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Motivation

● Why is the tt̅H process important?
 

○ Directly measure the Top-Higgs Yukawa coupling

○ Top has strongest coupling to Higgs:
 

● Still: tt̅H process is rare!
 

○ Use the most dominant decay channel with H → bb̅
○ Here: Single lepton channel

 
 

● Single lepton channel final state:
 

○ 6 jets
○ 4 b-tagged jets, 2 non-b-tagged jets
○ 1 lepton (electron/muon)
○ 1 neutrino
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Irreducible Background - tt̅ + bb̅

● Most dominant background → tt̅ + bb̅
 
 

● Irreducible background for the tt̅H process
 

○ Same final state particles
○ Difference in kinematics

 
 

● Can be separated by reconstruction of the Higgs
○ Problem: Not all jets from Higgs and top quarks 

survive jet selection
○ Also: Jet/parton assignment difficult due to large jet 

multiplicity
○ Good b-tagging important for jet/parton 

assignment
 
 

● Also: tt̅ + bb̅ → Large theory uncertainties
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Results from Last Round Analysis

● Signal and control region defined on jet and b-tag 
multiplicity

 

○ Signal → nJets ≥ 6, nBTags@85 ≥ 4
○ Control → nJets = 5, nBTags@85 ≥ 4

 

● Each region is than used in a Profile Likelihood fit
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Results from Last Round Analysis

● Signal and control region defined on jet and b-tag 
multiplicity

 

○ Signal → nJets ≥ 6, nBTags@85 ≥ 4
○ Control → nJets = 5, nBTags@85 ≥ 4

 

● Each region is than used in a Profile Likelihood fit
 

● Looking at the background-only compositions
 
 

● Signal- and control regions dominated by tt̅ + bb̅

● No clean control regions
 

○ Used to constrain systematic uncertainties
○ Is there a way to define cleaner signal- and 

control regions?
Background composition of the different signal- and control regions
From HIGG-2020-23

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-23
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Results from Last Round Analysis

● Results of the last analysis are shown here
 

● Public paper results with full Run 2 data 
 

● Was dominated by systematic uncertainties
 

● Largest uncertainty: tt̅ + bb modelling
 
 

● Due to systematic limitations: Redo the analysis with
multiple improvements to reduce systematic uncertainty

HIGG-2020-23

Based on 
HIGG-2020-23

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-23
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-23
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Object- and Region Definitions

● Lepton definitions:
 

○ Single-lepton: One lepton with pT >= 27 GeV
 

● Jet definition:
 

○ Using the anti-kt jet cluster algorithm with ΔR = 0.4
○ Jet pT > 25 GeV, Jet |η| < 2.5

 

● b-tagged definition:
 

○ Jets passing the corresponding DL1r 
working point (WP) cuts

 

● Using Deep-Sets based deep neural networks (DNNs)
 

○ Multiclass classifier 
○ Outputs probability for event belonging to one region
○ Developed by students from DESY
○ No need for building jet-parton permutations

→Deep-Sets are permutation-invariant!

https://app.diagrams.net/?page-id=TEY4fglC16vj1N23ru9Y&scale=auto#G1ZS-Wz8JDf-AYBMK3EtTv_Alg4fPO713Y
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● Very good reconstruction algorithms for objects in ATLAS
 

○ But: Nobody's perfect!
Soft leptons or non-leptonic particles can pass the requirements

○ Most backgrounds are modelled with Monte Carlo (MC)
○ Lepton fakes contribution → Data-driven with Matrix method
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Fake Estimation

CERN-THESIS-2011-112

● Very good reconstruction algorithms for objects in ATLAS
 

○ But: Nobody's perfect!
Soft leptons or non-leptonic particles can pass the requirements

○ Most backgrounds are modelled with Monte Carlo (MC)
○ Lepton fakes contribution → Data-driven with Matrix method

 

● Sources for fake electrons
○ Light- or gluon jets
○ Deposit most energy in the electromagnetic calorimeter (ECAL)
○ 𝛾 conversion in the ECAL

● Sources for fake muons
 

○ High energy particles with elongated shower shapes 
(Punch-Through)

○ Decay of a charged meson (i.e. K+) producing a muon 

http://cds.cern.ch/record/1388275/files/CERN-THESIS-2011-112.pdf
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Fake Estimation

● Currently studying the effect of lepton fakes for the analysis
○ No large contribution in SR expected but maybe in CR

 

● Splitting tt̅ + bb̅  in three different processes
○ tt̅ + 1b
○ tt̅ + 1B
○ tt̅ + ≥ 2b

 
● Control regions now defined by process
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● Currently studying the effect of lepton fakes for the analysis
○ No large contribution in SR expected but maybe in CR

 

● Splitting tt̅ + bb̅  in three different processes
○ tt̅ + 1b
○ tt̅ + 1B
○ tt̅ + ≥ 2b

 
● Control regions now defined by process

● First results show no big impact for the background-only 
composition pie charts for the signal and control regions

 

● But: Redefined control regions are much cleaner in comparison
to last analysis (i.e tt̅ + light and tt̅ + c regions)

7

Fake Estimation
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Simplified Template Cross-Section (STXS)

● Comparable differential Higgs kinematic measurements between 
LHC experiments and Higgs decay channels

● Performed in exclusive kinematic phase space regions (STXS bins)

https://app.diagrams.net/?page-id=a9EEH9kkdr0uN-LgZjin&scale=auto#G13f4Lq5rQTSrCfCu_s0CIYYqOypSHDhvO
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Simplified Template Cross-Section (STXS)

● Comparable differential Higgs kinematic measurements between 
LHC experiments and Higgs decay channels

● Performed in exclusive kinematic phase space regions (STXS bins)

● Higgs pT binning optimised to 
 

○ Reduce theory uncertainties
○ Maximise sensitivity of H → bb̅  channel
○ Also: Higgs pT is sensitive to CP structure of the Higgs

arXiv:1501.03157

https://arxiv.org/abs/1501.03157
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○ Reduce theory uncertainties
○ Maximise sensitivity of H → bb̅  channel
○ Also: Higgs pT is sensitive to CP structure of the Higgs

● For each STXS bin a separate signal template is defined
 

○ Based on the signal truth MC prediction
○ All templates are used for the final Profile Likelihood fit

https://app.diagrams.net/?page-id=a9EEH9kkdr0uN-LgZjin&scale=auto#G13f4Lq5rQTSrCfCu_s0CIYYqOypSHDhvO


8

Simplified Template Cross-Section (STXS)

● Comparable differential Higgs kinematic measurements between 
LHC experiments and Higgs decay channels

● Performed in exclusive kinematic phase space regions (STXS bins)

● Higgs pT binning optimised to 
 

○ Reduce theory uncertainties
○ Maximise sensitivity of H → bb̅  channel
○ Also: Higgs pT is sensitive to CP structure of the Higgs

● For each STXS bin a separate signal template is defined
 

○ Based on the signal truth MC prediction
○ All templates are used for the final Profile Likelihood fit

 
 

● MC composition of the different STXS bins
 

○ Fully blinded due to blinding policy
○ But: tt̅H contribution clearly visible
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● tt̅H with H → bb̅  analysis presented
 

● Goal: Measuring the tt̅H cross-section using the STXS method in Higgs pT bins
 

● Biggest challenge: Irreducible tt̅ + bb̅  with large modelling uncertainties
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tt̅H Summary

● tt̅H with H → bb̅  analysis presented
 

● Goal: Measuring the tt̅H cross-section using the STXS method in Higgs pT bins
 

● Biggest challenge: Irreducible tt̅ + bb̅  with large modelling uncertainties
 

● Changes to last analysis round (already full Run 2):
 

○ New signal- and control region definition by novel deep-sets neural network
○ Improved tt̅ + bb̅  modelling

 

● First fake studies ongoing → First results show no significant impact of fakes!
 

● Next up:
 

○ Finish fake studies
○ Looking into first fits with full systematics
○ Also: Contribute to the tt̅H with H → bb̅  CP analysis
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Heavy-Flavour Tagging



● Using the topology of heavy-flavour jets
○ Lifetime of the b-hadrons 

(c⋅ τ ≈ 5mm at pT = 50 GeV)

● Different track- and jet variables are used

● Track variables: 
○ e.g number of inner detector hits,

 
○  

  

● Jet variables:
○ e.g. 

● Also: Information provided by low-level algorithms
(i.e. JetFitter, Secondary Vertex Finder (SV1)) 

11

How b-Tagging works
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ATLAS High-Level b-Tagging Algorithms

● Default tagger in Run 2 was DL1r (ATL-PHYS-PUB-2017-013)
 

● Uses jet-level variables and many different low-level 
algorithms (i.e. IPxD, SV1, JetFitter)

● For track information, DL1r uses the
Recurrent Neural Network Impact Parameter (RNNIP) tagger

https://cds.cern.ch/record/2273281
https://app.diagrams.net/?page-id=ABhtSPmFg4T54FL8Bdae&scale=auto#G17ojJJRKWH-CZznH9Y_6o7y8Jqz8Wuz5M
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ATLAS High-Level b-Tagging Algorithms

● Default tagger in Run 2 was DL1r (ATL-PHYS-PUB-2017-013)
 

● Uses jet-level variables and many different low-level 
algorithms (i.e. IPxD, SV1, JetFitter)

● For track information, DL1r uses the
Recurrent Neural Network Impact Parameter (RNNIP) tagger

 
● Many improvements were implemented for Run 3

● RNNIP was replaced with the 
Deep-Impact-Parameter-Sets (DIPS) tagger

● DIPS: Deep neural network based on the Deep Sets 
architecture

● DL1r (r = RNNIP) ➔ DL1d (d = DIPS)
 

● Biggest change in DL1d w.r.t DL1r → DIPS

DL1d is the recommended high level tagger for Run 3

https://cds.cern.ch/record/2273281
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Deep Sets
● First use in HEP: arXiv:1810.05165

 
● Set function f on set of tracks 𝟀

can be decomposed

● Process each element of the set with
mapping function ɸ
 

● Aggregate processed elements into invariant 
description with aggregation function
(here: summation)
 

● Process the aggregated description with ⍴

● ɸ and ⍴ don’t operate on set of tracks!
○ ɸ works on one track at the time
○ ⍴ works on the aggregated description
○ Plug in neural network for that!

● Aggregation negates the order dependency of 
the set!

13

https://arxiv.org/abs/1810.05165


● First studies by Nicole Hartmann

● Consists of two sub-networks:
○ ϕ: Works on the track input features
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DIPS - Deep Impact Parameter Sets
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● First studies by Nicole Hartmann

● Consists of two sub-networks:
○ ϕ: Works on the track input features
○ F: Works on the aggregated output

of the ϕ networks
 
 

● DIPS uses softmax function as last layer activation
→ Outputs can be interpreted as probabilities:

 

○ pb: Probability the jet originates from a b-quark
○ pc: Probability the jet originates from a c-quark
○ pu: Probability the jet originates from a light-flavour    

quark (up, down, strange)
  

● Advantages of the new architecture:
 

○ Parallelizability of track processing
○ Much faster training time (able to use GPUs)
○ Can go to looser track selection!

14

DIPS - Deep Impact Parameter Sets

https://app.diagrams.net/?page-id=bd26XySxclYShHRtl4sg&scale=auto#G1kVS7hogzsmLnDsic2fcg0AlMaAQxlQXy
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Training Sample

● Training sample consists of:
 

○ 70% tt̅, 30% Z’
○ tt̅ : 20-250 GeV, Z’: 250-6000 GeV
○ 120M jets in total (40M b-, c- and light-flavour)
○ 2D-resampling in pT and |η| bins to achieve kinematic independent training
○ Using mixture of over- and undersampling (Importance sampling with replacement)
○ Training time per epoch:

■ DIPS: ~31 min (120M jets)
■ RNNIP: ~40 min (6M jets)

●
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b-tagging discriminant Db
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DIPS Results - Discriminant Scores

● Probability outputs of the network is used to calculate the 
b-tagging discriminant Db

● Fraction values can be adapted to balance the two 
background class rejections

 
 

● b-tagging working point (WP) is defined such that x% of all 
b-jets are above this value (i.e. 70% WP)

● Cut values for the WPs are calculated by integrating over 
b-distribution from right to left.

 
 

● WPs are marked here by vertical lines
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DIPS Results - ROC Curve

● Comparing background rejections of 
the two models vs signal efficiency
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DIPS Results - ROC Curve

● Comparing background rejections of 
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● Clearly better c-rejection for DIPS in 

comparison RNNIP
(~2.15x better at 60% WP)

 
 

● Also: Huge improvement in 
light-flavour rejection for DIPS in 
comparison RNNIP
(~4.05x better at 60% WP)
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DIPS Results - ROC Curve

● Comparing background rejections of 
the two models vs signal efficiency

 

 
● Clearly better c-rejection for DIPS in 

comparison RNNIP

 
 

● Also: Huge improvement in 
light-flavour rejection for DIPS in 
comparison RNNIP

 
 
 

● Clear overall performance 
improvement for DIPS!
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DIPS Results - Inclusive c-Rejection

● Comparing the inclusive c-rejection
per pT bin for the 77% WP

 
 

● Constant improvement for DIPS in 
comparison to RNNIP
(35% improvement for 110-140 GeV bin)
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DIPS Results - Inclusive Light-flavour Rejection

● Comparing the inclusive light-flavour 
rejection per pT bin for the 77% WP

 
 

● Constant improvement for DIPS in 
comparison to RNNIP
(200% improvement for 110-140 GeV bin)
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DL1d Results - ROC Curve

● Comparing background rejections vs 
signal efficiency for both DL1r and DL1d
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DL1d Results - Inclusive c-Rejection

● Comparing the inclusive c-rejection
per pT bin for the 77% WP

 
 

● Constant improvement for DL1d in 
comparison to DL1r
(40% improvement for 85-110 GeV bin)
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DL1d Results - Inclusive Light-flavour Rejection

● Comparing the inclusive light-flavour 
rejection per pT bin for the 77% WP

 
 

● Constant improvement for DL1d in 
comparison to DL1r
(105% improvement for 85-110 GeV bin)
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● DIPS clearly outperforms the for Run 2 
recommended track-based Recurrent Neural Network 
Impact Parameter (RNNIP) tagger

 

● DIPS is part of the new recommended high-level 
b-tagging algorithm DL1d

 
 

● First Run 3 public Data/MC plots for DL1d

FTAG-2022-003

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2022-003/
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Summary
● Presented the new Deep-Impact-Parameter-Sets 

(DIPS) tagger

● New architecture allows to train with a looser track 
selection and much higher number of training jets

 

● Developed a new resampling method, combining 
over- and undersampling to make full use of the 
available statistics

 

● DIPS clearly outperforms the for Run 2 
recommended track-based Recurrent Neural Network 
Impact Parameter (RNNIP) tagger

 

● DIPS is part of the new recommended high-level 
b-tagging algorithm DL1d

 
 

● First Run 3 public Data/MC plots for DL1d

● Presented the current status and 
improvements of the tt̅H with H → bb̅  legacy 
analysis

● Changes to last analysis round:
 

○ New signal- and control region definition by novel 
deep-sets neural network

○ Improved tt̅ + bb̅  modelling
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Summary
● Presented the new Deep-Impact-Parameter-Sets 

(DIPS) tagger

● New architecture allows to train with a looser track 
selection and much higher number of training jets

 

● Developed a new resampling method, combining 
over- and undersampling to make full use of the 
available statistics

 

● DIPS clearly outperforms the for Run 2 
recommended track-based Recurrent Neural Network 
Impact Parameter (RNNIP) tagger

 

● DIPS is part of the new recommended high-level 
b-tagging algorithm DL1d

 
 

● First Run 3 public Data/MC plots for DL1d

● Presented the current status and 
improvements of the tt̅H with H → bb̅  legacy 
analysis

● Changes to last analysis round:
 

○ New signal- and control region definition by novel 
deep-sets neural network

○ Improved tt̅ + bb̅  modelling

● Next up:
 

○ Finish fake studies
○ Looking into first fits with full systematics
○ Also: Contribute to the tt̅H with H → bb̅  CP 

analysis
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Thanks!
Questions?
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Back-Up
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Results of the Full Run 2 CP Analysis

● Similar Preselection and signal and control region 
(SR and CR) defined as the “main” analysis

 
 

● Defining CP sensitive observables
 
 
 
 
 
 
 

● Fitting both κt and α at the same time with binned 
profile likelihood fit

 
 

● Best fit values:
 
 

● Expected values:
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DIPS - Architecture
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Training Set

● Hybrid training set: 
➢ Low
➢ High

● Different kinematic shapes of the flavours

● For kinematic independent training
➢ Resample the different flavours

 
● Undersampling the jet flavours

➢ Same number of jets in each

 
● Ensure tagging independence from kinematics!

 
● Stitching the two samples to one hybrid sample
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Training Set

Before After
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DIPS Results - Inclusive b-Efficiency

● Comparing the inclusive b-efficiency 
per pT bin for the 77% WP

 
 
 

● Similar b-efficiency for DIPS and 
RNNIP

 
 
 

● No significant shift of performance 
between the bins
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DL1d Results - Inclusive b-Efficiency

● Comparing the inclusive b-efficiency
per pT bin for the 77% WP

 
 
 

● Slight shift in performance to higher pT 
values

 
 
 

● DL1d has better performance in high
pT than DL1r
(6% improvement for 175-250 GeV bin)

 

● Shift of around 6% 
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● Heavy flavour tagging (b- and c-tagging) are crucial 
parts for most of ATLAS analyses

● Some analyses are very dependent on c-tagging, 
like the measurement of the c-quark Yukawa 
coupling

 

● VH(cc) tried to use the DL1 tagger as c-tagger 
using a redefined discriminant

DIPS Tau - Motivation

One of the signal processes of the VH(cc) analysis

https://atlas-glance.cern.ch/atlas/analysis/analyses/details?id=1387
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● Good performance was achieved, but a big τ-jet 
contamination was observed

 
 

● For the 27% c-tagging working point (WP), the τ-jet 
efficiency was at around 28%

DIPS Tau - Motivation

ANA-HIGG-2018-41
τ-jets efficiency map for the c-tagging 
working point

https://atlas-glance.cern.ch/atlas/analysis/analyses/details?id=1387
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● Good performance was achieved, but a big τ-jet 
contamination was observed

 
 

● For the 27% c-tagging working point (WP), the τ-jet 
efficiency was at around 28%

● DL1 and DL1r are not trained on τ-jets!

● Can we achieve similar performance for b-tagging 
while adding the τ-jets to the training?

DIPS Tau - Motivation

ANA-HIGG-2018-41
τ-jets efficiency map for the 27% 
c-tagging working point

https://atlas-glance.cern.ch/atlas/analysis/analyses/details?id=1387
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DIPS Tau - ROC Curve

● Comparing the τ-rejection for the non-
τ-trained DIPS and a new four-classes 
τ-trained DIPS

 

 
● Clear improvement over whole 

b-efficiency range for DIPS Tau in 
comparison to DIPS
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DIPS Tau - ROC Curve

● Comparing the c- and light-flavour 
rejection for the non-τ-trained DIPS 
and a new four-classes τ-trained DIPS

 
 

● Slightly better c- and slightly worse 
light-flavour rejection for DIPS Tau in 
comparison to DIPS

● Light-flavour rejection can be 
recovered!

 

● Adapting the fraction values in the 
b-tagging discriminant calculation

○ Shifting performance from 
c-rejection to light-flavour 
rejection


