

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

WP13 – Category G

Platforms for clean assembly, alignment and tests of accelerator components

I.FAST 2nd annual meeting- 19 April 2023

Akira Miyazaki– CNRS/IN2P3/IJCLab Université Paris-Saclay on behalf of CEA (H. Jenhani) + CNRS (W. Kaabi) + DESY (H. Weise, R. Wichmann) + UKRI (A. Gleeson)

Summary of the facilities

	facility
G1. Platforms for the assembly of complete accelerator modules	CEA Saclay
	CERN
	CNRS IJCLab
	DESY
	Uppsala University
	STFC
G2. RF Power Coupler Conditioning and Testing facilities	CNRS IJCLab
	DESY

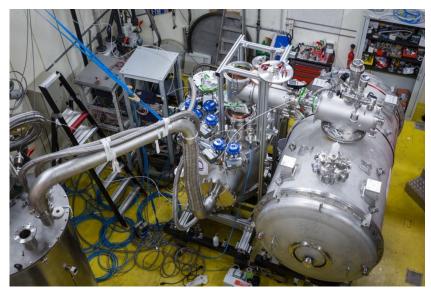
CEA Saclay

- Two clean rooms for cavity string assembly
 - 124 NORD (112m² class ISO4), semiautomated HPR, for XFEL and ESS cavity strings
 - 124 EST (52m² class ISO5), fully-automated HPR, for Spiral2, SARAF, R&D
- Cryomodule test stand next to clean rooms
 - 2K and 4K available
 - Cooling capacity of 80W at 1.8K
 - LN2 for 80K thermal screen
 - EuXFEL, ESS, and SARAF
- Plan
 - New cold box to distribute 4.5 K SCHe for PIPII (40 K thermal screen)

124 EST

124 NORD

Cryomodule test stand



Clean room

Cryomodule test stand

- One clean room for cavity string assembly
 - 45m² class ISO4
 - HPR
 - Short cavity string up to 3.5 m
- Cryomodule test stand
 - MINERVA prototype cryomodule
 - Not offered to external users
- Plan
 - ESS cryomodule until mid of 2023

CERN

- Clean rooms (booth)
 - Bat252: ISO4 & LPR (7 bar) for Nb-coated cavities
 - SM18: ISO2(static)/ISO4(operation) & HPR (100 bar)
- Two horizontal bunkers at SM18
 - M7 HL-LHC crab cavity cryomodules
 - M9 LHC cryomodules, HIE-ISOLDE cryomodules
- Present activities
 - M7 is fully occupied by on-going projects (HL-LHC)
 - M9 is reserved for HIE-ISOLD and LHC spare modules
- Plans
 - New control system in M9
 - HL-LHC crab cavities in coming years
 - Spare HIE-ISOLDE cryomodule
 - Prototype FCC cryomodule (?)

Clean room

Horizontal clean booths

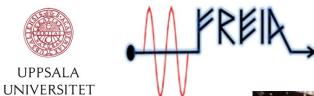
M7

M9

Akira Miyazaki – iFAST Meeting 19 April 2023

- Clean rooms
 - 300m² ISO4/ISO6
 - BCP, EP, HPR, UHV furnace
 - Mainly for modules with 1.3 GHz 9-cell 8 cavities
- Four cryomodule test stands
 - Originally for EuXFEL modules
 - CMTB: 1.3 GHz modules
 - 3 AMTF test benches
 - One is for 1.3 GHz only
 - Another is optimized for 1.3 GHz & 3.9 GHz module
 - The other is prepared for SRF Gun R&D
- Plans

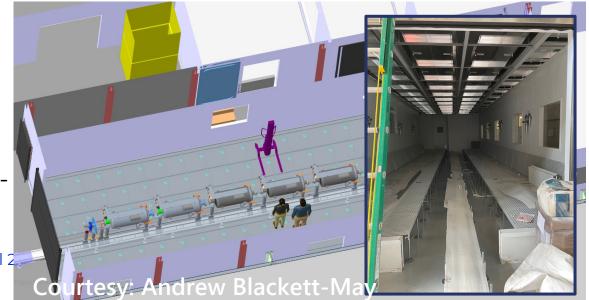
FAST


- Module test facility is reserved for internal activities at DESY
- Service contract might be possible

- Cryomodule test stand dedicated to ESS so far
 - WR2300HH waveguides & 6-1/8" coaxial line
 - Valve box dedicated to ESS spoke modules
 - Cooling capacity 90W at 2K
 - 80 K LN2 for cooling thermal screen
- Present activities
 - ESS cryomodule until mid of 2023
 - Conflict with cavity testing projects due to limited cryogenic capacity
- Plans
 - Adaptation for a new project
 - Cryogenic update including a SCHe line (?)

- Present capabilities
 - Two inserts for horizontally mounted cavities
 - One vertical test stand (φ1500)
 - Cooling capacity up to 100W at 2K
 - ISO6/5/4 clean rooms with HPR system
 - 704 MHz ESS high- β cavities
 - 650 MHz PIPII high-β cavities
- Present activities

FAST


- HL-LHC crab cavity (RFD) module assembly
- Major upgrade: clean room (ISO4, 14x4.5m) for PIP-II B650 MHz cavity string integration
- Plans
 - Cryomodule assembly for PIPII
 - New inserts for thin-film cavities of various frequency and geometry
 - Facilitate all development toward X-FEL, shortpulsed neutron source

HL-LHC RFD cavity string

New clean room for PIPII

CNRS IJCLab Clab (coupler)

- Clean room for coupler preparation
 - Ultrasonic cleaning (ISO6)
 - Clean assembly (ISO4)
 - Baking up to 200C (ISO5)
- Coupler conditioning bench
 - 1.3 GHz klystron 2 MW and 5 MW pulsed
 - 352 MHz SSA 80 kW CW
- Activities
 - 60 TT3 power couplers for DESY
 - 850 couplers for EuXFEL
 - 40 couplers for ESS spoke cavities
 - Prototype MINERVA spoke cavities
- Plan

FAST

• Cleaning, assembly, and conditioning of series couplers of MINERVA spoke cavities

Coupler baking in clean room

Coupler conditioning bench


9

DESY (coupler)

- Coupler conditioning bench at 1.3 GHz
 - 1.3 GHz power coupler of XFEL or FLASH type
 - Pair of coupler on waveguide boxes
 - Klystron 5 MW >1 ms 10 Hz
- Coupler conditioning bench at 3.9 GHz
 - Under preparation

Coupler conditioning bench

Conclusion

- AMICI core team + CERN operates assembly facilities
 - In-house projects, European research projects, American projects
- Large multi-lab projects are more and more based on inkind contributions
 - Networking laboratories and industries are critical
 - Companies are taking over assembly duties
- AMICI (+CERN) offers services to industry
 - Knowledge and technology transfer

Thank you for your attention

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

backup

Roadmap for the strategic evolution and development of the AMICI TI : in bold, the leaders of the group

Categories	Sub-categories	Partners
A. Facilities for beam tests of accelerator components		UKRI (A. Gleeson) + IFJ-PAN (D. Bocian + J. Swakon) + INFN-LNF (A. Liedl)
B. Test stations for magnets	B.1 - Test stations for superconducting magnets B.2 - Test stations for normal conducting magnets B.3 - Magnetic measurement facilities	INFN (L. Sabbatini + G. Bisoffi) + CEA (R. Vallcorba Carbonell) + CIEMAT (L. Garcia Tabares) + UU (T. Ekelof + T. Bagni)
C. Test stations for RF equipment	C.1 - Test stations for superconducting cavities C.2 - Test stations for normal conducting cavities	DESY (H. Weise) + UU (A. Miyazaki) + INFN (D. Alesini) + CEA (H. Jenhani) + CNRS (W. Kaabi)
D. Test stations for High Power RF components	D.1 - RF wave guides D.2 - RF power sources D.3 - Power transistors D.4 - High power amplifiers D.5 - Solid State Power Amplifiers with their combiners and control system	UU (D. Dancila) + KIT (C. Widmann) + CIEMAT (Daniel Gavela)
E. Test stations for mechanical manufacturing and tests (at cryogenic temperatures)	will become a subsection of F (renamed E)	CEA (R. Vallcorba Carbonell) + KIT (C. Widmann) + UKRI (A. Gleeson) + IFJ-PAN (Blazej Skoczen)
F. Platform for characterization, treatments and test of materials	 F.1 - Thermal treatment platforms F.2 - Chemical treatment platforms F.3 - Facilities for surface analyses F.4 - Electromagnetic, mechanical, thermal and associated material characterization Platforms 	CEA (F. Eozenou) + CIEMAT + CNRS (W. Kaabi) + INFN-LNL (G. Bisoffi) + IFJ-PAN (Jaromir Ludwin)
G. Platforms for clean assembly, alignment and tests of accelerator components	G.1 - Complete accelerator modules G.2 - RF power couplers	CEA (H. Jenhani) + CNRS (W. Kaabi) + DESY (H. Weise , R. Wichmann) + UU (A. Miyazaki)+ UKRI (A. Gleeson)
H. Platforms for Manufacturing, treatments and test of Magnet components for accelerator		CEA (S. Roux) + IFJ-PAN (Jacek Swierblewski)