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SNS

Machine Learning project to reduce downtime

Can we reduce downtime by

– Preventing accelerator failures

– Improving target design

→ four ML use-cases

Machine Learning features

– Automatic learning process

– Ability to process big data efficiently

– Ability to model complex non-linearities and identify trends/patterns

– Deep Learning (Neural Nets)

• Generalize better than statistical methods,

• Compensate for incomplete physics models,

• Automatically extract relevant information
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Machine Learning to study four use-cases

1: Beam-based 

Prevent errant beam 

pulses from damaging 

accelerator

Common goal: Utilize data from existing sensors to apply ML techniques to 
reduce downtime
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#1: Use data from DCM to predict errant beam

Problem
Errant beam can damage 
SCL and activate beamlines

Predict upcoming errant beam pulses

Method
Use beam waveforms from 
before errant beam pulse from 
Differential Current Monitor

– Use Siamese Model (CPU)

– Use Random Forest (FPGA)

Rescic, Miha et al. “Predicting particle accelerator failures using binary classifiers.” Nuclear Instruments & Methods in Physics Research 
Section A-accelerators Spectrometers Detectors and Associated Equipment 955 (2020): 163240.
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#1: Siamese model detects similarities

Siamese Model Overview

Current Waveform

Reference Normal

Siamese Neural Networks (SNNs):
- Learns similarity between two inputs

- Update reference waveforms

- Autoencoder extension verifies waveform encoding

- Gaussian Approximation provides prediction 
uncertainty
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#1: ML Server infers in real-time
Field implementation
DCML

– Random Forest on FPGA of 
DCML, < 100 µs response time

– Siamese model: 1 to 3 inferences 
per waveform < 16ms (beam rep 
rate)

Blokland, W., Rajput, K., Schram, M., Jeske, T., Ramuhalli, P., Peters, C., ... & Zhukov, A. (2022). Uncertainty aware anomaly detection to predict 
errant beam pulses in the Oak Ridge Spallation Neutron Source accelerator. Physical Review Accelerators and Beams, 25(12), 122802.

ML Server

– Takes full raw data from DCML

– Publishes results over EPICS

– Compares recent waveform with 
multiple reference waveforms

Lessons Learned
Need to implement continual learning and include 
accelerator setup parameters as part of training.

DCML ML Server
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8 normal shots, one in yellow 
where flux is beginning to drift, 
one in red when the Insulated 
Gate Bipolar Transistor 
(IGBT) exploded.

#2: Autoencoder predicts HVCM failures

Transistor failure due to 
transformer saturation

Problem Method

Multi-Module Conditional Variational 
Autoencoder

Results

Predict 80-50% of failures 
with <1% false positive

Predict upcoming HVCM failures

dV/dT 
Fault

SRC 
Fault

Use auto-encoder to see a difference 
in the waveforms

False positive penalty 
might be too high for 
application in the field

Lessons Learned
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#2: CNN trained to determine capacitor values

Capacitor degradation 
leads to failure. No 
direct measurement is 
available.

Problem

*Radaideh, M. I., Pappas, C., Walden, J., Lu, D., Vidyaratne, L., Britton, T., ... & Cousineau, S. Time Series Anomaly 
Detection in Power Electronics Signals with Recurrent and Convlstm Autoencoders. Available at SSRN 4069225.

Determine capacitor values from existing data

Average 
Uncertainty

Cap A
(pF)

Cap B
(pF)

Cap C
(pF)

Actual 5.97901 7.39233 8.10603

Noisy 6.57088 8.48543 9.37121

Use LTSpice to simulate 
waveforms with varying 
capacitor values to train neural 
net Uncertainty-aware 
convolutional neural network

Method

Error <1% for capacitance 
predictions and low 
uncertainty

Lessons Learned
Difficult to apply in the field as 

HVCM must be taken apart to 

measure capacitors.

Results

Capacitor nominal value 3200 pF
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Method

- Run simulations on HPC over parameter space

- Sierra/Solid Mechanics with a 2-phase mercury model to 
include bubble families

- Train surrogate model over same parameter space

- Use surrogate model to find those parameters that 
match strain measurements

- Use those parameters in the full simulation while 
changing the target design

#3: Target surrogate model speeds design cycle

Problem

*Radaideh, M. I., Tran, H., Lin, L., Jiang, H., Winder, D., Gorti, S., ... & Cousineau, S. (2022). Model Calibration of the Liquid Mercury 
Spallation Target using Evolutionary Neural Networks and Sparse Polynomial Expansions. arXiv preprint arXiv:2202.09353.

Use ML techniques to speed up design cycle

Complex multi-phase 
response to beam pulses 
requires time intensive 
simulations

Simulation

Variation in strain measurements
(Surrogate model results to stay within variation)
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#3: Surrogate model down selects parameter space

Lessons Learned
Need enormous amount of HPC simulations to even get started.

Results
Using sparse surrogate based on polynomial expansion model with gas

Matching of strain waveforms Candidate parameters



11

Apr 17 – 21, 2023

#4: Cryogenic Moderator System modeled

Long system recovery 
time due to CMS trips 
The system is 
complicated and not 
well modeled

Problem

~1h

Method

Construct models to simulate 
subloops. Use ML to augment 
overall model to complete 
simulation then retune 
controllers using simulation

Improve overall system responses to the beam trips by better controller 
parameters and using meta-control methods.

*Maldonado, B. P., Liu, F., Goth, N., Ramuhalli, P., Howell, M., Maekawa, R. & Cousineau, S. (2022). Data-Driven Modeling of a High Capacity 
Cryogenic System for Control Optimization. The 22nd World Congress of the International Federation of Automatic Control. Under Review
.
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#4: Cryogenic Moderator System modeled

Results

Using new model to calculate controller settings led to 

reduced pressure transients and factor of ten reduction in 

time for the system to return to desired state.

*Maldonado, B. P., Liu, F., Goth, N., Ramuhalli, P., Howell, M., Maekawa, R. & Cousineau, S. (2022). Data-Driven Modeling of a High Capacity 
Cryogenic System for Control Optimization. The 22nd World Congress of the International Federation of Automatic Control. Under Review
.

Turbine fluctuation reduced by 50%
Lessons Learned

First operational improvement using ML. ML (offline) 
analysis changed existing controllers' setup.

Model can simulate disturbances in thermodynamic states 
(mass flows, pressures, temperatures) due to CMS trip
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Machine Learning Framework

Computing 
Server on 
SNS GPU

File Server

ML4SNS 
GUI

Cloud VM 
on CADES

Docker
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Browser-based tracking

ML4SNS GUI

Deploy for On-line InferenceDeveloped to follow ML lifecycle:

- Version control

- Tracking model hyperparameters 

- Updating model per new data

- Routine tests to verify model validity

- Improving model with new features

Lesson Learned
This is crucial to sustain ML solution

Apr 17 – 21, 2023
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Summary

Lessons learned to apply ML to Operations:

• Continual learning and robust models to manage changes

• Success in analysis might not be enough for operational gains

• Modeling of system to generate data can take up most of your time

• Retuning using ML resulted in permanent operational improvement

Apr 17 – 21, 2023


