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Motivation

Why is the ftH process important?

o

o

Directly measure the Top-Higgs Yukawa coupling —_—
M ermlon
YFermion = \/— 242 GeV

Top has strongest coupling to Higgs: Yt~1

ttH production
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Motivation

Why is the ftH process important?

o  Directly measure the Top-Higgs Yukawa coupling —_—

MF rmion
YFermion — \/— 2466GeV

o  Top has strongest coupling to Higgs: Yt~1

Still: ffH process is rare!

ttH production
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Motivation
e  Why is the {fH process important? ®
o  Directly measure the Top-Higgs Yukawa coupling ®)

MF rmion
YFermion — \/— 2466GeV

o  Top has strongest coupling to Higgs: Yt~1

ttH production
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Motivation

e  Why is the {fH process important?
o  Directly measure the Top-Higgs Yukawa coupling

MFermlon
YFermion = \/— 246 GeV

o  Top has strongest coupling to Higgs: Yt~1

e  Still: ffH process is rare!

o Use the most dominant decay channel with H — bb

o  Here: Single lepton channel

e  Single lepton channel final state:

o 6jets

o 4 b-tagged jets, 2 non-b-tagged jets
o 1 lepton (electron/muon)

o 1 neutrino

ttH production and decay
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Irreducible Background - ft + bb

Most dominant background — f + bb

tt + bb production and decay
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Irreducible Background - ft + bb

e  Most dominant background — 7 + bb

e Irreducible background for the fH process

o  Same final state particles
o Difference in kinematics

ttH production and decay
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Irreducible Background - ft + bb

Most dominant background — f + bb

Irreducible background for the ffH process

O
O

Can be separated by reconstruction of the Higgs

o

Same final state particles
Difference in kinematics

tt + bb production and decay

Problem: Not all jets from Higgs and top qum
survive jet selection

Also: Jet/parton assignment difficult due to large jet
multiplicity

Good b-tagging important for jet/parton
assignment

ttH production and decay
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Irreducible Background - ft + bb

e Most dominant background —

e Irreducible background for the ftH process

O
O

Same final state particles
Difference in kinematics

e Can be separated by reconstruction of the Higgs

o

e Also:

Problem: Not all jets from Higgs and top quarks
survive jet selection

Also: Jet/parton assignment difficult due to large jet
multiplicity

Good b-tagging important for jet/parton
assignment

— Large theory uncertainties

ttH production and decay
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Results from Last Round Analysis

Signal and control region defined on jet and b-tag
multiplicity

o  Signal — nJets 2 6, nBTags@85 = 4
o  Control — nJets = 5, nBTags@85 = 4

Each region is than used in a Profile Likelihood fit
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https://app.diagrams.net/?page-id=bjL_9wD5vkQ74PQcsp2S&scale=auto#G1rOQMiAyMpQpAMQ4dziFsHDOzLGR5N0tO

Results from Last Round Analysis

Signal and control region defined on jet and b-tag
multiplicity

o Signal — nJets 2 6, nBTags@85 = 4
o  Control — nJets = 5, nBTags@85 = 4

Each region is than used in a Profile Likelihood fit

Looking at the background-only compositions
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-23

Results from Last Round Analysis

FREIBURG

e Signal and control region defined on jet and b-tag SRiijb :z)
multiplicity p? € [0,120) GeV

o Signal — nJets 2 6, nBTags@85 = 4
o  Control — nJets = 5, nBTags@85 = 4
mH [JtF + light

mti+ Vv [Ott + >1c

e Each region is than used in a Profile Likelihood fit W21 EOther

CR

>4b hi

e Looking at the background-only compositions

e Signal- and control regions dominated by ff + bb

e No clean control regions

o  Used to constrain systematic uncertainties
o Is there a way to define cleaner signal- and

control regions?
Background composition of the different signal- and control regions
From HIGG-2020-23


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-23

Results from Last Round Analysis

Results of the last analysis are shown here

Public paper results with full Run 2 data
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O.ttH
tEH
Osm
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-23

Results from Last Round Analysis

e Results of the last analysis are shown here
e  Public paper results with full Run 2 data

e Was dominated by systematic uncertainties

Kzt =

O.ttH
tEH
Osm

= 0.35773% (1030 stat.

+0.30
—0.28 SYS-
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-23

Results from Last Round Analysis

Results of the last analysis are shown here L =

Public paper results with full Run 2 data

Was dominated by systematic uncertainties

Largest uncertainty: {f + bb modelling

FREIBURG

Due to systematic limitations: Redo the analysis with
multiple improvements to reduce systematic uncertainty

ottt 0.36 (+0.20 0.30 _E
— +0. +0. +0.
T = 039703 (Z0:20 stat- [T SYS-I) =
9sm
HIGG-2020-23
Total statistical/systematic uncertainties with the largest
systematic contributions (above 0.1)
Uncertainty source Ap
ttH modelling +0.13  —0.05
tt 4 bb NLO matching +0.21 —0.20
tt + bb fractions +0.12  —0.12
tt 4+ bb FSR +0.10 —-0.11
Total systematic uncertainty  +0.30 —0.28
Based on
Total statistical uncertainty ~ +0.20 —0.20  HIGG-2020-23
Total uncertainty +0.36 —0.34



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-23
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-23

Object- and Region Definitions

e Lepton definitions:
o  Single-lepton: One lepton with p. >=27 GeV

e/p

= 1l
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https://app.diagrams.net/?page-id=TEY4fglC16vj1N23ru9Y&scale=auto#G1ZS-Wz8JDf-AYBMK3EtTv_Alg4fPO713Y

Object- and Region Definitions

e Lepton definitions:
o  Single-lepton: One lepton with p. >=27 GeV

e Jet definition:

o Using the anti-k, jet cluster algorithm with AR = 0.4
o Jetp.>25GeV, Jet|n<2.5

Ney=1

Njets >5
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https://app.diagrams.net/?page-id=TEY4fglC16vj1N23ru9Y&scale=auto#G1ZS-Wz8JDf-AYBMK3EtTv_Alg4fPO713Y

Object- and Region Definitions

Lepton definitions:

O

Single-lepton: One lepton with p. >= 27 GeV

Jet definition:

O
O

Using the anti-k, jet cluster algorithm with AR = 0.4
Jet p. > 25 GeV, Jet |n] < 2.5

b-tagged definition:

O

Jets passing the corresponding DL1r
working point (WP) cuts

Ney=1

Njets >5

@70%
]Vb—jetso = 3
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https://app.diagrams.net/?page-id=TEY4fglC16vj1N23ru9Y&scale=auto#G1ZS-Wz8JDf-AYBMK3EtTv_Alg4fPO713Y

Object- and Region Definitions

e Lepton definitions:
o  Single-lepton: One lepton with p. >=27 GeV

e Jet definition:

o Using the anti-k, jet cluster algorithm with AR = 0.4
o Jetp.>25GeV, Jet|n<2.5

e b-tagged definition:

o Jets passing the corresponding DL1r
working point (WP) cuts

e Using Deep-Sets based deep neural networks (DNNs)

Ney=1

|

Njets >5

|

@70%
]Vb—jetso = 3

|

Single lepton
Deep Sets
MVA

1

PitH <ﬁ
o

Control Regions
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https://app.diagrams.net/?page-id=TEY4fglC16vj1N23ru9Y&scale=auto#G1ZS-Wz8JDf-AYBMK3EtTv_Alg4fPO713Y

Ney=1

. . . ey &)
Object- and Region Definitions ! &
Njets 2 5 D
e Lepton definitions: @mi 20
. . Nf»jets >3 - I TH
o  Single-lepton: One lepton with p. >=27 GeV l
Single lepton
Deep Sets
e Jet definition: MVA
o Using the anti-k, jet cluster algorithm with AR = 0.4 l
o Jetp.>25GeV, Jet|n<2.5
Pim = 0.05 Pim < 0.05
e b-tagged definition:
- .
o Jets passing the corresponding DL1r #H, pr € Sl R
working point (WP) cuts
[0,60) <«——> [60,120) tf + 1b «<——> tf > 2b
e Using Deep-Sets based deep neural networks (DNNs)
o  Multiclass classifier
o Outputs probability for event belonging to one region [120,200) «——> [200, 300) tf + 1B<——>tf > 1c
o  Developed by students from DESY
o No need for building jet-parton permutations v
—Deep-Sets are permutation-invariant! )
[300,450) «—*— [450, 00) #f + light 5


https://app.diagrams.net/?page-id=TEY4fglC16vj1N23ru9Y&scale=auto#G1ZS-Wz8JDf-AYBMK3EtTv_Alg4fPO713Y

Fake Estimation

e Very good reconstruction algorithms for objects in ATLAS

o  But: Nobody's perfect!

Soft leptons or non-leptonic particles can pass the requirements
o  Most backgrounds are modelled with Monte Carlo (MC)
o Lepton fakes contribution — Data-driven with Matrix method

imgflip.com’ |

MATRIX
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Fake Estimation

e Very good reconstruction algorithms for objects in ATLAS

o  But: Nobody's perfect!

Soft leptons or non-leptonic particles can pass the requirements
o  Most backgrounds are modelled with Monte Carlo (MC)
o Lepton fakes contribution — Data-driven with Matrix method

e Sources for fake electrons

o  Light- or gluon jets
o Deposit most energy in the electromagnetic calorimeter (ECAL)
o vy conversion in the ECAL

UNI

FREIBURG



Fake Estimation

FREIBURG

e Very good reconstruction algorithms for objects in ATLAS :Z>

o  But: Nobody's perfect!

Soft leptons or non-leptonic particles can pass the requirements
o  Most backgrounds are modelled with Monte Carlo (MC)
o Lepton fakes contribution — Data-driven with Matrix method
ATLAS Muon Spectrometer
Punch-Through Particles A @ Punch-Through Particles
r (Entries in MuonEntryLayer)

O Initial Particle

e Sources for fake electrons

(Entry in CaloEntryLayer)

o  Light- or gluon jets
o  Deposit most energy in the electromagnetic calorimeter (ECAL)
o yconversion in the ECAL

1 particle shower insi

i the ATLAS calorimeter = | ATLAS Calorimeter

e  Sources for fake muons
o  High energy particles with elongated shower shapes :
(Punch-Through) R S
o Decay of a charged meson (i.e. K*) producing a muon : j (o Parie :

ATLAS Inner Detector |

CERN-THESIS-2011-112 6


http://cds.cern.ch/record/1388275/files/CERN-THESIS-2011-112.pdf

Fake Estimation
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e  Currently studying the effect of lepton fakes for the analysis :Z>
o No large contribution in SR expected but maybe in CR _— ‘ s laht Dt + 1
ATLAS Simulation Work-in-Progress Eﬁ: 1'98 t Eg: 2
Is =13 TeV Citt+ >1c C]Other
Single lepton mNP/Fakes
e Splitting ff + bb in three different processes ttH region tt+1b region tt+18 region
O
o ft+1B , ,
o tt+22b
tt+1b/B region tt+2b region tt+c region

e  Control regions now defined by process
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tt+light region
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Fake Estimation

e  Currently studying the effect of lepton fakes for the analysis
o No large contribution in SR expected but maybe in CR . S :
imulation Work-in-Progress
s =13TeV
Single lepton
e Splitting ff + bb in three different processes tiH region b 8o
@)
o ft+1B
o ft+22b

tt+1b/B region tt+2b region

e  Control regions now defined by process

e  First results show no big impact for the background-only
composition pie charts for the signal and control regions

tt+light region

N\,

IBURG

~22-
S&

[Jtt + light tt + 1b
Wit+1B @t + >2b
[Jtt + >1c ] Other
mNP/Fakes

tt+1B region

tt+c region
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Fake Estimation

Currently studying the effect of lepton fakes for the analysis
o  No large contribution in SR expected but maybe in CR

Splitting ft + bb in three different processes

o
o ft+1B
o ft+=22b

Control regions now defined by process

First results show no big impact for the background-only
composition pie charts for the signal and control regions

But: Redefined control regions are much cleaner in comparison
to last analysis (i.e [Z0[F/l and regions)

ATLAS Simulation Work-in-Progress
s =13TeV
Single lepton
ttH region tt+1b region
tt+1b/B region tt+2b region

™

¢

tt+light region

>

IBURG

~22-
S&

[Jtt + light tt + 1b
Wit+1B @t + >2b
[Jtt + >1c ] Other
mNP/Fakes

tt+1B region

tt+c region
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Simplified Template Cross-Section (STXS)

Comparable differential Higgs kinematic measurements between
LHC experiments and Higgs decay channels

Performed in exclusive kinematic phase space regions (STXS bins)

ttH, pf ¢

— [0,60)
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—> [60,120)

—> (120, 200)

—> (200, 300)

—> (300, 450)

— [450, 0)


https://app.diagrams.net/?page-id=a9EEH9kkdr0uN-LgZjin&scale=auto#G13f4Lq5rQTSrCfCu_s0CIYYqOypSHDhvO

Simplified Template Cross-Section (STXS)

Comparable differential Higgs kinematic measurements between

LHC experiments and Higgs decay channels

Performed in exclusive kinematic phase space regions (STXS bins)

Higgs p; binning optimised to

O
O
O

Reduce theory uncertainties
Maximise sensitivity of H — bb channel
Also: Higgs p; is sensitive to CP structure of the Higgs

FREIBURG
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https://arxiv.org/abs/1501.03157

Simplified Template Cross-Section (STXS)

Comparable differential Higgs kinematic measurements between
LHC experiments and Higgs decay channels

Performed in exclusive kinematic phase space regions (STXS bins)

Higgs p; binning optimised to

o  Reduce theory uncertainties
o  Maximise sensitivity of H — bb channel
o Also: Higgs p; is sensitive to CP structure of the Higgs

For each STXS bin a separate signal template is defined

o Based on the signal truth MC prediction
o All templates are used for the final Profile Likelihood fit

ttH, pf ¢

— [0,60)
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—> [60,120)

—> (120, 200)

—> (200, 300)

—> (300, 450)

— [450, 0)


https://app.diagrams.net/?page-id=a9EEH9kkdr0uN-LgZjin&scale=auto#G13f4Lq5rQTSrCfCu_s0CIYYqOypSHDhvO

Simplified Template Cross-Section (STXS)

e Comparable differential Higgs kinematic measurements between
LHC experiments and Higgs decay channels

e Performed in exclusive kinematic phase space regions (STXS bins)

e  Higgs p;binning optimised to

o  Reduce theory uncertainties
o Maximise sensitivity of H — bb channel
o Also: Higgs p; is sensitive to CP structure of the Higgs

e For each STXS bin a separate signal template is defined

o  Based on the signal truth MC prediction
o  All templates are used for the final Profile Likelihood fit

e MC composition of the different STXS bins

o  Fully blinded due to blinding policy
o But: ftH contribution clearly visible

Events

Data / Pred.

&)
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=

L0

| =

1 - TS

IRANARRAR I | O R I T I oo T | | O NN | Tl I-_.

6000 5 ATLAS Work-in-Rgegress  data 0.0 T
L {s=13TeV, 139 pb "'l tH 8372
5000 — Single lepton ] tt+light 503.0
[ ttH region | tt+ >1c 793.2

- Pre-Fit H TN MNANT R N
4000 | tt+ 1B 4412
- B tt+>2b 45273 -
BN B NP/Fakes 66.4
3000~ N [ Other 9200
AN o Total 92016
2000 & SN /. Uncertainty N
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ttH Summary

e {tHwith H— bb analysis presented
e  Goal: Measuring the ftH cross-section using the STXS method in Higgs p; bins

e Biggest challenge: Irreducible ff + bb with large modelling uncertainties
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ttH Summary

e ({tH with H — bb analysis presented
e Goal: Measuring the ffH cross-section using the STXS method in Higgs p; bins
e Biggest challenge: Irreducible f + bb with large modelling uncertainties

e Changes to last analysis round (already full Run 2):

o  New signal- and control region definition by novel deep-sets neural network
o  Improved ft + bb modelling
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ttH Summary

e ({tH with H — bb analysis presented
e Goal: Measuring the ffH cross-section using the STXS method in Higgs p; bins
e Biggest challenge: Irreducible f + bb with large modelling uncertainties

e Changes to last analysis round (already full Run 2):

o  New signal- and control region definition by novel deep-sets neural network
o  Improved ft + bb modelling

e First fake studies ongoing — First results show no significant impact of fakes!

e Next up:

o  Finish fake studies
o  Looking into first fits with full systematics
o  Also: Contribute to the ffH with H — bb CP analysis
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Heavy-Flavour Tagging

L 1E
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How b-Tagging works

e Using the topology of heavy-flavour jets tracks .
o Lifetime of the b-hadrons b Jet

(c- T=5mm at p. = 50 GeV)

------ b hadron
e Different track- and jet variables areused  ______ impact
parameter
e Track variables:
o e.g number of inner detector hits, d
AR(track, jet) secondary
vertex
o frac _ track pr
pT jet pr dO
light jet

- primary vertex

e Jetvariables: 7
© eg.pr,n

e Also: Information provided by low-level algorithms
i.e. JetFitter, Secondary Vertex Finder (SV1 . .
( Y SV l ight jet

FREIBURG



ATLAS High-Level b-Tagging Algorithms

e Default tagger in Run 2 was DL1r (ATL-PHYS-PUB-2017-013)

T

e Uses jet-level variables and many different low-level
algorithms (i.e. IPxD, SV1, JetFitter)

e  For track information, DL1r uses the
Recurrent Neural Network Impact Parameter (RNNIP) tagger

y
.7 3
—>

pr&n

1g

Track-based Neural Network

DL1r
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https://cds.cern.ch/record/2273281
https://app.diagrams.net/?page-id=ABhtSPmFg4T54FL8Bdae&scale=auto#G17ojJJRKWH-CZznH9Y_6o7y8Jqz8Wuz5M

ATLAS High-Level b-Tagging Algorithms

Default tagger in Run 2 was DL1r (ATL-PHYS-PUB-2017-013)

Uses jet-level variables and many different low-level
algorithms (i.e. IPxD, SV1, JetFitter)

For track information, DL1r uses the
Recurrent Neural Network Impact Parameter (RNNIP) tagger

Many improvements were implemented for Run 3

RNNIP was replaced with the
Deep-Impact-Parameter-Sets (DIPS) tagger

DIPS: Deep neural network based on the Deep Sets
architecture

DL1r (r = RNNIP) = DLAd (d = DIPS)

Biggest change in DL1d w.r.t DL1r — DIPS

DL1d is the recommended high level tagger for Run 3

pTleta

.
!

Track-NN based

e
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https://cds.cern.ch/record/2273281

Deep Sets

° First use in HEP: arXiv:1810.05165

e  Set function fon set of tracks x
can be decomposed b
FX)=p() o)
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¢ (z1 1
¢ (zu) :,;”/
R <«— RY <« RVM < X eRrM
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https://arxiv.org/abs/1810.05165

Deep Sets &
=

e  Firstuse in HEP: arXiv:1810.05165 e i
zl.l.l
o
e Set function fon set of tracks x = JTH

can be decomposed

e Process each element of the set with
mapping function ¢

13


https://arxiv.org/abs/1810.05165

Deep Sets

First use in HEP: arXiv:1810.05165
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Set function fon set of tracks x
can be decomposed

Process each element of the set with
mapping function ¢

Aggregate processed elements into invariant
description with aggregation function
(here: summation)
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https://arxiv.org/abs/1810.05165

Deep Sets

First use in HEP: arXiv:1810.05165
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Set function fon set of tracks x
can be decomposed

Process each element of the set with f (X) — p Z(b (:I;)

mapping function ¢ TEX
Aggregate processed elements into invariant

description with aggregation function
(here: summation)

Process the aggregated description with p
& pred Rl

R <«— RY <« RVM < X eRrM
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https://arxiv.org/abs/1810.05165

Deep Sets

° First use in HEP: arXiv:1810.05165
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e  Set function fon set of tracks x
can be decomposed

e Process each element of the set with
mapping function ¢

e Aggregate processed elements into invariant
description with aggregation function
(here: summation)

e Process the aggregated description with p

e ¢ and p don’t operate on set of tracks!

o ¢ works on one track at the time
o  p works on the aggregated description
o  Plug in neural network for that!

R <«— RY <« RVM < XeRY
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Deep Sets

First use in HEP: arXiv:1810.05165

2
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Set function fon set of tracks x
can be decomposed

Process each element of the set with
mapping function ¢

Aggregate processed elements into invariant
description with aggregation function
(here: summation)

Process the aggregated description with p

¢ and p don’t operate on set of tracks!

o ¢ works on one track at the time
o  p works on the aggregated description
o  Plug in neural network for that!

Aggregation negates the order dependency of
the set!

13


https://arxiv.org/abs/1810.05165

Track n

m trk features

DIPS - Deep Impact Parameter Sets

m trk features

128 RelU units

Track 1

IBURG

256 ReLU units
m trk features

_—m
<y

e  First studies by Nicole Hartmann (i, 1,m)
- T

256 RelLU units

(nJets, 1, 128) 128 ReLU units
: Using
® Consists of two sub-networks: / e re | — || a basic MLP
o  ¢: Works on the track input features
(nJets, 1, 256) 256 ReLU units USing
,,,,,,,,,,,,, Deep sets
(nJets, 1, 256) 256 ReLU units

¢

14


https://app.diagrams.net/?page-id=bd26XySxclYShHRtl4sg&scale=auto#G1kVS7hogzsmLnDsic2fcg0AlMaAQxlQXy
https://cds.cern.ch/record/2718948

DIPS - Deep Impact Parameter Sets

First studies by Nicole Hartmann

Consists of two sub-networks:

O
O

&: Works on the track input features
F: Works on the aggregated output
of the & networks

Track n

Track 2

Track 1 m trk features

(ndets, 1, m) IORUCSCEITICE

(nJets, 1, 128) 128 ReLU units

(nJets, 1, 256) 256 ReLU units
(nJets, 1, 256) 256 ReLU units
(nJets, 1, 256) 256 ReLU units

m trk features

128 RelU units

256 ReLU units

256 RelLU units

256 ReLU units

B

(nJets, n, 256)

v

¢

Sum over the
tracks

(nJets, 256)

(nJets, 256) 256 ReLU units

(nJets, 256) 256 ReLU units

(nJets, 128) 128 ReLU units

(nJets, 128) 128 RelLU units

(nJets, 100) 100 ReLU units

(nJets, 30)

(nJets, 3)
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Track n

m trk features
O
DIPS - Deep Impact Parameter Sets &
Track 1 m trk features m
. . i 256 ReLU units i e E —
e  First studies by Nicole Hartmann ISR m trk features 1~
256 ReLU units D m
(nJets, 1, 128) 128 ReLU units
: Using
e  Consists of two sub-networks: e p—— ere e § a basic MLP
o  ¢: Works on the track input features
. (nJets, 1, 256) eLU units oncatenate u i
o  F:Works on the aggregated output e — Deep sets

(nJets, n, 256)

of the & networks

RN 256 ReL U units |
e o @)
e DIPS uses softmax function as last layer activation P (ntes, 250)
— Outputs can be interpreted as probabilities:
o |p,: Probability the jet originates from a b-quark R 256 ReLU units

o |p,: Probability the jet originates from a c-quark

(nJets, 256) 256 ReLU units

o |p,: Probability the jet originates from a light-flavour
quark (up, down, strange)

(nJets, 128) 128 ReLU units

(nJets, 128) 128 RelLU units

(nJets, 100) 100 ReLU units

(nJets, 30)
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https://cds.cern.ch/record/2718948

DIPS - Deep Impact Parameter Sets

e  First studies by Nicole Hartmann

e Consists of two sub-networks:

o  ¢: Works on the track input features
o  F: Works on the aggregated output
of the & networks

e DIPS uses softmax function as last layer activation
— Outputs can be interpreted as probabilities:

Track n

Track 2

m trk features

128 ReLU units [

Track 1 m trk features

o |p,: Probability the jet originates from a b-quark
o |p,: Probability the jet originates from a c-quark

o |p,: Probability the jet originates from a light-flavour

quark (up, down, strange)

(nJets, 1, m) EURHSCEITN

(nJets, 1, 128) 128 ReLU units
(nJets, 1, 256)

256 RelLU units

(nJets, 1, 256) 256 ReLU units

(nJets, 1, 256) 256 ReLU units

256 ReLU units

256 RelLU units

256 RelU units B

B

(nJets, n, 256)

v

e Advantages of the new architecture:

o  Parallelizability of track processing
o Much faster training time (able to use GPUs)
o  Can go to looser track selection!

Sum over the
tracks

(nJets, 256)

(nJets, 256) 256 ReLU units

(nJets, 256) 256 ReLU units

(nJets, 128) 128 ReLU units

(nJets, 128) 128 RelLU units

(nJets, 100) 100 ReLU units

(nJets, 30)

(nJets, 3 W
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Training Sample

e  Training sample consists of:
o 70% ft, 30% Z’
o ft:20-250 GeV, Z" 250-6000 GeV

a-
L
£ L."
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Training Sample

Training sample consists of:

o

o O O O

70% ft, 30% Z’

ft : 20-250 GeV, Z": 250-6000 GeV

120M jets in total (40M b-, c- and light-flavour)

2D-resampling in p. and |n| bins to achieve kinematic independent training

Using mixture of over- and undersampling (Importance sampling with replacement)
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Training Sample

Training sample consists of:
o 70% ft, 30% Z’

o ft:20-250 GeV, Z" 250-6000 GeV
o 120M jets in total (40M b-, c- and light-flavour)
o 2D-resampling in p; and |n| bins to achieve kinematic independent training
o  Using mixture of over- and undersampling (Importance sampling with replacement)
o  Training time per epoch:
m  DIPS: ~31 min (120M jets)
m RNNIP: ~40 min (6M jets)
Tagger recomm. RNNIP | DIPS Default | DIPS Loose
Max Ny 25 40
pr > 1GeV > 0.5GeV
|do| < 1mm < 3.5mm
|zpsin (0)] < 1.5mm < 5mm
In] <25
Npixel holes <2
Nsilicon hits =
Nsilicon shared hits <2
Nsiticon holes <3
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DIPS Results - Discriminant Scores

e  Probability outputs of the network is used to calculate the
b-tagging discriminant D,

Db = log( fcpcf_bfupu )

e Fraction values can be adapted to balance the two
background class rejections

0.15

EIBURG

2
S5&

— 77— —
__ ATLAS Simulation Work-in-Progess —— light-flavour jets _
| Vs =13TeV, PFlow jets, tt Sim. Crjets

L 20 GeV < pr < 250 GeV —— b-jets

7777 stat. uncertainty

15
b-jets discriminant
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DIPS Results - Discriminant Scores

UNI

e  Probability outputs of the network is used to calculate the
b-tagging discriminant D,

FREIBURG

0.25 | 71 AS Simulation Work-n-Progess — lightflavour jets
Db — log( #) | Vs =13 TeV, PFlow jets, tt Sim. c-jets ]
cPet JuPu | 20 GeV < pr < 250 GeV S—— ]
r 7777 stat. uncertainty
0.20 - b
e Fraction values can be adapted to balance the two I
background class rejections

0.15

e  b-tagging working point (WP) is defined such tW‘

b-jets are above this value (i.e. 70% WP)

e  Cut values for the WPs are calculated by integrating over 000

b-distribution from right to left.

15

. . b-jets discriminant
e WPs are marked here by vertical lines
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e Comparing background rejections of
the two models vs signal efficiency
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Background rejection

c-jets ratio

Light-flavour jets ratio

I

w

N

DIPS Results - ROC Curve

I e e B L B e
F ATLAS Simulation Work-in-Progess

[ Vs =13 TeV, PFlow jets, tf Sim.

E 20 GeV < pr < 250 GeV
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L—  c-jets rejection

e
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=-=--light-flavour jets rejectioh

7
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—

0.60 0.70

b-jets efficiency

1.00

PHYSICISTS

Comparing background rejections of
the two models vs signal efficiency

Clearly better c-rejection for DIPS in
comparison RNNIP
(~2.15x better at 60% WP)
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DIPS Results - ROC Curve
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Comparing background rejections of
the two models vs signal efficiency

Clearly better c-rejection for DIPS in
comparison RNNIP
(~2.15x better at 60% WP)

Also: Huge improvement in
light-flavour rejection for DIPS in
comparison RNNIP

(~4.05x better at 60% WP)
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DIPS Results - Inclusive c-Rejection

Cc-jets rejection

6.0

5.5

5.0

45

4.0

L e B s e e
| ATLAS Simulation Work-in-Progess

[ V5 =13 TeV, PFlow jets, tt Sim.
I 20 GeV < pr < 250 GeV
[ Inclusive gy = 77%

—
—— RNNIP ]
DIPS ]

100

UNI
|

FREIBURG

Comparing the inclusive c-rejection
per p; bin for the 77% WP

Constant improvement for in
comparison to RNNIP
(35% improvement for 110-140 GeV bin)
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DIPS Results - Inclusive Light-flavour Rejection

light-flavour jets rejection
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DIPS 1

Comparing the inclusive light-flavour
rejection per p_ bin for the 77% WP

Constant improvement for in
comparison to RNNIP
(200% improvement for 110-140 GeV bin)
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DL1d Results - ROC Curve

Background rejection
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Background rejection

c-jets ratio

Light-flavour jets ratio

DL1d Results - ROC Curve
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Background rejection

c-jets ratio

Light-flavour jets ratio

DL1d Results - ROC Curve

F 4— c-jets rejection
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PR S S S R SR SR T

L e e e B e e T 3
£ ATLAS Work-in-Progess —— DLir {
L Vs =13 TeV, PFlow jets, tt Sim. DL1d ]
E 20 GeV < pr <250 GeV E
E60% 70%

— T

UNI
|

FREIBURG

Comparing background rejections vs
signal efficiency for both DL1r and

Clearly better c-rejection for in
comparison DL1r
(~1.45x better at 60% WP)

Also: Huge improvement in light-flavour
rejection for in comparison DL1r

—— / (~1.92x better at 60% WP)
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Background rejection

c-jets ratio

Light-flavour jets ratio

DL1d Results - ROC Curve
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DL1d Results - Inclusive c-Rejection

Cc-jets rejection
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Comparing the inclusive c-rejection
per p; bin for the 77% WP

Constant improvement for in
comparison to DL1r

=" (40% improvement for 85-110 GeV bin)
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DL1d Results - Inclusive Light-flavour Rejection
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Summary

e Presented the new Deep-Impact-Parameter-Sets
(DIPS) tagger
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Summary

Presented the new Deep-Impact-Parameter-Sets
(DIPS) tagger

New architecture allows to train with a looser track
selection and much higher number of training jets

Developed a new resampling method, combining
over- and undersampling to make full use of the
available statistics
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Summary

e Presented the new Deep-Impact-Parameter-Sets
(DIPS) tagger

e New architecture allows to train with a looser track
selection and much higher number of training jets

e Developed a new resampling method, combining
over- and undersampling to make full use of the

available statistics DIPS
f &H
p 4 —
e DIPS clearly outperforms the for Run 2 ‘ N £
recommended track-based Recurrent Neural Network f ,\ ’i A |
Impact Parameter (RNNIP) tagger v . 3 A’ f
\ | A= g
X\ /’/rﬁ\l{,,

e DIPS is part of the new recommended high-level
b-tagging algorithm DL1d
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_§ ATLAS Prelirlninary ° IData I
= 10° Vs =13.6 TeV, 790 pb™ [ ¢ Powheg+Pythia 8
S Ll oS I SingleTop tW-chan U
| Z+jets z
U m m a ry 10° el Diboson s |
I Mis-ID leptons m
e Presented the new Deep-Impact-Parameter-Sets 10° Uncertainty e
(DIPS) tagger zn:
- TR

e New architecture allows to train with a looser track
selection and much higher number of training jets

FTAG-2022-003

Data/Pred.

e Developed a new resampling method, combining >85% WP " 85% WP 77% WP 70% WP 60% Wp:
over- and undersampling to make full use of the DL1d b-tag bin

available statistics £ 9E  ATLAS Preliminary ' g Daa
Q Vs =13.6 TeV, 790 pb™ [ {F Powheg-+Pythia 8
L 10° B SingleTop tW-chan
0s | Z+jets
e DIPS clearly outperforms the for Run 2 Bl aoson

B Vis-ID leptons

recommended track-based Recurrent Neural Network 10* Uncertainty

Impact Parameter (RNNIP) tagger

1 IIHIII| 1 \IHI.UJ | IIIIIII‘ 1 IIHIII|

e DIPS is part of the new recommended high-level 1o
b-tagging algorithm DL1d

e First Run 3 public Data/MC plots for DL1d 23

Data/Pred.

2 >3
b-tagged 77% WP jet multiplicity


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2022-003/

Summary

Presented the new Deep-Impact-Parameter-Sets
(DIPS) tagger

New architecture allows to train with a looser track
selection and much higher number of training jets

Developed a new resampling method, combining
over- and undersampling to make full use of the
available statistics

DIPS clearly outperforms the for Run 2
recommended track-based Recurrent Neural Network
Impact Parameter (RNNIP) tagger

DIPS is part of the new recommended high-level
b-tagging algorithm DL1d

First Run 3 public Data/MC plots for DL1d

Presented the current status and
improvements of the ftH with H — bb legacy
analysis
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Changes to last analysis round:

o New signal- and control region definition by novel
deep-sets neural network
o Improved ff + bb modelling
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Summary

Presented the new Deep-Impact-Parameter-Sets
(DIPS) tagger

New architecture allows to train with a looser track
selection and much higher number of training jets

Developed a new resampling method, combining
over- and undersampling to make full use of the
available statistics

DIPS clearly outperforms the for Run 2
recommended track-based Recurrent Neural Network
Impact Parameter (RNNIP) tagger

DIPS is part of the new recommended high-level
b-tagging algorithm DL1d

First Run 3 public Data/MC plots for DL1d

Presented the current status and
improvements of the ftH with H — bb legacy
analysis

UNI
|

FREIBURG

Changes to last analysis round:

o  New signal- and control region definition by novel
deep-sets neural network
o Improved ff + bb modelling

Next up:

o  Finish fake studies

o Looking into first fits with full systematics

o  Also: Contribute to the ffH with H — bb CP
analysis
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Results of the Full Run 2 CP Analysis

FREIBURG

Similar Preselection and signal and control region 2
(SR and CR) defined as the “main” analysis _3
T T T y T T T T L T T T T T ] -y
g | ATLAS Preliminary ] 135 <
D L V5=13Tev, 1390 114 ﬁ
Defining CP sensitive observables < 2 | |
b, — (Pixn) - (P x ) [ 13%
|pil|p3| (L Al
- 4125
PiD3 i 117
by = —— [ 1l -
|pi||p3] ol 30
Fitting both k, and a at the same time with binned i 115
profile likelihood fit 1= | 3
B A
B 110
- A +0.30 . _ 110 +55° - -
Best fit values: k, = 0.8375s o =11"""= 21~ X Bestit: a=11", xl=083 .
- Y% SMCP-even: a=0",k/ =1 e
B CP-odd: a=90", k! =1 7]
. +49° +0.25 - o -
e Expected values: Qcven = 0.0°7 ¢, K oyen = 1.007 57 T .

ano+4y 1 40.23
odd = 90" 505 Kt oaqa = 1.00 533 K; COS Of



DIPS - Architecture

Table 4: Hyperparameters of the different DIPS models

Hyperparameter

PUB Note DIPS | DIPS Loose R21

| DIPS Loose R22

Aggregation function
Loss function

Optimiser

Activation function
Output activation function

Summation

Categorical Crossentropy

ADAM (Adaptive Moment Estimation)

ReLLU (Rectified Linear Unit)

Softmax

Regularisation Batch Normalisation

Training sample composition | ¢f 70 % tt, 30 % Z’

Batch size 256 15000

¢ NHidden layer 3 4

@ NNodes/layer [100, 100, 128] [128, 256, 256, 256]

F NHidden layer 2 4 6

F NNodes/ayer [100, 100] [100, 100, 100, 30] | [256, 256, 128, 128, 100, 30]
Number of training jets 3M 22.8M 120M

Free (trainable) parameters 48987 62167 367259

Fixed parameter 1056 1316 3588
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T-jets

Training Set 9
. N b-jets a
e Hybrid training set: _EE_
> Low prjets: tt DE
> High pr jets: Z' light jets
e Different kinematic shapes of the flavours Cets
e  For kinematic independent training py — |n| bin e I T e e 3
> Resample the different flavours g . —— ciets
10 —== C-jets E
E — Iitht-fIavourjets
§ o == Iig.ht-flavourjets _
e Undersampling the jet flavours prand || value g e
> Same number ijetS in each 2 o2l stat. uncertainty_:
e  Ensure tagging independence from kinematics! CF 3
10tk 3
e  Stitching the two samples to one hybrid sample ook i

P S R N
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pt_btagJes [GeV] "5
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Training Set
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light jets
c-jets
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zZ » stat. uncertainty
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DIPS Results - Inclusive b-Efficiency

o
©
S
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b-jets efficiency

0.80

0.75

0.70

0.65

—— T
I ATLAS Simulation Work-in-Progess

—— RNNIP ]
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Comparing the inclusive b-efficiency
per p; bin for the 77% WP

Similar b-efficiency for and
RNNIP

No significant shift of performance
between the bins
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DL1d Results - Inclusive b-Efficiency

T T T— T
[ ATLAS Work-in-Progess

DL1r ]

>
© 0.90
-g L Vs =13 TeV, PFlow jets, tt Sim. DL1d A
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Comparing the inclusive b-efficiency
per p; bin for the 77% WP

Slight shift in performance to higher p..
values

has better performance in high
p; than DLAr
(6% improvement for 175-250 GeV bin)

Shift of around 6%

UNI

FREIBURG
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DIPS Tau - Motivation

e Heavy flavour tagging (b- and c-tagging) are crucial
parts for most of ATLAS analyses

e Some analyses are very dependent on c-tagging,
like the measurement of the c-quark Yukawa
coupling

e \/H(cc) tried to use the DL1 tagger as c-tagger
using a redefined discriminant

D. log( fbpb+fupu )

l O

(=4

=

=

0 2

“ : SE
AN H é

One of the signal processes of the VH(cc) analysis
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DIPS Tau - Motivation

UNI
I

FREIBURG

e  Good performance was achieved, but a big r-jet D, = log(—f " )
contamination was observed bPb T JuPu

e Forthe 27% c-tagging working point (WP), the r-jet
efficiency was at around 28%

300
ot

1-jets efficiency map for the c-tagging

working point ANA-HIGC-2018-41 80
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DIPS Tau - Motivation

e Good performance was achieved, but a big r-jet
contamination was observed

e  Forthe 27% c-tagging working point (WP), the 1-jet
efficiency was at around 28%

e DL1 and DL1r are not trained on r-jets!

e Can we achieve similar performance for b-tagging
while adding the r-jets to the training?

abseta

D. = log( fbpb+fupu )

0 =,y oy 1 o

UNI

50 100 150

T-jets efficiency map for the 27%
c-tagging working point

200

250 300
pt

ANA-HIGG-2018-41

FREIBURG
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T-jets rejection

DIPS Tau - ROC Curve

FREIBURG
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Background rejection
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DIPS Tau - ROC Curve
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Comparing the c- and light-flavour
rejection for the non-r-trained DIPS
and a new

Slightly better c- and slightly worse
light-flavour rejection for in
comparison to DIPS

Light-flavour rejection can be
recovered!

Adapting the fraction values in the
b-tagging discriminant calculation

o  Shifting performance from
c-rejection to light-flavour
rejection
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