

AMIS

AM applications of refractory metals for Ion Sources

Beneficiaries:

INFN – National Institute for Nuclear Physics (PD and LNL)

CERN ISOLDE

TANIOBIS GmbH

Industrial partners:

GE UPPSALA

SAES GETTERS S.p.A.

EOS - Electro Optical Systems, Finland Oy

TRIUMF

Eng. Adriano Pepato - I.FAST-IF - 21st Apr, 2023

SUMMARY

- 1. Project team, budget, timeline
- 2. Technical scope
- 3. Starting point and expected development at the end of the project
- 4. Milestones and Deliverables
- 5. Potential development and impacts for accelerator sustainability
- 6. AMIS IIF KOM (9th February 2023)

1. Project Team and Budget

Organizational Expertise

Material
Characterization &
Product Development

Production & Supply of Refractory Metals

Product OFF-LINE and ON-LINE testing

Test on Potential application (Medical Radioisotope)

Commercialization and Market Analyses

Final component AM production

- ✓ THE FUNDING REQUIRED: 100 k€
- INFN-PD → 50 k€
 - Personnel: 25 k€
 - Consumables: 15 k€
 - Travels: 10 k€

- INFN-LNL → 25k€
 - Personnel: 15 k€
 - Consumables: 4 k€
 - Travels: 6 k€

- ISOLDE-FACILITY-CERN → 25k€
 - Consumables: 20 k€
 - Travels: 5 k€
 - **❖ TOTAL IN-KIND**: 345 k€

TRIUMF (In-Kind) → 120000 EUR

TANIOBIS (In-Kind) → 54000 EUR

SAES-GETTERS (In-Kind) → 20000 EUR

GE-UPPSALA (In-Kind) → 14700 EUR

EOS (In-Kind) → ?????? EUR

1. Timetable

WP1. Development and Characterization of Innovative Refractory Metals and their Alloys by AM Technology	year 1		year 2				End		
	М3	М6	М9	M12	M15	M18	M21	M22	M26
T1.1. Production and characterization of Additively Manufactured Ta and/or Ta-based alloys.									
T1.2. Production and characterization of Additively Manufactured Nb and/or Nb-based alloys.									
T1.3. Identification and Development of refractory metal alloys and/or composite powders specifically designed for LPBF process.									MS.1
T1.4. Production and characterization of samples with innovative refractory metal alloys and/or composite powders.									
WP2. Development of Additively Manufactured Ion Source Components	year 1		year 2			End			
	М3	М6	М9	M12	M15	M18	M21	M22	M26
T2.1. Multiphysics Simulation of Ion Sources with dedicated numerical models.									
T2.2. Redesign of specific Ion Source components for an improved assembly repeatability considering hybrid AM-traditional techniques.									
T2.3. Development of innovative AM free-form geometries to improve the performance of specific Ion Source components.									MS.2
T2.4. Development of a fully AM Ion Source prototype for off-line / on-line tests.									
WP3. High Temperature Tests and Beam Production with Additively Manufactured Ion Source Components	year 1			year 2			End		
	М3	М6	М9	M12	M15	M18	M21	M22	M26
T3.1. High temperature tests of AM Ion Source components.									
T3.2. Thermionic emission tests of AM FEBIAD cathodes and anodes.									MS.3
T3.3. Stable ion beam production (off-line) with FEBIAD Ion Sources containing AM components at CERN and/or INFN-LNL.									IVI3.3
T3.4. Radioactive ion beam production (on-line) with FEBIAD Ion Sources containing AM components at CERN and/or TRIUMF.									
WP4. Commercialization and Market Analysis		year 1 year 2		End					
	M3	M6	М9	M12	M15	M18	M21	M22	M26
T4.1. Evaluation of expected impact of the project in term of: addressable and obtainable market									
T4.2. Intellectual Properties evaluation									

2. Technical Scope

Main goal:

Development of a **new generation of High Performance ISOL Ion Sources** with cutting edge technologies available within INFN and its collaboration network.

- 1. Development of new Refractory Metals Alloys specifically Design for Additive Manufacturing (LPBF process)
 - → Define the best element choice in order to improve the physical performance of the ion sources (Ta-based and/or Nb-based alloys) or to solve the fabrication defects related to pure metals production (W-based and/or Mo-based alloys).

WP1

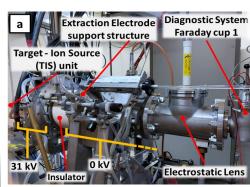
2. Development and Off-line/On-line test of a New ION source designed for Additive Manufacturing production in order to:

WP2

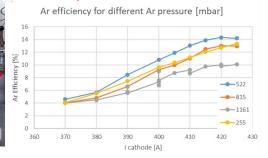
- \rightarrow Improve the Assembly phase: components n° reduction (from n° components>20 \rightarrow to max 8 components)
- → Develop a topological optimized design for the Ion source physical performance improvement

WP3

3. Map the existing facilities, **evaluate** the applicability and advantages of the FEBIAD design, **quantity** the potential needs and the technical requirements. This should provide a clear perspective about the potential market, the requirements and also a viable route to the technology diffusion.



3. Starting point and expected development at the end of the project


2022

The current TRL \rightarrow TRL 4

Ionization efficiency using AM Mo Anode comparable to STD Ta Anode

- AM Ta Cathode and Mo Anode traditional geometry production
- Proof of Concept Test of the AM ION **Source and Prototype production**
- Off-line Test of the AM Mo Anode with the traditional geometry

2025

The TRL at the end of the Project

→ TRL 5

- Production and characterization of samples with innovative refractory metal alloys and/or composite powders.
- Development of a fully refractory metals ion Source with new Design for AM for off-line / on-line tests.
- Radioactive ion beam production (on-line) with FEBIAD Ion Sources containing AM components at CERN and/or TRIUMF.

Future

Estimated time for TRL 6

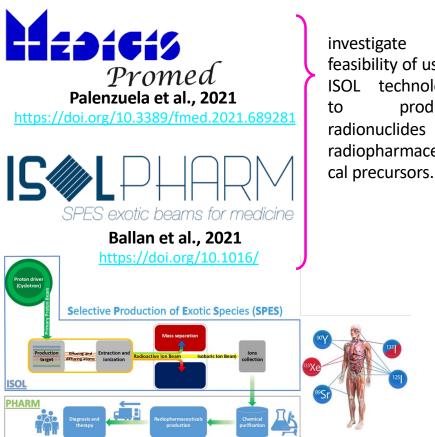
"Technology demonstrated in relevant environment (industrially relevant environment in the case of key enabling technologies)"

2026-202

4. Milestones and Deliverables

WP1 milesto	ones	Date			
	Production and characterization of Additively Manufactured Ta and/or Ta-based alloys.				
MS.1	Production and characterization of Additively Manufactured Nb and/or Nb-based alloys.				
1013.1	Identification and development of refractory metal alloys and/or composite powders specifically designed for LPBF process.				
	Production and characterization of samples with innovative refractory metal alloys and/or composite powders.				
WP2 milesto	nes	Date			
	Development of Multiphysics numerical models for the simulation of FEBIAD Ion Sources.				
MS.2	Redesign of specific FEBIAD Ion Source components for an improved assembly repeatability.				
	Multiphysics Simulation of FEBIAD Ion Sources with innovative free-form geometries.	M26			
	Production of free-form cathodes and anodes for ISOL FEBIAD Ion Sources.				
	Production of a fully AM FEBIAD Ion Source prototype.				
WP3 milesto					
WI S IIIIICSCO	iles	Date			
VVI 5 IIIICSCO	High temperature tests of AM Ion Source components.	Date			
WI 5 IIIIesto		Date			
MS.3	High temperature tests of AM Ion Source components.	M26			
	High temperature tests of AM Ion Source components. Thermionic emission tests of AM FEBIAD cathodes and anodes.				
	High temperature tests of AM Ion Source components. Thermionic emission tests of AM FEBIAD cathodes and anodes. First off-line ionization tests with a hybrid AM-traditional ion source prototype.				
	High temperature tests of AM Ion Source components. Thermionic emission tests of AM FEBIAD cathodes and anodes. First off-line ionization tests with a hybrid AM-traditional ion source prototype. First off-line ionization tests with a fully AM ion source prototype. On-line beam production at CERN-ISOLDE and/or TRIUMF with a FEBIAD Ion Source containing AM components.				
MS.3	High temperature tests of AM Ion Source components. Thermionic emission tests of AM FEBIAD cathodes and anodes. First off-line ionization tests with a hybrid AM-traditional ion source prototype. First off-line ionization tests with a fully AM ion source prototype. On-line beam production at CERN-ISOLDE and/or TRIUMF with a FEBIAD Ion Source containing AM components.	M26			
MS.3	High temperature tests of AM Ion Source components. Thermionic emission tests of AM FEBIAD cathodes and anodes. First off-line ionization tests with a hybrid AM-traditional ion source prototype. First off-line ionization tests with a fully AM ion source prototype. On-line beam production at CERN-ISOLDE and/or TRIUMF with a FEBIAD Ion Source containing AM components.	M26			
MS.3	High temperature tests of AM Ion Source components. Thermionic emission tests of AM FEBIAD cathodes and anodes. First off-line ionization tests with a hybrid AM-traditional ion source prototype. First off-line ionization tests with a fully AM ion source prototype. On-line beam production at CERN-ISOLDE and/or TRIUMF with a FEBIAD Ion Source containing AM components. Ones Map the existing facilities	M26			

WP1, D1 (M24): Written report on the production and characterization of samples with innovative refractory metal alloys and/or composite powders.


WP2, D1 (M24): Production of a fully AM FEBIAD Ion Source prototype with related CAD documentation.

WP3, D1 (M24): Written report on test with FEBIAD Ion Sources containing AM components.

WP4, D1 (M24): Written report on the commercialization and market analysis evaluation.

5. Potential development and impacts for accelerator sustainability

the feasibility of using ISOL technology produce radionuclides as radiopharmaceuti

expected impact of the project in term of: addressable and obtainable market

Commercialization and Market Analysis:

The goal is to confirm the AM production of FEBIAD-like ion sources for:

- MEDICAL RADIO THERAPY
- RADIOACTIVE ION BEAMS

how the project addresses the environmental challenges

- AM technology reduced the amount of wasted material
- The un-melted powder can be entirely recycled
- Post-processing, which involved material waste and high energy consumption, are almost completely avoided.
- ISOL technologies for production of medical radionuclides can become a green alternative to nuclear fission reactors.

Thank you for your attention!

Contact information

PEPATO ADRIANO

TITLE: DIRIGENTE TECNOLOGO

PHONE: +39 049 9677015

MOBILE: +39 393 4342517

E-MAIL: adriano.pepato@pd.infn.it

WEBSITE: https://www.pd.infn.it/eng/

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.