Search for $t\bar{t}H$ with $H \rightarrow b\bar{b}$ and the Development of Flavour Tagging for Run 3 __

Alexander Froch

Supervised by Manuel Guth, Andrea Knue

29.09.2022 - GRK Workshop

- \bullet Why is the $t\bar{t}$ process important?
	- o Directly measure the Top-Higgs Yukawa coupling.

$$
y_{\rm Fermion} = \sqrt{2} \tfrac{M_{\rm Fermion}}{246\,\text{GeV}}
$$

 \circ Top has strongest coupling to Higgs: $y_{t \approx 1}$

IBURG

河仔

1

BURG

- \bullet Why is the $t\bar{t}$ *H* process important?
	- Directly measure the Top-Higgs Yukawa coupling

 $y_{\rm Fermion} = \sqrt{2} \frac{M_{\rm Fermion}}{246\,\rm GeV}$

 \circ Top has strongest coupling to Higgs: $y_{t\approx 1}$

 M_H [GeV]

- Still: $t\bar{t}$ *H* process is rare!
	- Use the most dominant decay channel with *H* **→** *bb̅*
	- *○* Here: Single lepton channel

- \bullet Why is the $t\bar{t}$ *H* process important?
	- Directly measure the Top-Higgs Yukawa coupling

 $y_{\rm Fermion} = \sqrt{2} \frac{M_{\rm Fermion}}{246\,\rm GeV}$

 \circ Top has strongest coupling to Higgs: $y_{t \approx 1}$

- Still: $t\bar{t}H$ process is rare!
	- \circ Use the most dominant decay channel with $H \rightarrow b\overline{b}$
	- *○* Here: Single lepton channel

- Single lepton channel final state:
	- 6 jets
	- 4 *b*-tagged jets, 2 non-*b*-tagged jets
	- 1 lepton (electron/muon)
	- 1 neutrino

Irreducible Background - $t\bar{t}$ + $b\bar{b}$

 \bullet Most dominant background \rightarrow \overline{t} + $b\overline{b}$

Irreducible Background - $t\bar{t}$ + $b\bar{b}$

- \bullet Most dominant background \rightarrow $\overline{t\overline{t}}$ + $b\overline{b}$
- Irreducible background for the *ttH* process
	- Same final state particles
	- Difference in kinematics
- Can be separated by reconstruction of the Higgs
	- Problem: Not all jets from Higgs and top quarks survive jet selection
	- Also: Jet/parton assignment difficult due to large jet multiplicity
	- Good *b*-tagging important for jet/parton assignment

Irreducible Background - *tt̅* + *bb̅*

- \bullet Most dominant background \rightarrow $\overline{t\overline{t}}$ + $b\overline{b}$
- Irreducible background for the $t\bar{t}$ *H* process
	- Same final state particles
	- Difference in kinematics
- Can be separated by reconstruction of the Higgs
	- Problem: Not all jets from Higgs and top quarks survive jet selection
	- Also: Jet/parton assignment difficult due to large jet multiplicity
	- Good *b*-tagging important for jet/parton assignment
- Also: $t\bar{t}$ + $b\bar{b}$ \rightarrow Large theory uncertainties

- Signal and control region defined on jet and *b*-tag multiplicity
	- Signal **→** nJets ≥ 6, nBTags@85 ≥ 4
	- Control **→** nJets = 5, nBTags@85 ≥ 4
- Each region is than used in a Profile Likelihood fit

- Signal and control region defined on jet and *b*-tag multiplicity
	- Signal **→** nJets ≥ 6, nBTags@85 ≥ 4
	- Control **→** nJets = 5, nBTags@85 ≥ 4
- Each region is than used in a Profile Likelihood fit
- Looking at the background-only compositions

- Signal and control region defined on jet and *b*-tag multiplicity
	- Signal **→** nJets ≥ 6, nBTags@85 ≥ 4
	- Control **→** nJets = 5, nBTags@85 ≥ 4
- Each region is than used in a Profile Likelihood fit
- Looking at the background-only compositions
- Signal- and control regions dominated by $t\bar{t}$ + $b\bar{b}$
- No clean control regions
	- Used to constrain systematic uncertainties
	- Is there a way to define cleaner signal- and control regions?

Background composition of the different signal- and control regions From [HIGG-2020-23](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-23)

 $SR_{24h}^{\geq 6j}$

 $p_{\tau}^{H} \in [0, 120)$ GeV

T_{tH}

 CR_{\cdot}^{5j}

 \Box tt + V

 \Box tt + ≥1b

 \Box tt + liaht

 \exists tt \overline{t} + \geq 1c

□Other

- Results of the last analysis are shown here
- Public paper results with full Run 2 data \blacksquare

- Results of the last analysis are shown here
- Public paper results with full Run 2 data

● Was dominated by systematic uncertainties

- Results of the last analysis are shown here
- Public paper results with full Run 2 data
- $\mu_{t\bar{t}H} = \frac{\sigma^{t\bar{t}H}}{\sigma_{\rm SM}^{t\bar{t}H}} = 0.35^{+0.36}_{-0.34} \left(^{+0.20}_{-0.20}\,{\rm stat.}\right. \left. ^{+0.30}_{-0.28}\,{\rm sys.} \right)$ [HIGG-2020-23](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-23)
- Was dominated by systematic uncertainties

• Largest uncertainty: $t\bar{t}$ + *bb* modelling

Due to systematic limitations: Redo the analysis with multiple improvements to reduce systematic uncertainty Total statistical/systematic uncertainties with the largest systematic contributions (above 0.1)

Based on [HIGG-2020-23](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-23)

- Lepton definitions:
	- \circ Single-lepton: One lepton with $\overline{\rho}_{\rm T}$ >= 27 GeV

 $N_{e/\mu}=1$

- Lepton definitions:
	- Single-lepton: One lepton with p_{T} >= 27 GeV
- Jet definition:
	- Using the anti-*kt* jet cluster algorithm with *ΔR* = 0.4
	- *○* Jet *p*^T > 25 GeV, Jet |*η*| < 2.5

- Lepton definitions:
	- Single-lepton: One lepton with p_{T} >= 27 GeV
- Jet definition:
	- Using the anti-*kt* jet cluster algorithm with *ΔR* = 0.4
	- *○* Jet *p*^T > 25 GeV, Jet |*η*| < 2.5
- *● b*-tagged definition:
	- Jets passing the corresponding DL1r working point (WP) cuts

- Lepton definitions:
	- Single-lepton: One lepton with p_{T} >= 27 GeV
- Jet definition:
	- Using the anti-*kt* jet cluster algorithm with *ΔR* = 0.4
	- *○* Jet *p*^T > 25 GeV, Jet |*η*| < 2.5
- *● b*-tagged definition:
	- Jets passing the corresponding DL1r working point (WP) cuts
- Using Deep-Sets based deep neural networks (DNNs)

BURG

- Very good reconstruction algorithms for objects in ATLAS
	- But: Nobody's perfect! Soft leptons or non-leptonic particles can pass the requirements
	- Most backgrounds are modelled with Monte Carlo (MC)
	- \circ Lepton fakes contribution \rightarrow Data-driven with Matrix method

- Very good reconstruction algorithms for objects in ATLAS
	- But: Nobody's perfect! Soft leptons or non-leptonic particles can pass the requirements
	- Most backgrounds are modelled with Monte Carlo (MC)
	- \circ Lepton fakes contribution \rightarrow Data-driven with Matrix method
- Sources for fake electrons
	- Light- or gluon jets
	- Deposit most energy in the electromagnetic calorimeter (ECAL)
	- \circ γ conversion in the ECAL

- Very good reconstruction algorithms for objects in ATLAS
	- But: Nobody's perfect! Soft leptons or non-leptonic particles can pass the requirements
	- Most backgrounds are modelled with Monte Carlo (MC)
	- \circ Lepton fakes contribution \rightarrow Data-driven with Matrix method
- Sources for fake electrons
	- Light- or gluon jets
	- Deposit most energy in the electromagnetic calorimeter (ECAL)
	- $\circ \circ \gamma$ conversion in the ECAL
- Sources for fake muons
	- High energy particles with elongated shower shapes (Punch-Through)
	- Decay of a charged meson (i.e. *K* +) producing a muon

ATLAS Muon Spectrometer

6

- Currently studying the effect of lepton fakes for the analysis
	- No large contribution in SR expected but maybe in CR
- Splitting $t\bar{t}$ + $b\bar{b}$ in three different processes
	- \overline{t} + 1b
	- \circ \overline{t} + 1B
	- *○ tt̅* + *≥ 2b*
- Control regions now defined by process

- Currently studying the effect of lepton fakes for the analysis
	- No large contribution in SR expected but maybe in CR
- Splitting $t\bar{t}$ + $b\bar{b}$ in three different processes
	- \overline{t} + 1b
	- \circ $t\bar{t}$ + 1B
	- *○ tt̅* + *≥ 2b*
- Control regions now defined by process
- First results show no big impact for the background-only composition pie charts for the signal and control regions

- Currently studying the effect of lepton fakes for the analysis
	- No large contribution in SR expected but maybe in CR
- Splitting $t\bar{t}$ + $b\bar{b}$ in three different processes
	- \overline{t} + 1b
	- \circ \overline{t} + 1B
	- *○ tt̅* + *≥ 2b*
- Control regions now defined by process
- First results show no big impact for the background-only composition pie charts for the signal and control regions
- But: Redefined control regions are much cleaner in comparison to last analysis (i.e $t\bar{t}$ + light and $t\bar{t}$ + *c* regions)

- Comparable differential Higgs kinematic measurements between LHC experiments and Higgs decay channels
- Performed in exclusive kinematic phase space regions (STXS bins)

- Comparable differential Higgs kinematic measurements between LHC experiments and Higgs decay channels
- Performed in exclusive kinematic phase space regions (STXS bins)
- Higgs p_{τ} binning optimised to
	- Reduce theory uncertainties
	- \circ Maximise sensitivity of $H \rightarrow b\overline{b}$ channel
	- \circ Also: Higgs $\boldsymbol{p}_{\sf T}$ is sensitive to CP structure of the Higgs

[arXiv:1501.03157](https://arxiv.org/abs/1501.03157)

- Comparable differential Higgs kinematic measurements between LHC experiments and Higgs decay channels
- Performed in exclusive kinematic phase space regions (STXS bins)
- Higgs p_{τ} binning optimised to
	- Reduce theory uncertainties
	- \circ Maximise sensitivity of $H \rightarrow b\overline{b}$ channel
	- \circ Also: Higgs $\boldsymbol{p}_{\sf T}$ is sensitive to CP structure of the Higgs
- For each STXS bin a separate signal template is defined
	- Based on the signal truth MC prediction
	- All templates are used for the final Profile Likelihood fit

- Comparable differential Higgs kinematic measurements between LHC experiments and Higgs decay channels
- Performed in exclusive kinematic phase space regions (STXS bins)
- Higgs p_{τ} binning optimised to
	- Reduce theory uncertainties
	- Maximise sensitivity of *H* **→** *bb̅* channel
	- \circ Also: Higgs $\boldsymbol{p}_{\sf T}$ is sensitive to CP structure of the Higgs
- For each STXS bin a separate signal template is defined
	- Based on the signal truth MC prediction
	- All templates are used for the final Profile Likelihood fit
- MC composition of the different STXS bins
	- Fully blinded due to blinding policy
	- But: *tt̄H* contribution clearly visible

ttH Summary

- \bullet *ttH* with $H \rightarrow b\overline{b}$ analysis presented
- \bullet Goal: Measuring the $t\bar{t}H$ cross-section using the STXS method in Higgs p_{τ} bins
- Biggest challenge: Irreducible $t\bar{t}$ + $b\bar{b}$ with large modelling uncertainties

ttH Summary

- \bullet *ttH* with $H \rightarrow b\overline{b}$ analysis presented
- \bullet Goal: Measuring the $t\bar{t}H$ cross-section using the STXS method in Higgs p_{τ} bins
- Biggest challenge: Irreducible $t\bar{t}$ + $b\bar{b}$ with large modelling uncertainties
- Changes to last analysis round (already full Run 2):
	- New signal- and control region definition by novel deep-sets neural network
	- \circ Improved $t\bar{t}$ + $b\bar{b}$ modelling

ttH Summary

- \bullet *tt̄H* with $H \rightarrow b\overline{b}$ analysis presented
- \bullet Goal: Measuring the $t\bar{t}H$ cross-section using the STXS method in Higgs p_{τ} bins
- **•** Biggest challenge: Irreducible $t\bar{t}$ + $b\bar{b}$ with large modelling uncertainties
- Changes to last analysis round (already full Run 2):
	- New signal- and control region definition by novel deep-sets neural network
	- \circ Improved $t\bar{t}$ + $b\bar{b}$ modelling
- First fake studies ongoing \rightarrow First results show no significant impact of fakes!
- Next up:
	- Finish fake studies
	- Looking into first fits with full systematics
	- \circ Also: Contribute to the $t\bar{t}H$ with $H \rightarrow b\bar{b}$ CP analysis

Heavy-Flavour Tagging

How *b*-Tagging works

- Using the topology of heavy-flavour jets ○ Lifetime of the *b*-hadrons $(c \cdot r ≈ 5$ mm at $p_{T} = 50$ GeV)
- Different track- and jet variables are used
- Track variables:
	- e.g number of inner detector hits, $\Delta R(\text{track}, \text{jet})$

$$
\circ \quad p_T^{\text{frac}} \ = \ \frac{\text{track } p_T}{\text{jet } p_T}
$$

- Jet variables:
	- \circ e.g. p_T, η
- Also: Information provided by low-level algorithms (i.e. JetFitter, Secondary Vertex Finder (SV1))

ATLAS High-Level *b*-Tagging Algorithms

- Default tagger in Run 2 was DL1r ([ATL-PHYS-PUB-2017-01](https://cds.cern.ch/record/2273281)[3\)](https://app.diagrams.net/?page-id=ABhtSPmFg4T54FL8Bdae&scale=auto#G17ojJJRKWH-CZznH9Y_6o7y8Jqz8Wuz5M)
- Uses jet-level variables and many different low-level algorithms (i.e. IPxD, SV1, JetFitter)
- For track information, DL1r uses the Recurrent Neural Network Impact Parameter (RNNIP) tagger

Track-based Neural Network
ATLAS High-Level *b*-Tagging Algorithms

- Default tagger in Run 2 was DL1r ([ATL-PHYS-PUB-2017-013](https://cds.cern.ch/record/2273281))
- Uses jet-level variables and many different low-level algorithms (i.e. IPxD, SV1, JetFitter)
- For track information, DL1r uses the Recurrent Neural Network Impact Parameter (RNNIP) tagger
- Many improvements were implemented for Run 3
- RNNIP was replaced with the Deep-Impact-Parameter-Sets (DIPS) tagger
- DIPS: Deep neural network based on the Deep Sets architecture
- \bullet DL1r (r = RNNIP) \rightarrow DL1d (d = DIPS)
- Biggest change in DL1d w.r.t DL1r **→** DIPS

DL1d is the recommended high level tagger for Run 3

Track-NN based

- First use in HEP: [arXiv:1810.05165](https://arxiv.org/abs/1810.05165)
- \bullet Set function **f** on set of tracks **x** $\int f(x) = \rho \left(\sum_{x \in x} \phi(x) \right)$ can be decomposed

- First use in HEP: [arXiv:1810.05165](https://arxiv.org/abs/1810.05165)
- \bullet Set function **f** on set of tracks χ can be decomposed
- Process each element of the set with mapping function **ɸ**

- First use in HEP: [arXiv:1810.05165](https://arxiv.org/abs/1810.05165)
- Set function **f** on set of tracks **x** can be decomposed
- Process each element of the set with mapping function **ɸ**
- Aggregate processed elements into invariant description with aggregation function (here: summation)

 (x)

 $x \in \chi$

- First use in HEP: [arXiv:1810.05165](https://arxiv.org/abs/1810.05165)
- Set function **f** on set of tracks **x** can be decomposed
- Process each element of the set with mapping function **ɸ**
- Aggregate processed elements into invariant description with aggregation function (here: summation)
- Process the aggregated description with ρ

 $x \in \chi$

 $\phi(x)$

- First use in HEP: [arXiv:1810.05165](https://arxiv.org/abs/1810.05165)
- Set function **f** on set of tracks **x** can be decomposed
- Process each element of the set with mapping function **ɸ**
- Aggregate processed elements into invariant description with aggregation function (here: summation)
- Process the aggregated description with ρ
- \bullet \bullet and ρ don't operate on set of tracks!
	- **ɸ** works on one track at the time
	- \circ ρ works on the aggregated description
	- Plug in neural network for that!

- First use in HEP: [arXiv:1810.05165](https://arxiv.org/abs/1810.05165)
- Set function **f** on set of tracks **x** can be decomposed
- Process each element of the set with mapping function **ɸ**
- Aggregate processed elements into invariant description with aggregation function (here: summation)
- Process the aggregated description with ρ
- \bullet \bullet and ρ don't operate on set of tracks!
	- **ɸ** works on one track at the time
	- \circ ρ works on the aggregated description
	- Plug in neural network for that!
- Aggregation negates the order dependency of the set!

Track_n

DIPS - Deep Impact Parameter Sets

- First studies by [Nicole Hartmann](https://cds.cern.ch/record/2718948)
- Consists of two sub-networks:
	- **○ ϕ**: Works on the track input features
	- **○** F: Works on the aggregated output of the **ϕ** networks
- DIPS uses softmax function as last layer activation \rightarrow Outputs can be interpreted as probabilities:
	- *p*_{*b*}: Probability the jet originates from a *b*-quark
	- *p_c*: Probability the jet originates from a c-quark
	- *p*_u: Probability the jet originates from a light-flavour<mark></mark> quark (up, down, strange)

DIPS - Deep Impact Parameter Sets

- First studies by [Nicole Hartmann](https://cds.cern.ch/record/2718948)
- Consists of two sub-networks:
	- **○ ϕ**: Works on the track input features
	- **○** F: Works on the aggregated output of the **ϕ** networks
- DIPS uses softmax function as last layer activation \rightarrow Outputs can be interpreted as probabilities:
	- *p***_b**: Probability the jet originates from a *b*-quark
	- \circ $\rho_{c}^{}$: Probability the jet originates from a c-quark
	- $p_{\stackrel{\cdot}{u}}$: Probability the jet originates from a light-flavour<mark>.</mark> quark (up, down, strange)
- Advantages of the new architecture:
	- Parallelizability of track processing
	- Much faster training time (able to use GPUs)
	- Can go to looser track selection!

Training Sample

- Training sample consists of:
	- 70% *tt̅*, 30% *Z'*
	- *tt̅* : 20-250 GeV, *Z'*: 250-6000 GeV

Training Sample

- Training sample consists of:
	- 70% *tt̅*, 30% *Z'*
	- *tt̅* : 20-250 GeV, *Z'*: 250-6000 GeV
	- 120M jets in total (40M *b*-, *c* and light-flavour)
	- 2D-resampling in $p_₁$ and |*η*| bins to achieve kinematic independent training
	- Using mixture of over- and undersampling (Importance sampling with replacement)

Training Sample

- Training sample consists of:
	- \circ 70% *t***f**, 30% *Z*[']
	- *tt̅* : 20-250 GeV, *Z'*: 250-6000 GeV
	- 120M jets in total (40M *b*-, *c* and light-flavour)
	- 2D-resampling in $p_₁$ and |*η*| bins to achieve kinematic independent training
	- Using mixture of over- and undersampling (Importance sampling with replacement)
	- Training time per epoch:
		- \blacksquare DIPS: ~31 min (120M jets)
		- \blacksquare RNNIP: ~40 min (6M jets)

DIPS Results - Discriminant Scores

● Probability outputs of the network is used to calculate the *b*-tagging discriminant D_b

 $D_b = \log(\frac{p_b}{f_c p_c + f_u p_u})$

● Fraction values can be adapted to balance the two background class rejections

DIPS Results - Discriminant Scores

Probability outputs of the network is used to calculate the *b*-tagging discriminant D_b

 $D_b = \log(\frac{p_b}{f_c p_c + f_u p_u})$

- Fraction values can be adapted to balance the two background class rejections
- b-tagging working point (WP) is defined such that x% of all*b*-jets are above this value (i.e. 70% WP)
- Cut values for the WPs are calculated by integrating over *b*-distribution from right to left.
- WPs are marked here by vertical lines

Comparing background rejections of the two models vs signal efficiency

Comparing background rejections of the two models vs signal efficiency

Clearly better *c*-rejection for **DIPS** in comparison RNNIP (~2.15x better at 60% WP)

Comparing background rejections of the two models vs signal efficiency

Clearly better *c*-rejection for **DIPS** in comparison RNNIP (~2.15x better at 60% WP)

Also: Huge improvement in light-flavour rejection for DIPS in comparison RNNIP (~4.05x better at 60% WP)

Comparing background rejections of the two models vs signal efficiency

DIPS Results - Inclusive *c*-Rejection

18

BURC

22

DIPS Results - Inclusive Light-flavour Rejection

Comparing background rejections vs signal efficiency for both DL1r and DL1d

Comparing background rejections vs signal efficiency for both DL1r and DL1d

Clearly better *c*-rejection for DL1d in comparison DL1r (~1.45x better at 60% WP)

Comparing background rejections vs signal efficiency for both DL1r and DL1d

Clearly better *c*-rejection for DL1d in comparison DL1r (~1.45x better at 60% WP)

Also: Huge improvement in light-flavour rejection for DL1d in comparison DL1r (~1.92x better at 60% WP)

Comparing background rejections vs signal efficiency for both DL1r and DL1d

DL1d Results - Inclusive *c*-Rejection

DL1d Results - Inclusive Light-flavour Rejection

● Presented the new Deep-Impact-Parameter-Sets (DIPS) tagger

- Presented the new Deep-Impact-Parameter-Sets (DIPS) tagger
- New architecture allows to train with a looser track selection and much higher number of training jets
- Developed a new resampling method, combining over- and undersampling to make full use of the available statistics

- Presented the new Deep-Impact-Parameter-Sets (DIPS) tagger
- New architecture allows to train with a looser track selection and much higher number of training jets
- Developed a new resampling method, combining over- and undersampling to make full use of the available statistics
- DIPS clearly outperforms the for Run 2 recommended track-based Recurrent Neural Network Impact Parameter (RNNIP) tagger
- DIPS is part of the new recommended high-level *b*-tagging algorithm DL1d

- Presented the new Deep-Impact-Parameter-Sets (DIPS) tagger
- New architecture allows to train with a looser track selection and much higher number of training jets
- Developed a new resampling method, combining over- and undersampling to make full use of the available statistics
- DIPS clearly outperforms the for Run 2 recommended track-based Recurrent Neural Network Impact Parameter (RNNIP) tagger
- DIPS is part of the new recommended high-level *b*-tagging algorithm DL1d
- First Run 3 public Data/MC plots for DL1d

- Presented the new Deep-Impact-Parameter-Sets (DIPS) tagger
- New architecture allows to train with a looser track selection and much higher number of training jets
- Developed a new resampling method, combining over- and undersampling to make full use of the available statistics
- DIPS clearly outperforms the for Run 2 recommended track-based Recurrent Neural Network Impact Parameter (RNNIP) tagger
- DIPS is part of the new recommended high-level *b*-tagging algorithm DL1d
- Presented the current status and improvements of the $t\bar{t}H$ with $H \rightarrow b\bar{b}$ legacy analysis
- Changes to last analysis round:
	- New signal- and control region definition by novel deep-sets neural network
	- \circ Improved $t\bar{t}$ + $b\bar{b}$ modelling

First Run 3 public Data/MC plots for DL1d

- Presented the new Deep-Impact-Parameter-Sets (DIPS) tagger
- New architecture allows to train with a looser track selection and much higher number of training jets
- Developed a new resampling method, combining over- and undersampling to make full use of the available statistics
- DIPS clearly outperforms the for Run 2 recommended track-based Recurrent Neural Network Impact Parameter (RNNIP) tagger
- DIPS is part of the new recommended high-level *b*-tagging algorithm DL1d
- Presented the current status and improvements of the $t\bar{t}H$ with $H \rightarrow b\bar{b}$ legacy analysis
- Changes to last analysis round:
	- New signal- and control region definition by novel deep-sets neural network
	- \circ Improved $t\bar{t}$ + $b\bar{b}$ modelling
- Next up:
	- Finish fake studies
	- Looking into first fits with full systematics
	- \circ Also: Contribute to the *t* H with $H \rightarrow b\overline{b}$ CP analysis

First Run 3 public Data/MC plots for DL1d

Thanks! Questions?

Back-Up
Results of the Full Run 2 CP Analysis

- Similar Preselection and signal and control region (SR and CR) defined as the "main" analysis
- Defining CP sensitive observables

$$
\begin{aligned} b_2 &= \tfrac{(\vec{p_1} \times \hat{n}) \cdot (\vec{p_2} \times \hat{n}}{|\vec{p_1}||\vec{p_2}|} \\ b_4 &= \tfrac{\vec{p_1^z}\vec{p_2^z}}{|\vec{p_1}||\vec{p_2}|} \end{aligned}
$$

- **•** Fitting both κ_t and α at the same time with binned profile likelihood fit
- Best fit values: $\kappa'_t = 0.83^{+0.30}_{-0.46}$ $\alpha = 11^{\circ}$ $^{+55^{\circ}}$

$$
\begin{array}{ll}\text{\color{red}{\bullet}} & \text{Expected values:} & \alpha_\text{even} = 0.0 ^{\circ +49^\circ}_{-50^\circ}, \, \kappa'_{t,\text{ even}} = 1.00 ^{+0.25}_{-0.27} \\ & \alpha_\text{odd} = 90 ^{\circ +49^\circ}_{-43^\circ}, \,\, \kappa'_{t,\text{ odd}} = 1.00 ^{+0.23}_{-0.33} \end{array}
$$

DIPS - Architecture

Table 4: Hyperparameters of the different DIPS models

Training Set

- Hybrid training set:
	- \blacktriangleright Low p_T jets: $t\bar{t}$
	- \blacktriangleright High p_T jets: Z'
- Different kinematic shapes of the flavours
- For kinematic independent training $p_T |\eta| \sin \theta$ \triangleright Resample the different flavours
- Undersampling the jet flavours p_T and $|\eta|$ value \triangleright Same number of jets in each
- Ensure tagging independence from kinematics!
- Stitching the two samples to one hybrid sample

DIPS Results - Inclusive *b*-Efficiency

- Ë
- Comparing the inclusive *b*-efficiency per $p_{_{\rm T}}$ bin for the 77% WP
- Similar *b*-efficiency for DIPS and **RNNIP**

No significant shift of performance between the bins

DL1d Results - Inclusive *b*-Efficiency

DIPS Tau - Motivation

- Heavy flavour tagging (*b* and *c*-tagging) are crucial parts for most of ATLAS analyses
- Some analyses are very dependent on *c*-tagging, like the measurement of the *c*-quark Yukawa coupling
- [VH\(cc\)](https://atlas-glance.cern.ch/atlas/analysis/analyses/details?id=1387) tried to use the DL1 tagger as *c*-tagger using a redefined discriminant

$$
D_c = \log\Bigl(\tfrac{p_c}{f_bp_b+f_up_u}\Bigr)
$$

One of the signal processes of the VH(cc) analysis

DIPS Tau - Motivation

● Good performance was achieved, but a big *τ*-jet contamination was observed

DIPS Tau - Motivation

- Good performance was achieved, but a big *τ*-jet contamination was observed
- For the 27% *c*-tagging working point (WP), the *τ*-jet efficiency was at around 28%
- DL1 and DL1r are not trained on *τ*-jets!
- Can we achieve similar performance for *b*-tagging while adding the *τ*-jets to the training?

 $D_c = \log\Bigl(\frac{p_c}{f_b p_b+f_u p_u}\Bigr)$

τ-jets efficiency map for the 27% *c-*tagging working point

DIPS Tau - ROC Curve

- **BURG** 柔
- Comparing the *τ*-rejection for the non*τ*-trained DIPS and a new four-classes *τ*-trained DIPS

Clear improvement over whole *b*-efficiency range for DIPS Tau in comparison to DIPS

DIPS Tau - ROC Curve

- Comparing the *c* and light-flavour rejection for the non-*τ*-trained DIPS and a new four-classes *τ*-trained DIPS
- Slightly better *c* and slightly worse light-flavour rejection for DIPS Tau in comparison to DIPS
- Light-flavour rejection can be recovered!
- Adapting the fraction values in the *b*-tagging discriminant calculation
	- Shifting performance from *c*-rejection to light-flavour rejection