

HVac

Demonstration of Additive Manufacturing for Large and Complex Shaped Vacuum Chambers by Plasma Metal Deposition (PMD®)

Carlos Belei Project Engineer – RHP Technology GmbH Dr. Erich Neubauer Managing Director – RHP Technology GmbH

Project Team

An I.FAST partner that has demonstrated successfully the manufactuirng complex space-related structures by PMD.

Component of ESA's Athena X-ray telescope manufactured by PMD®

An SME well-known in plasma welding field and also as a provider for plasma-based additive manufacturing systems (PMD).

M3DP, large AM machine for PMD produced by SBI

Technical background

- Plasma Metal Deposition (PMD®) is an AM process suitable for the production of large near-net shape components;
- Accelerator science and technology requires several vacuum chambers of various sizes and shapes;
- PMD has the potential to be used in the manufacturing of vacuum chambers, with reduced raw material usage and complex design.

MATERIALS. PERFECTLY. TUNED.

Aim of the HVac project

- Design generic vacuum chamber models capable of highlighting the manufacturing potential of PMD
 - Envelope of around 450 mm;
 - Implement features such as flanges with arbitrary sizes and positions.
- Manufacture vacuum chambers in both sub-scale and full-scale sizes
 - Implement the use of **Titanium** alloys as a material for large vacuum chambers.
- Test the produced vacuum chambers with respect to their performance and geometry
 - Both material- and application-related tests.

Preliminary vacuum chamber designs

Benefits brought by the project

Reduction of material waste

Near-net shape - at least 30% less waste.

Reduction of manufacturing steps

- PMD consists of three steps: tool path generation, building and machining;
- No multiple welding operations for flanges needed.

Reduction of stock materials

- PMD requires only wire and building platforms;
- E.g. flanges are manufactured by additive+substrative manufacturing.

Reduced weight and operations enable the use of cost-prohibitive materials

Pressure vessel produced by PMD, with machined flange

Timeline

- 12-month project
- Ø 03 work packages: Design, Manufacturing and Testing

Work package	Partner	M01	M02	M03	M04	M05	M06	M07	M08	M09	M10	M11	M12
WP1 - Design	RHP, SBI												
WP1.1 - Design of vacuum chamber	RHP, SBI												
WP1.2 - Tool path generation	RHP, SBI												
WP1.3 - Machine adaptation	SBI												
WP2 - Manufacturing	RHP												
WP2.1 - Manufacturing of subsize model	RHP												
WP2.2 - Manufacturing of full-size model	RHP												
WP2.3 - Finishing of vacuum chamber	RHP												
WP3 - Testing	RHP												
WP3.1 - Testing of vacuum chamber	RHP												
WP3.2 - Technology assessment	RHP												
WP3.3 - IP analysis and IP protection	RHP												

Budget

- Total budget: 100.000 Euro
 - *RHP:* 75.000 Euro (material costs, personal costs, third-party testing, finishing)
 - SBI: 25.000 Euro (machine adaptation, personal costs)

Deliverables

- 1. Design of chamber and detailed manufacturing plan [M04]
- 2. Manufacturing report [M09]
- 3. Manufacturing and testing of vacuum chamber [M12]

Expected development

Current: TRL4

Technology has been validated in the lab environment

Expected: TRL5-6

Manufacture and validation of a PMD'ed vacuum chamber in an industry-relevant enviroment; integration with other devices, multiple bake-out cycles.

Forschungs- und Technologiezentrum 2444 Seibersdorf, Austria +43 (0)2255 20 600 www.rhp.at Carlos Belei c.be@rhp.at

Dr. Erich Neubauer e.ne@rhp.at