

Millisecond flash lamp treatment for SRF accelerating cavities

Cristian Pira

Coatings of SC (Nb₃Sn, NbTiN, ...) on Cu planar substrate

Slawomir Prucnal and Shengqiang Zhou

Flash lamp annealing and characterisation of planar samples

DRESDEN ROSSENDORF

Budget

HZDR
HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

REQUEST	MOTIVATION	COST
Personnel costs	2 year person	96 500
Equipment and consumables	FLA system for 6 GHz	13 500
TOTAL		110 000

INFN	REQUEST	MOTIVATION	COST
	Personnel costs	iFAST contract extension	20 000
	Equipment and consumables	Targets, Helium, samples	20 000
	TOTAL		40 000

REQUEST	MOTIVATION	COST
Personnel costs	iFAST contract extension	3 000
Equipment and consumables	Cavities production	7 000
TOTAL		10 000

Total budget 160 kEuro

Member of Helmholtz Association

2. FLA chamber designed – under construction

Member of Helmholtz Association

Seite 3

Dr. Slawomir Prucnal | s.prucnal@hzdr.de | Institute of Ion Beam Physics and Material Research | www.hzdr.de

Technical scope and Goal

Nb₃Sn coated Cu-cavity

Current challenges:

- 1. Nb-cavity operation temperature 2K, low thermal conductivity, expensive, high energy consumption
- High Tc coating on Cu-cavity low melting point of Cu (allowed temp. 650 °C), diffusion of Cu into Nb₃Sn and Sn migration into Cu limits the cavity performance

Develop a novel thermal process to improve performances of SC coating suppressing (reducing) Cu substrate heating

And reduce cryogenic power costs by 60%

Solution:

Millisecond-flash-lamp-annealing (FLA)

Material	Тс	H _{sh}
Nb	9.2 K	0.2 T
Nb ₃ Sn	18.3 K	0.4T

Member of Helmholtz Association

How to implement in a cavity?

Vacuum chamber for Flash lamp processing of Cu-cavity coated with Nb₃Sn

Dr. Slawomir Prucnal | s.prucnal@hzdr.de | Institute of Ion Beam Physics and Material Research | www.hzdr.de

Starting point

Current status of Tc for $\underline{Nb_3Sn}$ thin film on different substrate: Cu, Nb and Al_2O_3 . This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Deliverables

- 1. Nb_3Sn on Cu substrate with 18 K Tc.
- 2. Uniform treated the cavity using FLA
- 3. Nb₃Sn on Cu 6 GHz cavity <u>operates</u>
 - at 4.2 K with the same performances like Nb-cavity at 2 K)

the end of the project

Sustainability

Our technology will significantly <u>reduce the environmental impact</u> and <u>energy-costs</u> of SRF accelerator technology:

- The goal is realize SC resonant cavities operating at higher T than bulk Nb reducing cryogenic power costs by 60%
- The thermal load and hence the temperature throughout the entire substrate is much lower compared to conventional annealing: FLA is less energy-intensive, resulting in a reduction of CO₂ emissions

