demonstrator	Public	24

Deliverable D4.4 due date April 2023, submitted to I.FAST project office 3 weeks ago


- Produce two large CCM plates (cross section >400 cm²) in a single sintering cycle
- This means: moving from the sintering of \emptyset 170 mm to \emptyset 230 mm plates \rightarrow doubling the cross-section (and: 2 plates per cycle!)
- Given the good results achieved on CrGr, and the advantages provided over MoGr → decision to select CrGr as D4.4 baseline material
- Sintering run: **9**th **March 2023**

- One single mould for two Ø230 mm CrGr disks (+ graphite spacers)
- Shorter cycle, lower sintering temperature wrt MoGr

• **Energy saving** (similar peak power, shorter time, bigger volume produced)

*estimation

		2x Ø170 MoGr plates	2x Ø230 CrGr plates	2x Ø230 CrGr plates without pre-dwell*
Machine power consumption per cycle	Energy per cycle [kWh]	408	577	214
	Energy per cycle per material volume produced [kWh/cm ³]	0.36	0.28	0.10
200	%Energy saving per material volume	Pre-I.FAST baseline	-23%	-72%
Mod	170mm Gr plates 230mm plates 30000			

Federico Carra – I.FAST 2nd Annual Meeting, 20 April 2023

Mould saving

- Preliminary characterization at Nanoker
- Very promising electrical conductivity and compaction (Density)
- **CTE now to be measured at CERN**, to evaluate best annealing cycle (and: can we remove annealing cycle?)

Density 2.44 g/cm³

(4)

FAST

(8)

(1)

(5)

(9)

(7)

3

(6)

D4.4 2xØ230 mm CrGr plates

Federico Carra – I.FAST 2nd Annual Meeting, 20 April 2023

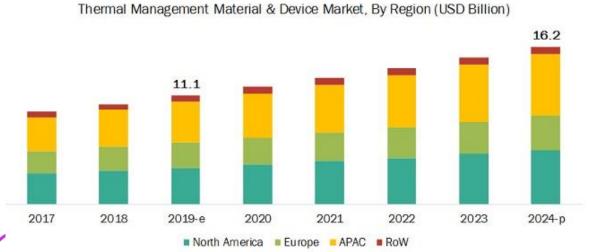
Conclusions and Next Steps

- All milestones and deliverables of I.FAST task 4.4 have been reached in the first two years of the project
- However, in the scope of the task objective (reduction of cost of carbon-carbide materials), several actions are still foreseen in the last two years of I.FAST:
 - Complete the in-lab characterization of the CrGr produced in the scope of deliverable D4.4, and publish the results on an international journal (record achieved in CrGr thermophysical properties and record in a CCM size sintering)
 - Optimize and, if possible, remove production steps related to material pre-dwell and annealing
 - Study the machine insulation system to understand if further improvements are needed to reduce power losses
 - Further increase the material volume produced per cycle: increase the plate thickness (up to 5 cm?) and/or increase the number of plates (up to 4?)
 - Optimize the material composition to reduce spilling of molten metal

IFAST

Thank you for your attention!

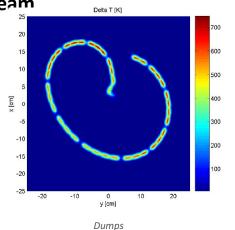
And thanks to the contribution of several people from WP4.4:


C. Accettura, C. Gutierrez, J. Guardia, S. Hoell, M. Losasso, L. Puddu, S. Rivera, O. Sacristan

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Motivation

- Increasing worldwide request for thermal management materials (high thermal diffusivity and specific heat, low density)
- **Cost still high**: CCM are limited to high-end applications (nuclear energy, particle physics, aerospace, ...)
- Decrease of energy consumption, improvement of production cycle efficiency and sustainability are also a must
- In particle physics: very interesting for beam-intercepting devices and beam instrumentation, beam windows, etc.


Expected figures for the development of the thermal management market in the next years, source: <u>https://www.marketsandmarkets.com/Market-Reports/thermal-management-market-155049228.html</u>

Targets

Beam wire scanners

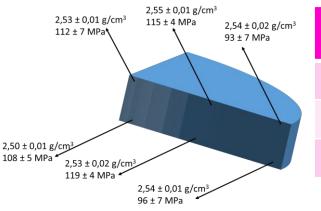
Collimators

Federico Carra – I.FAST 2nd Annual Meeting, 20 April 2023

Year 1 activities – Technical Specification

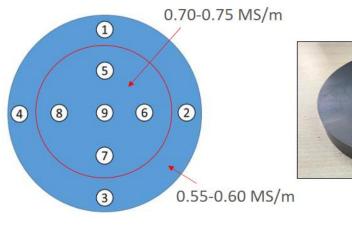
FAST

 Definition of the minimum thermophysical properties for a use in HEP beam-intercepting devices and in thermal-management applications


	Specification		
Property	II *	F	Unit
Density at 20°C	2.40 – 2	2.60	[g/cm³]
Specific heat at 20°C	> 0.	6	[J/(g·K)]
Electrical conductivity at 20°C	> 0.7	'5	[MS/m]
Thermal Diffusivity 20°C /at 300°C	> 350/100	> 20/6	[mm^2/s]
Thermal conductivity at 20°C /at 300°C	> 500/280	> 35/20	[W/(m·K)]
Volumetric CTE 20-1000°C	< 7		[10 ⁻⁶ K ⁻¹]
Coefficient of thermal expansion 20-1000°C	< 2.9	< 15	[10 ⁻⁶ K ⁻¹]
Young's Modulus at 20°C	35 < E < 75	5 < E < 8	[GPa]
Flexural strength at 20°C	> 60	> 10	[MPa]
Flexural strain to rupture at 20°C	> 2500	> 4000	[µm/m]
Dimensional stability*	< 0.05	< 0.25	%

*The dimensional stability shall be ensured after the following thermal cycle: heating of the specimen up to 1950°C with a ramp of 5°C/min. Cooling of the specimen down to room temperature with the same ramp.

Year 1 – Increase of volume per cycle


Molybdenum-Graphite (sintered at 2640°C)

2 plates produced with 230 mm Diameter (2x bigger section than before IFAST)

Disk (230 mm diameter)	Density (g/cm³)	Electrical Conductivity (Mean values on each side) (MS/m)
Plate #1 (p=26 MPa)	2,53	0,6 - 0,63
Plate #2 (p=40 MPa)	2,60	0,65 – 0,68
Specification	2,3 ÷2,6	>0,8

Lower electrical conductivity values than in the 170 mm diameter disks

Pre-compaction of the green powder:

Maximum Applied Force Uniaxial Hydraulic Press ~ 900 kN

- 170 mm $\emptyset \rightarrow$ 40 MPa \rightarrow 2,00 g/cm³
- 230 mm $\emptyset \rightarrow$ 21 MPa \rightarrow 1,65 g/cm³ •

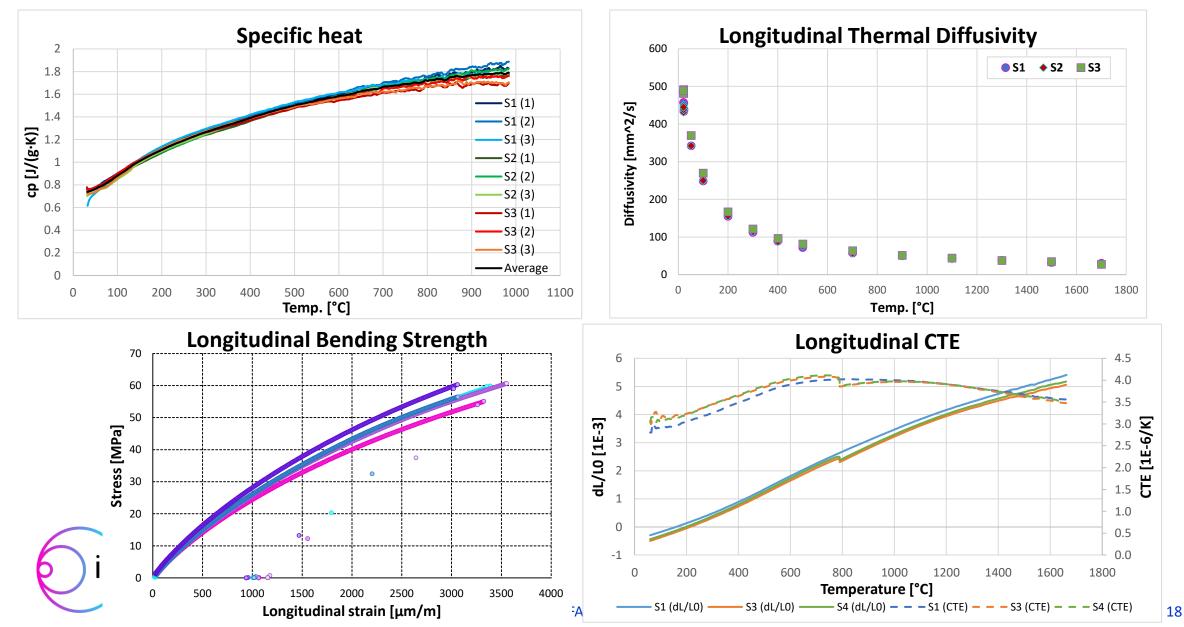
Next: increase the metal content, together with the higher sintering pressure

Year 1 – Decrease of sintering Temperature

- **Chromium-Graphite** (sintered at 2000°C 1.3x lower T)
- Concept proposed by Jorge Guardia within ARIES WP14 & WP17, technically was not demonstrated yet (very poor mechanical properties)

3 plates produced with 170 mm Diameter

FAST


Disk (170 mm diameter)	Density (g/cm³)	Electrical Conductivity (MS/m)
Plate #1	2,30	1,00 - 1,07
Plates #2 & #3	2,30	0.75/0.81
Specification	2,3 ÷2,6	>0,8

Reusable Mold and Parts \rightarrow Important Cost Reduction

- Plate #1 produced in a single plate per cycle, very promising properties, decision for full characterization at CERN
- Plates #2 and #3 double-plate per cycle, losing a bit in conductivity →
- composition and cycle to be optimized

Year 1 – CrGr Characterization

