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Why applying ML to accelerators?

Accelerators

. Operation
. Diagnostics
e Beam Dynamics Modeling

Which limitations can be solved by ML
with reasonable effort?

> large amount of optimization targets

> computationally expensive simulations

> direct measurements are not possible

> previously unobserved behaviour

> non-linear interacting sub-systems, rapidly changing environment.




Why applying ML to accelerators?

Accelerators

. Operation
. Diagnostics
e Beam Dynamics Modeling
Which limitations can be solved by ML Machine Learning:

|:> v Learn arbitrary models

. ?
with reasonable effort: v Directly from provided data

> large amount of optimization targets
> computationally expensive simulations
> direct measurements are not possible
> previously unobserved behaviour

> non-linear interacting sub-systems, rapidly changing environment.




Machine Learning for beam optics control




Beam optics control at the LHC

Cleaning

Interaction
Point

Relative beam sizes around IP1 {Atlas) in collision LHC-B
Large Hadron Collider: (B physics)
« 9300 magnets for bending and focusing the beam.
- Main experiments: ALICE, ATLAS, CMS, LHCb > How to increase chances of collisions?
« Collision rate: sufficient and balanced between > How to ensure machine protection?

experiments —> Luminosity - Beam Optics control
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Measuring the optics: instrumentation faults detection

Turn-by-turn beam position
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» Excite the beam to perform
transverse oscillations.
- Beam Position Monitors (BPMs) to
measure the beam centroid
turn-by-turn
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Measuring the optics: instrumentation faults detection

Turn-by-turn beam position Spectrum Optics
(beta-beating and other optics functions)
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» Excite the beam to perform « Harmonic analysis using Unphysical values still
transverse oscillations. Fast Fourier Transform (FFT) can be observed

- Beam Position Monitors (BPMs) to
measure the beam centroid

turn-by-turn Faulty BPMs are a-priori unknown:

Semi-automatic and e cause erroneous computation of optics functions
manual cleaning of e manual cleaning is required
outliers e repeating optics analysis after manual cleaning

Denoising (SVD)

Signal cuts




Measuring the optics: instrumentation faults detection

Turn-by-turn beam position Spectrum Optics
(beta-beating and other optics functions)
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» Excite the beam to perform « Harmonic analysis using Unphysical values still
transverse oscillations. Fast Fourier Transform (FFT) can be observed

- Beam Position Monitors (BPMs) to

measure the beam centroid
turn-by-turn Faulty BPMs are a-priori unknown:
Semi-automatic and e cause erroneous computation of optics functions

Dengsmg (SvD) manual cleaning of e manual cleaning is required
Signal cuts outliers e repeating optics analysis after manual cleaning

Anomaly detection using
Unsupervised Learning




Instrumentation faults detection: operational results

= Detect anomalies with Isolation Forest algorithm:

o, T e NP 0 . T v Successfully used in LHC beam measurements since 2018
“ °* ©° ' ° > Providing information to Bl experts:
° o O ®
e feature x feature x v IF- algorithm: Identify dominant signal
« Unsupervised Learning properties for faults classification
v ldentified 116 critical faulty BPMs out of

* No training, immediate results applying Isolation

Forest algorithms on FFT properties of BPM signal more than a thousand BPMs in the LHC.

P2 IP3 IP4 IP5 IP6 IP7 IP8 IP1

8 ' RV

6 | VD and Isolation Forest Detection of otherwise unexplored
. :
< Thanks to ML: _> hardware and electronics problems
<, in beam instrumentation
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Optics corrections in the LHC using Supervised Learning

Ak Errors [)’ - Determined by quadrupole arrangement
! Akz AkN and powering: Aﬂ . ﬂmeas - ﬁmodel
v v v ﬂ ﬂmodel

[ Quad 1 ] [QuadZ] [ Quad N ]
| | | o

QU 0.02%
Schematic circuit representation 3 o0
Power . "0.02
Corrections ~0.04
Supply ~0.06

e Access to the magnets for direct measurements is not possible during operation.
= Beam-based measurements and corrections of lattice imperfections.
e Computed corrections provide circuit settings to compensate measured beta-beating
= \What are the actual individual magnet errors?




Optics corrections: prediction of magnets errors

Optics
Measurement

Input

LA .;

Output

Regression Model,
Supervised Learning

Random Forest Regressor:

Quadrupole Errors

e Ensemble of decision trees:

lower complexity vs. NN
e 1256 target variables, 2048 input variables
e Tested on simulations, historical data

and LHC commissioning




Optics corrections: prediction of magnets errors

: Input =
Optics -_— ‘ Quadrupole Errors
Measurement o
Regression Model,
Supervised Learning
. . LHC commissioning 2022

Simulations 1

True 0

30 Predicted e

Residuals R
20 -2
<

<-3

10
-4 Matched
—+— Measured
010 0 10 -5
s 22800 23000 23200 23400 23600 23800 24000 24200
Magnet errors [107°] Longitudinal location [m]
True magnet errors are known in the simulations: Measurements: beam-based verification:
=> direct comparison true vs. Predicted Measured phase errors vs. Matching with predicted

magnet errors

E. Fol et al. The European Physical Journal Plus volume 136, Article number: 365 (2021),
“Supervised learning-based reconstruction of magnet errors in circular accelerators”.

Random Forest Regressor:

e Ensemble of decision trees:

lower complexity vs. NN
e 1256 target variables, 2048 input variables
e Tested on simulations, historical data

and LHC commissioning

v Corrections by applying the predicted
magnet errors with opposite sign as
correction settings

v Simultaneous local correction in all
Interaction Regions within seconds.

- Potential to save operational time

E.Fol et al.,“Experimental Demonstration of Machine Learning
Application in LHC optics commissioning”,IPAC’22 MOPOPT047



https://ipac2022.vrws.de/papers/mopopt047.pdf
https://ipac2022.vrws.de/papers/mopopt047.pdf

Beam optics corrections: Reinforcement Learning approach

The High Luminosity Large Hadron Collider (HL-LHC): upgrade of the LHC optimise NN
. . . L. to minimise Opt'ICS errors
e aims to achieve luminosities a factor of 5 to 7.5 larger than the LHC

Agent
e enabling the experiments to enlarge the data volume by one order of magnitude o
optics . 7 :
= Precise optics control required: traditional techniques show limitations in ( pA ) (corrections)
challenging HL-LHC optics control (simulations)
= Reinforcement learning based optics control: T
¥ Concept and prototype of RL formalism for optics control (difference to ideal optics)
v Implementation of training data generation T
. . _ 5 v
v Built surrogate model to be used as environment f OpEcs A Ak
unctions model

= Preliminary results:
Demonstration of order of magnitude improved optics corrections

Environment

Random Forest regression

in HL-LHC simulations. _ _ _
trained on simulations

(E.Fol, H. Garcia-Morales, BE-ABP)




Further examples from CERN

Reinforcement Learning in Controls: Image-based beam diagnostics: Supervised Learning: Collimators alignment
e RL agents were trained for trajectory e Reproduce the longitudinal beam :;a:l

correction on the AWAKE electron line parameters at the LHC injection, e R Run 2
e Offline training on simulations, short online given as an input the longitudinal .’

re-training of the agent in operation beam profiles 125

= Trajectory correction results better than the v Can be used as online monitoring tool

79 collimators

set target during operation

in 50 minutes!
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“Artificial Intelligence-Assisted Beam Distribution Imaging Using a
Single Multimode Fiber at CERN”, Trad, Georges , Burger, Stephane
JACoW IPAC 2022 (2022) 339-342

“Sample-efficient reinforcement learning for CERN accelerator control”
V. Kain et al., Phys. Rev. Accel. Beams 23, 124801

“Operational results on the fully automatic LHC collimator alignment”
G. Azzopardi, Phys. Rev. Accel. Beams 22, 093001



https://cds.cern.ch/search?f=author&p=Trad%2C%20Georges&ln=en
https://cds.cern.ch/search?f=author&p=Burger%2C%20Stephane&ln=en
http://dx.doi.org/10.18429/JACoW-IPAC2022-MOPOPT041

Machine Learning in design of new facilities:

Muon Collider design study




Muon Collider: overview @

International
UON Collider
/ Collaboration

Accelerator

Short intense u Injector Mu;)onT gtéil:;ler
>101e
prOton bunch ~10km circumference
sent on the :
&
&
4
4
’0
s
R

Interaction yvith the target Muons are captured Acceleration to high
produces pions and cooled to lower collision ener
= decay into muons emittance Y

[1]: https://muoncollider.web.cern.ch




Muon Collider: overview

International
UON Collider
Collaboration

Would be easier if muons did not decay with
lifetime = 2.2 us ...

Muons are created as pions decay products
and form a beam with a huge emittance
(*beam size)

Accelerator

Muon Collider

>10TeV CoM
~10km circumference

2 lonisation cooling (the reduction of

occupied phase-space by muons) is
ey required: novel technique, demonstrated
g : by MICE Collaboration

YY)

gl |- -={000000 — :.E \ ' . . )
4 GeV Target, nDeca : 4 2 Design of cooling channel:

: : : s . .
: Proton & pBunching  Channel : 2?® numerical optimization,

[t yts e  [] S 4 particles tracking SimUIationS



https://www.nature.com/articles/s41586-020-1958-9

Muon Collider: overview

International
UON Collider
Collaboration

Would be easier if muons did not decay with
lifetime = 2.2 us ...

Muons are created as pions decay products
and form a beam with a huge emittance
(*beam size)

Accelerator

Muon Collider

>10TeV CoM
~10km circumference

2 lonisation cooling (the reduction of
occupied phase-space by muons) is
required: novel technique, demonstrated
by MICE collaboration

2 Design of cooling channel:
numerical optimization,
particles tracking simulations

e How to speed up tracking simulations? = Surrogate models

e How to estimate initial optimization parameters? = Bayesian Optimization
e Analytical models combined with data-driven approach = Feature Importance Analysis with Decision Trees



https://www.nature.com/articles/s41586-020-1958-9

Optimization speed-up: supervised learning @
S

2. Train a surrogate model (Random Forest 3. Replace time-costly simulations with ML model
Regressor): predict parameters of interest bredict emittance

B \ e Emitt reduction & transmission
eam ML Surrogate mittance
parameters del ‘ reduction,
and cell design moaé transmission

1. Run traditional numerical optimisers, systematically saving the data

—

ML Surrogate L.
Optimizer
model

\———/

Updated settings




Optimization speed-up: supervised learning @
S

2. Train a surrogate model (Random Forest 3. Replace time-costly simulations with ML model
Regressor): predict parameters of interest

1. Run traditional numerical optimisers, systematically saving the data

Predict emittance

B \ e Emitt reduction & transmission
eam ML Surrogate mittance
parameters del ‘ reduction, /’_—\‘
and cell design moaé transmission ML Surrogate
Optimizer
model
Updated settings

Predicting beam properties included in optics optimisation:

Simulated value 250 1 Simulated value
200 Predicted value Predicted value

Error of prediction 200 - Error of prediction L. . .
o v Compute optimization function from

150 ML-model prediction
100 100 - v Optimization in a few minutes instead of ~1.5
50 50 | hours for 200 steps using tracking simulations
0- ; : . 0 T .
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.05 0.10 0.15 0.20 0.25
A€, /€ s |aabsorber| * work with D. Schulte, C. Rogers, B. Stechauner




Inverse models for fast desigh parameters estimate ot

UON Collider
ollaboration

-

\ 2 [ ] .

Desired cooling ML Surrogate Required beam Design of a muon cooling cell
performance model pa:ae';;ig;:nd Matching coils LH, absorber
Longitudnal phase space
) rotation rf cavities
Iti ired? ; . Acceleration rf ¢ &
Result is as required: = Fast design estimate cavities

) _

Drift for developing energy-
time correlations

focusing
coils

Transport coils
- 25 parameters to optimize in each cell

- Expected to need ~15 cells




Inverse models for fast desigh parameters estimate

International
UON Collider
Collaboration

\ (o
Desired cooling ML Surrogate Required beam Design of a muon cooling cell
performance model pa::ae':;ztei:; :nd Matching coils LH, absorber
Longitudnal phase space
) rotation rf cavities
Iti ired? ; . Acceleration rf ¢ &
Result is as required: = Fast design estimate cavities

1. A few optimization steps using e.g. genetic algorithms

2. Supervised Learning - based Random Forest model to predict cell
design based from required cooling performance

Drift for developing energy-

- : focusin
time correlations 9

coils

Transport coils
- 25 parameters to optimize in each cell

Beam parameters (end of the cell)

Emittance Emittance Bunch Pz Pz
Cell Tr. [mm Long. [mm] | length | [MeV/c] | spread - Expected to need ~15 cells
300.0 1.5 50.0 135 3.5

] 295 1.7 79 125 3.6

283 2.2 61 118 4.6 o
2 70 23 28 e o4 v Better trade-off between longitudinal and
3 : : transverse emittance
4 255 4.8 210 95 41 1| vs. Results obtained by traditional Vv Flexible automatic optimization framework

260 16.5 715 93 7.1 optimization approach




Combining optimisers and surrogate models

\ an
Desired cooling ML Surrogate R L2
performance ile parameten:s and
cell design
o gr{um] —&-— transmission [%] o & [mm]
. . . . 3007?-..
Result is as required? = Fast design estimate Tl *
R . '8
Further optimization needed? = Use as initial guess for optimisation algorithms 250/ R .- ! \
(optimal solution is found within fewer steps) i ., )
] s 6
Applied optimisation techniques: 200 foTTTe
e Bayesian optimization using Gaussian Process* 150
* Inverse surrogate models for initial parameters estimation. —d 4
1003 o & %
» * Update probabilistic model based on function evaluation — o« " o - ‘2
» Optimise an acquisition function (e.g. probability of 50 a

improvement) for sampling the new optimisation step
» Balance exploration and exploitation by controlling
parameters of acquisition function

Stage

Note: previous optimisation achieved 255 mm mrad
after 4th stage, here: 230 mm mrad




Model interpretability: permutation features importance @

International
o UON Collid
Feature permutation /cO‘uabof’a{ifé
e Measuring how much model’s performance decreases when each feature is randomly shuffled

¢ |dentify which features have greatest impact on model’s output
e Applying Random Forest algorithm: automatically computed while training each tree on a subset of features

and minimising the loss function
Example: longitudinal beam parameters:

e Collect data during optimisation,ML-model: Input: cell set up, output: beam parameters at the end of a cooling cell

05 Longitudinal Momentum Prediction Bunch Length Prediction |
0.5
0.41 Helpful for complex models:
0.4 - what are most critical parameters to be optimised?
go3
§ %03 - Where are the bottle necks?
- H v “what is this model actually learning?”
- E 0.2
0.1
0.1
0.0-
g £ 0.0
= °

voltage
drift
freq.

[
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accel. phase

rotation phase
accel. phase
dtation phase




Further potential ML applications in Muon Collider Design

Sample-efficient optimization:

e Classify a small number of simulation setups based on tracking results
e Find a boundary for desired cooling performance

e Run optimization exploring parameter space within this boundary

e Demonstrated e.g. Dynamic Aperture optimization for HL-LHC using Support Vector Machine Classifier
(EE Van der Veken, et al., “Determination of the Phase-Space stability border with ML”, IPAC’22)

Emittance computation for non-gaussian beams:

e Tackles limitations of traditional n-“sigma” threshold cuts

e Detecting “lost” particles based on the whole 6D phase space

e e.g. density-used clustering methods: unsupervised learning, fast executable

Integrated model of muon collider complex:

e Optimization routines is a typical instrument across different collider sub-systems
e Systematically saving the data
= Collecting data from otherwise non-compatible simulations tools
v Opens several opportunities: identification of most critical parameters for collider performance
(e.g. feature importance analysis, but also dimensionality reduction techniques)
v Fast-executable model for changing requirements as design evolves



https://accelconf.web.cern.ch//ipac2022/papers/mopost047.pdf

Potential ML applications in Collider Design

S 380 GeV - 11.4 km (CLIC380)
. I 1.5 TeV - 29.0 km (CLIC1500)
; 3.0 TeV - 50.1 km (CLIC3000)

,,,,,,,,

International
UON Collider
Collaboration

Iniector oy |/ Muon Collider
Hiny >10TeV CoM i Schematic of an
_ \ ~10km circumference | 80 - 100 km
S \ ‘ long tunnel
i RS, e\

4 GeV Target, Decay p Cooling — Low Energy X

: ¢ S *
i Proton & pBunching Channel  pAcceleration : 2¢ Symue
i Source  Channel F Tr=ffi==="

alaz

Several collider projects are considered for the future:
- Large scale facilities: thousands of parameters to be optimised, interacting sub-systems
- New simulation tools required to model complex physical processes
- Tight tolerances for beam control (beam focusing, losses, lifetime)
- Cost-effectiveness

- Energy efficiency »

Al can be a crucial component of design
studies to push towards optimal solutions




Thanks a lot for your attention!




ML in accelerators: summary

Accelerator Problem

Automation of particular
components

Online optimization of
several targets which are
coupled

Unexpected drifts,
continuous settings
readjustment needed to
maintain beam quality

Detection of anomalies

ML methods

Supervised techniques for
classification: Decision Trees,
SVR, Logistic Regression, NN

Reinforcement Learning,
Bayesian optimization,
Gaussian Process,
Adaptive Feedback

Unsupervised methods:
clustering, ensembles of
decision trees (e.g. Isolation
Forest), supervised

classification, Recurrent NN for

time-series data.

Benefits

To be considered

Saving operation time, reducing Dedicated machine time usually

human intervention, preventing
subjective decisions

Simultaneous optimization
targeting several beam
properties, automatically
finding trade-off between
optimization targets, allows
faster tuning offering more user
time.

Preventing faults before they
appear, no need to define rules/
thresholds,
no training is needed and can
be directly applied on received
data

required to collect training data
and to fine tune developed

methods.

Ensuring that all important
properties are included as
optimization targets.

In unsupervised methods,
usually no “ground truth” is
available > methods can be
verified on simulations.




ML in accelerators: summary

Accelerator Problem ML methods Benefits To be considered

e Computationally heavy, slow Learning underlying physics directly 100% realistic simulations
simulations Supervised Regression models, from the data, faster execution are not possible 2 the

e Reconstruct unknown NN for non-linear problems model performance will be
properties from as good as your data is.
measurements

e Reduction of parameter Clustering, Feature Importance Speed up of available methods, Parameter selection and
space e.g. for optimization Analysis using Decision trees | simpler defined problems, easier to combination (feature

interpret engineering) can have

significant impact on ML
methods performance

e Missing or too noisy data Autoencoder NN Robust models, data quality Significant information
should not be removed from
the signal.




