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Accelerators 
• Operation 
• Diagnostics 
• Beam Dynamics Modeling
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Which limitations can be solved by ML 
with reasonable effort?

Why applying ML to accelerators?

➢ large amount of optimization targets 
➢ computationally expensive simulations 
➢ direct measurements are not possible 
➢ previously unobserved behaviour 
➢ non-linear interacting sub-systems, rapidly changing environment. 
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Which limitations can be solved by ML 
with reasonable effort?

➢ large amount of optimization targets 
➢ computationally expensive simulations 
➢ direct measurements are not possible 
➢ previously unobserved behaviour 
➢ non-linear interacting sub-systems, rapidly changing environment. 

Machine Learning: 
✓ Learn arbitrary models 
✓ Directly from provided data

Why applying ML to accelerators?



 
Machine Learning for beam optics control
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Beam optics control at the LHC

Large Hadron Collider: 
• 9300 magnets for bending and focusing the beam. 
• Main experiments: ALICE, ATLAS, CMS, LHCb  
• Collision rate: sufficient and balanced between 

experiments —> Luminosity

➢ How to increase chances of collisions? 
➢ How to ensure machine protection? 
! Beam Optics control
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Measuring the optics: instrumentation faults detection
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• Harmonic analysis using  
Fast Fourier Transform (FFT)

• Excite the beam to perform 
transverse oscillations. 

! Beam Position Monitors (BPMs) to 
measure the beam centroid  
turn-by-turn
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• Harmonic analysis using  
Fast Fourier Transform (FFT)

• Excite the beam to perform 
transverse oscillations. 

! Beam Position Monitors (BPMs) to 
measure the beam centroid  
turn-by-turn Faulty BPMs are a-priori unknown:  

• cause erroneous computation of optics functions 
• manual cleaning is required 
• repeating optics analysis after manual cleaning

Measuring the optics: instrumentation faults detection
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• Harmonic analysis using  
Fast Fourier Transform (FFT)

• Excite the beam to perform 
transverse oscillations. 

! Beam Position Monitors (BPMs) to 
measure the beam centroid  
turn-by-turn Faulty BPMs are a-priori unknown:  

• cause erroneous computation of optics functions 
• manual cleaning is required 
• repeating optics analysis after manual cleaning

Anomaly detection using 
Unsupervised Learning

Measuring the optics: instrumentation faults detection
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➡ Detect anomalies with Isolation Forest algorithm:

✓ Successfully used in LHC beam measurements since 2018

• Unsupervised Learning  
• No training, immediate results applying Isolation 

Forest algorithms on FFT properties of BPM signal

➢ Providing information to BI experts: 

✓ IF- algorithm: Identify dominant signal 
properties for faults classification  

✓ Identified 116 critical faulty BPMs out of  
more than a thousand BPMs in the LHC.

Thanks to ML:

Detection of otherwise unexplored 
hardware and electronics problems  
in beam instrumentation

Instrumentation faults detection: operational results
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Optics corrections in the LHC using Supervised Learning

Schematic circuit representation

Quad 1 Quad 2 Quad N……

Power 
Supply

Errors 
Δk1 Δk2 ΔkN

Corrections
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𝜷 ! Determined by quadrupole arrangement 
and powering: 

• Access to the magnets for direct measurements is not possible during operation.  
➡ Beam-based measurements and corrections of lattice imperfections. 

• Computed corrections provide circuit settings to compensate measured beta-beating 
➡ What are the actual individual magnet errors?

Δβ
β

=
βmeas − βmodel

βmodel
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Optics corrections: prediction of magnets errors
Random Forest Regressor: 
• Ensemble of decision trees:  

lower complexity vs. NN 
• 1256 target variables, 2048 input variables 
• Tested on simulations, historical data  

and LHC commissioning
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Random Forest Regressor: 
• Ensemble of decision trees:  

lower complexity vs. NN 
• 1256 target variables, 2048 input variables 
• Tested on simulations, historical data  

and LHC commissioning
Simulations LHC commissioning 2022

✓ Corrections by applying the predicted  
magnet errors with opposite sign as 
correction settings 

✓ Simultaneous local correction in all 
Interaction Regions within seconds.

 
! Potential to save operational time

E.Fol et al.,“Experimental Demonstra4on of Machine Learning 
Applica4on in LHC op4cs commissioning”,IPAC’22 MOPOPT047

E. Fol et al. The European Physical Journal Plus volume 136, Article number: 365 (2021) , 
“Supervised learning-based reconstruction of magnet errors in circular accelerators”.

Optics corrections: prediction of magnets errors

True magnet errors are known in the simulations: 
=> direct comparison true vs. Predicted

Measurements: beam-based verification: 
Measured phase errors vs. Matching with predicted 
magnet errors

https://ipac2022.vrws.de/papers/mopopt047.pdf
https://ipac2022.vrws.de/papers/mopopt047.pdf


Beam optics corrections: Reinforcement Learning approach
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Agent

Environment

op#mise NN  
to minimise op#cs errors

Random Forest regression 
trained on simula#ons

Ac#on 
(correc#ons)

 Δk

Reward  

(difference to ideal op/cs)

HL-LHC  
surrogate  

model

➡ Precise optics control required: traditional techniques show limitations in 
challenging HL-LHC optics control (simulations) 

➡ Reinforcement learning based optics control:  
✓Concept and prototype of RL formalism for optics control  
✓ Implementation of training data generation 
✓Built surrogate model to be used as environment 

➡ Preliminary results:  
Demonstration of order of magnitude improved optics corrections  
in HL-LHC simulations.

Op#cs  
func#ons

State 
(op#cs)

The High Luminosity Large Hadron Collider (HL-LHC): upgrade of the LHC  
• aims to achieve luminosi[es a factor of 5 to 7.5 larger than the LHC  
• enabling the experiments to enlarge the data volume by one order of magnitude

(E.Fol, H. Garcia-Morales, BE-ABP)



Further examples from CERN
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Reinforcement Learning in Controls:
• RL agents were trained for trajectory 

correc6on on the AWAKE electron line 
• Offline training on simula[ons, short online 

re-training of the agent in opera[on 
➡ Trajectory correc[on results be`er than the 

set target 

“Sample-efficient reinforcement learning for CERN accelerator control” 
V. Kain et al., Phys. Rev. Accel. Beams 23, 124801

Image-based beam diagnos7cs:
• Reproduce the longitudinal beam 

parameters at the LHC injection, 
given as an input the longitudinal 
beam profiles 

✓ Can be used as online monitoring tool 
during operation 

✓ Potential to reduce time for the data 
analysis needed to extract the same 
information.

Supervised Learning: Collimators alignment

• Collimators have to be 
realigned during operaYon 
due to orbit shiZs and beam 
parameter changes 

• Order of magnitude speed up of 
collimators alignment, reducYon 
of manual effort

“Opera[onal results on the fully automa[c LHC collimator alignment” 
G. Azzopardi, Phys. Rev. Accel. Beams 22, 093001

“Ar[ficial Intelligence-Assisted Beam Distribu[on Imaging Using a 
Single Mul[mode Fiber at CERN”, Trad, Georges , Burger, Stephane  
JACoW IPAC 2022 (2022) 339-342

https://cds.cern.ch/search?f=author&p=Trad%2C%20Georges&ln=en
https://cds.cern.ch/search?f=author&p=Burger%2C%20Stephane&ln=en
http://dx.doi.org/10.18429/JACoW-IPAC2022-MOPOPT041


Machine Learning in design of new facilities: 
Muon Collider design study
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Muon Collider: overview

➡ Preliminary studies provide promising results 
➡Tested different NN architectures

Short intense 
proton bunch 
sent on the 
target

Interaction with the target 
produces pions 
➡ decay into muons

Muons are captured 
and cooled to lower 
emittance

Acceleration to high 
collision energy

[1]: https://muoncollider.web.cern.ch
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Muon Collider: overview
Would be easier if muons did not decay with 
lifetime = 2.2  …μs

Ionisation cooling (the reduction of 
occupied phase-space by muons) is 
required: novel technique,  demonstrated 
by MICE collaboration 
Design of cooling channel:  
numerical optimization,  
particles tracking simulations

➡ Preliminary studies provide promising results 
➡Tested different NN architectures

Muons are created as pions decay products 
and form a beam with a huge emittance 
(~beam size)

https://www.nature.com/articles/s41586-020-1958-9
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Muon Collider: overview
Would be easier if muons did not decay with 
lifetime = 2.2  …μs

Ionisation cooling (the reduction of 
occupied phase-space by muons) is 
required: novel technique,  demonstrated 
by MICE collaboration 
Design of cooling channel:  
numerical optimization,  
particles tracking simulations

➡ Preliminary studies provide promising results 
➡Tested different NN architectures

• How to speed up tracking simulations? 
•  How to estimate initial optimization parameters? 
•  Analytical models combined with data-driven approach

Muons are created as pions decay products 
and form a beam with a huge emittance 
(~beam size)

➡ Surrogate models 
➡ Bayesian Optimization 
➡ Feature Importance Analysis with Decision Trees

https://www.nature.com/articles/s41586-020-1958-9
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Optimization speed-up:  supervised learning
 1. Run tradi[onal numerical op[misers, systema[cally saving the data 

2. Train a surrogate model (Random Forest 
Regressor): predict parameters of interest

3. Replace [me-costly simula[ons with ML model



20

Optimization speed-up:  supervised learning

✓ Compute optimization function from  
ML-model prediction 

✓ Optimization in a few minutes instead of ~1.5 
hours for 200 steps using tracking simulations

Predicting beam properties included in optics optimisation:

* work with D. Schulte, C. Rogers, B. Stechauner

 1. Run tradi[onal numerical op[misers, systema[cally saving the data 

2. Train a surrogate model (Random Forest 
Regressor): predict parameters of interest

3. Replace [me-costly simula[ons with ML model



Inverse models for fast design parameters estimate
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Result is as required? ➡ Fast design es[mate

Design of a muon cooling cell

- 25 parameters to op[mize in each cell 
- Expected to need ~15 cells



Inverse models for fast design parameters estimate
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Result is as required? ➡ Fast design es[mate

Design of a muon cooling cell

- 25 parameters to op[mize in each cell 
- Expected to need ~15 cells

260 16.5 715 93 7.1

Beam parameters (end of the cell)
Emittance 

Tr. [mm 
mrad]

Emittance 
Long. [mm]

Bunch 
length 
[mm]

Pz 
[MeV/c]

Pz 
spread

300.0 1.5 50.0 135 3.5
295 1.7 79 125 3.6
283 2.2 61 118 4.6
270 2.3 128 105 2.4

255 4.8 210 95 4.1

Cell

1
2
3
4 Vs. Results obtained by traditional 

optimization approach

✓ Better trade-off between longitudinal and 
transverse emittance 

✓ Flexible automatic optimization framework  

1. A few optimization steps using e.g. genetic algorithms 

2. Supervised Learning - based Random Forest model to predict cell 
design based from required cooling performance



Combining optimisers and surrogate models
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Result is as required?

Further op6miza6on needed? ➡ Use as ini6al guess for op[misa[on algorithms 
(op[mal solu[on is found within fewer steps)

➡ Fast design es[mate

Applied opYmisaYon techniques: 
• Bayesian op6miza6on using Gaussian Process* 
• Inverse surrogate models for ini6al parameters es6ma6on.

Note: previous optimisation achieved 255 mm mrad 
after 4th stage, here: 230 mm mrad

‣ * Update probabilis.c model based on funcYon evaluaYon 
‣ OpYmise an acquisiYon funcYon (e.g. probability of 

improvement) for sampling the new opYmisaYon step 
‣ Balance exploraYon and exploitaYon by controlling 

parameters of acquisiYon funcYon



Example: longitudinal beam parameters: 
• Collect data during opYmisaYon,ML-model: Input: cell set up, output: beam parameters at the end of a cooling cell

Model interpretability: permutation features importance
Feature permuta6on 
• Measuring how much model’s performance decreases when each feature is randomly shuffled 
• IdenYfy which features have greatest impact on model’s output 
• Applying Random Forest algorithm: automa6cally computed while training each tree on a subset of features 

and minimising the loss funcYon 

Helpful for complex models: 
- what are most critical parameters to be optimised? 
- Where are the bottle necks?
✓ “what is this model actually learning?”



Further potential ML applications in Muon Collider Design
Sample-efficient op6miza6on: 
• Classify a small number of simulaYon setups based on tracking results 
• Find a boundary for desired cooling performance  
• Run opYmizaYon exploring parameter space within this boundary 
• Demonstrated e.g. Dynamic Aperture opYmizaYon for HL-LHC using  Support Vector Machine Classifier 

(F.F. Van der Veken, et al., “Determina>on of the Phase-Space stability border with ML”, IPAC’22)

Integrated model of muon collider complex: 
• Optimization routines is a typical instrument across different collider sub-systems 
• Systematically saving the data 

➡ Collecting data from otherwise non-compatible simulations tools  
✓  Opens several opportunities: identification of most critical parameters for collider performance  

(e.g. feature importance analysis, but also dimensionality reduction techniques) 
✓ Fast-executable model for changing requirements as design evolves 

EmiPance computa6on for non-gaussian beams: 
• Tackles limitaYons of tradiYonal n-“sigma” threshold cuts 
• DetecYng “lost” parYcles based on the whole 6D phase space 
• e.g. density-used clustering methods: unsupervised learning, fast executable

https://accelconf.web.cern.ch//ipac2022/papers/mopost047.pdf


Potential ML applications in Collider Design

Several collider projects are considered for the future: 
- Large scale facili[es: thousands of parameters to be opPmised, interac[ng sub-systems 
- New simula[on tools required to model complex physical processes  
- Tight tolerances for beam control (beam focusing, losses, life[me) 
- Cost-effec[veness 
- Energy efficiency AI can be a crucial component of design 

studies to push towards optimal solutions



Thanks a lot for your attention!
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ML in accelerators: summary
Accelerator Problem ML methods Benefits To be considered

• Automation of particular 
components 

Supervised techniques for 
classification: Decision Trees, 
SVR, Logistic Regression, NN

Saving operation time, reducing 
human intervention, preventing 

subjective decisions

Dedicated machine time usually 
required to collect training data 

and to fine tune developed 
methods.

• Online optimization of 
several targets which are 
coupled 

• Unexpected drifts, 
continuous settings 
readjustment needed to 
maintain beam quality

 
Reinforcement Learning, 
Bayesian optimization, 

Gaussian Process, 
Adaptive Feedback

Simultaneous optimization 
targeting several beam 

properties, automatically 
finding trade-off between 

optimization targets, allows 
faster tuning offering more user 

time.

Ensuring that all important  
properties are included as 

optimization targets.

• Detection of anomalies Unsupervised methods: 
clustering, ensembles of 

decision trees (e.g. Isolation 
Forest), supervised 

classification, Recurrent NN for 
time-series data.

Preventing faults before they 
appear, no need to define rules/ 

thresholds, 
no training is needed and can 

be directly applied on received 
data

In unsupervised methods, 
usually no “ground truth” is 

available ! methods can be 
verified on simulations.
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ML in accelerators: summary

Accelerator Problem ML methods Benefits To be considered

• Computationally heavy, slow 
simulations 

• Reconstruct unknown 
properties from 
measurements

 
Supervised Regression models, 

NN for non-linear problems

Learning underlying physics directly 
from the data, faster execution

100% realistic simulations 
are not possible ! the 

model performance will be 
as good as your data is.

• Reduction of parameter 
space e.g. for optimization

Clustering, Feature Importance 
Analysis using Decision trees

Speed up of available methods, 
simpler defined problems, easier to 

interpret

Parameter selection and 
combination (feature 
engineering) can have 

significant impact on ML 
methods performance

• Missing or too noisy data Autoencoder NN Robust models, data quality Significant information 
should not be removed from 

the signal.


