Full NLO corrections to 3-jet production and **R**₃₂ at the LHC

Max Reyer

Eur. Phys. J. C79 no. 4, (2019) 321 arXiv:1902.01763 [hep-ph]

> Advisor: Prof. Dr. Stefan Dittmaier

GRK 2044 Fall Workshop September 30th, 2022

3/2-Jet Ratios and α_S Determination

Features of Electroweak (EW) NLO

External Photons and Jet Observables in EW NLO

 $2/3\mathchar`-Jet Production at EW NLO and Full SM NLO$

among most abundant processes at LHC

- important SM background and BSM searching ground
- determination of PDFs and $lpha_s$ at high scales \mathcal{Q}^2

among most abundant processes at LHC

 $\Rightarrow\,$ allows for multi-differential measurements into high- $p_{\rm T}$ regions

- important SM background and BSM searching ground
- determination of PDFs and α_s at high scales Q^2

3-jet production in QCD:

LO
(Born)
$$a + b \rightarrow c + d + e \qquad \alpha_{S}^{3}$$

NLO
(virtual) $a + b \rightarrow c + d + e \qquad \alpha_{S}^{4}$
NLO
(real) $a + b \rightarrow c + d + e + f \qquad \alpha_{S}^{4}$

 $a, b, c, d, e, f \in \{g, q\}$

among most abundant processes at LHC

 $\Rightarrow\,$ allows for multi-differential measurements into high- $p_{\rm T}$ regions

- important SM background and BSM searching ground
- determination of PDFs and $lpha_s$ at high scales \mathcal{Q}^2

3-jet production in QCD:

Full NLO corrections to 3-jet production and R_{32} at the LHC

2/12

 $a, b, c, d, e, f \in \{g, q\}$

Existing Studies of Jet Production

3/2-Jet Ratios and α_S Determination

examples:

$$\begin{split} R_{32}(Q^2) &= \frac{\mathrm{d}\sigma_{3j}/\mathrm{d}Q^2}{\mathrm{d}\sigma_{2j}/\mathrm{d}Q^2}, \\ R_{\Delta\phi}(Q^2, \Delta\phi_{\max}) &= \frac{\mathrm{d}\sigma_{2j}(\Delta\phi_{12} < \Delta\phi_{\max})/\mathrm{d}Q^2}{\mathrm{d}\sigma_{2j}/\mathrm{d}Q^2}, \quad (2\pi/3 < \Delta\phi_{\max} < \pi). \\ & \text{[Wobisch et al., 2013]} \end{split}$$

- ratios reduce uncertainties
 - experimental: luminosity, jet energy scale, ...
 - theory: PDFs, factorizing higher-order contributions, ...
- R_{32} , $R_{\Delta\phi}$ are approximately proportional to $\alpha_s(Q^2)$
 - \Rightarrow allow for measurement in various bins of Q^2 [Abazov et al., 2012] [Chatrchyan et al., 2013] [Aaboud et al., 2018]
 - \Rightarrow fit theory predictions to data, by varying the α_s input
 - \Rightarrow test for RGE running of $\alpha_s(Q^2)$

Collaboration with CMS on EW NLO corrections for $R_{\Delta\phi}$ variant!

- R_{32} , $R_{\Delta\phi}$ are approximately proportional to $\alpha_s(Q^2)$
 - \Rightarrow allow for measurement in various bins of Q^2 [Abazov *et al.*, 2012] [Chatrchyan *et al.*, 2013] [Aaboud *et al.*, 2018]
 - $\Rightarrow\,$ fit theory predictions to data, by varying the $\alpha_{\it s}$ input
 - \Rightarrow test for RGE running of $\alpha_s(Q^2)$

Collaboration with CMS on EW NLO corrections for $R_{\Delta\phi}$ variant!

- Allow for measurement in various bins of Q [Abazov et al., 2012] [Chatrchyan et al., 2013] [Aaboud et al., 2018]
- $\Rightarrow\,$ fit theory predictions to data, by varying the $\alpha_{\it s}$ input
- \Rightarrow test for RGE running of $\alpha_s(Q^2)$

Collaboration with CMS on EW NLO corrections for $R_{\Delta\phi}$ variant!

Features of Electroweak (EW) NLO

- EW NLO: contributions with additional power of $lpha \sim 1\%$ w.r.t. to LO
- $\Rightarrow W^{\pm}, Z$ in loops:
 - \Rightarrow IR finite Sudakov logs $\sim \alpha \log^2 \left(rac{Q^2}{m_V^2}
 ight) \sim 10\%$ @ 1TeV
- \Rightarrow γ in loops: IR QED divergences
 - \Rightarrow real γ radiation required for cancellation
 - $\Rightarrow\,$ add γ to jet clustering
 - \Rightarrow perform QED dipole subtraction [Dittmaier, 2000]
 - simultaneous QCD and QED subtraction \rightarrow distinct Born processes

 $\Rightarrow\,$ forces γ in process definition already at LO

Full NLO corrections to 3-jet production and R_{32} at the LHC

External Photons and Jet Observables in EW NLO

- theory: jet definition needs to include γ (QED IR cancellations)
- experiment: distinction between jets and γ desired (different process)
- \Rightarrow IR safe removal of "photon jets" is non-trivial!
 - example: cut on photonic energy fraction z_{γ} inside jet \Rightarrow not IR safe
 - $q
 ightarrow q\gamma$ splittings (q and collinear $q\gamma$ -pair are distinguished)

• $\gamma
ightarrow q ar q$ splittings (γ and collinear q ar q-pair are distinguished)

 $Z_{\gamma} < Z_{cut}$ $Z_{\gamma} \geq Z_{cut}$,

- theory: jet definition needs to include γ (QED IR cancellations)
- experiment: distinction between jets and γ desired (different process)
- \Rightarrow IR safe removal of "photon jets" is non-trivial!
 - example: cut on photonic energy fraction z_{γ} inside jet \Rightarrow not IR safe
 - $q
 ightarrow q\gamma$ splittings (q and collinear $q\gamma$ -pair are distinguished)

• $\gamma \rightarrow q\bar{q}$ splittings (γ and collinear $q\bar{q}$ -pair are distinguished) $\gamma \rightarrow z_{\gamma} \geq z_{cut}$ $\gamma \geq z_{cut}$,

 $Z_{\gamma} < Z_{\text{cut}}$ $Z_{\gamma} \geq Z_{\text{cut}}$,

- proper description requires non-perturbative physics, provided by
 - $q
 ightarrow q \gamma$: fragmentation functions $D_{q
 ightarrow \gamma}$ [Glover et al., 1994], [Buskulic et al., 1996]
 - $\gamma
 ightarrow q ar q$: conversion function $D_{\gamma
 ightarrow {
 m had}}$ [Denner *et al.*, 2019]
 - \Rightarrow contain IR-singular perturbative parts
 - $\Rightarrow\,$ combine with IR singularities from real process

2/3-Jet Production at EW NLO and Full SM NLO

• External particles: $a, b \in \{g, q, \gamma\}$ and $c, d, e, f \in \{g, q, \gamma, l, \nu\}$

Z

2/3-Jet Production at EW NLO and Full SM NLO

• External particles: $a, b \in \{g, q, \gamma\}$ and $c, d, e, f \in \{g, q, \gamma, l, \nu\}$

22

jet definition and fiducial phase space cuts:

• require 3 resp. 2 anti- $k_{\rm T}$ jets, R= 0.4, democratic [input: g,q,γ,l]

$$|\eta| < 2.8;$$
 $p_T^1 \ge 80 ext{GeV},$ $p_T^{i \ge 2} \ge 60 ext{GeV}$

- reject 'lepton jets': $|\eta_j| < 2.5$ and net lepton number eq 0
 - \Rightarrow collinear same-flavor lepton pairs survive (IR safety!)
 - \Rightarrow leptons outside CMS tracker survive
 - \Rightarrow after rejection, impact of final state leptons numerically irrelevant

computation:

• Fully automated: SHERPA interfaced to RECOLA

[Schönherr, 2018; Biedermann et al., 2017]

- pp @ 13 TeV, PDF: NNPDF31_nlo_as_0118_luxqed
- scale choice $\mu_R = \mu_F = rac{1}{2} \hat{H}_{\mathrm{T}}$, 7-point scale variations
- *G_μ* scheme, complex mass scheme

[Denner et al., 1999] [Denner et al., 2005] [Denner et al., 2020]

$H_{\rm T}^{(2)}$ -Spectra (input distributions to R_{32})

- large negative Sudakov-type EW NLO corrections
- accidental cancellation of EW NLO with subleading LO and NLO

\Rightarrow highly dependent on:

- observable definition
- fiducial phase space

EW NLO $\propto \alpha_s^2 \alpha$

subleading LO $\propto \alpha_{\rm s} \alpha$

(c.f. [Dittmaier et al., 2012])

$H_{\rm T}^{(2)}$ -Spectra (input distributions to R_{32})

- large negative Sudakov-type EW NLO corrections
- accidental cancellation of EW NLO with subleading LO and NLO
- \Rightarrow highly dependent on:
 - observable definition
 - fiducial phase space
 - in 3-jet sample at high $H_{\rm T}^{(2)}$:
 - $\Rightarrow \ {\rm 3rd} \ {\rm jet} \ {\rm predominantly} \ {\rm soft}$
 - ⇒ factorizing higher order corrections
 - ⇒ similar EW corrections in 2-jet and 3-jet sample

Z

R₃₂ Result

- small corrections from EW NLO
 - ⇒ factorizing EW corrections between 3-jet and 2-jet distributions
 - $\Rightarrow\,$ beyond accidental cancellation
 - $\Rightarrow\,$ stable w.r.t. cuts e.g. on

$$\eta := |\eta_1 - \eta_2|/2$$

Dependence on $\eta := |\eta_1 - \eta_2|/2$

Summary

Summary:

- Definition of jets is non-trivial at EW NLO
- EW NLO corrections in 2/3-jet production
 - at high $H_{\rm T}^{(2)}$ competitive with QCD NLO
 - large accidental compensations in p_T-type distributions
 - systematically cancel in $R_{32}(H_{\rm T}^{(2)})$

Outlook:

- provide CMS with EW NLO corrections to $R_{\Delta\phi}$
- implementation of conversion function $D_{\gamma
 ightarrow ext{had}}$
- multijet merging in EW_{virt} approximation [Kallweit et al., 2016]

BACKUP: *p*_T-Spectra

large negative Sudakov-type EW NLO corrections

at 2TeV in	p_{T}^{1}	$p_{ m T}^2$	$p_{ m T}^3$
$\Delta NLO_1[\%]$	-10	-15	-15

• larger for subleading p_{T}

BACKUP: *p*_T-spectra

nomenclature for n-jet XS:

$$\mathcal{O}\left(\sigma_{nj}^{\mathsf{LO}_{i}}\right) = \alpha_{s}^{n-i} \alpha^{i}, \qquad \mathcal{O}\left(\sigma_{nj}^{\mathsf{\Delta}\mathsf{NLO}_{i}}\right) = \alpha_{s}^{n+1-i} \alpha^{i},$$

60

• nomenclature for n-jet XS:

$$\mathcal{O}\left(\sigma_{nj}^{\mathsf{LO}_{i}}\right) = \alpha_{s}^{n-i} \alpha^{i}, \qquad \mathcal{O}\left(\sigma_{nj}^{\mathsf{\Delta NLO}_{i}}\right) = \alpha_{s}^{n+1-i} \alpha^{i},$$

combination of QCD and EW NLO:

$$\begin{array}{ll} \underline{ additive:} & \sigma_{nj}^{\rm NLO\ QCD+EW} = \sigma_{nj}^{\rm LO_0} + \sigma_{nj}^{\Delta \rm NLO_0} + \sigma_{nj}^{\Delta \rm NLO_1} \\ \\ \underline{ multiplicative:} & \sigma_{nj}^{\rm NLO\ QCD\times EW} = \sigma_{nj}^{\rm LO_0} \left(1 + \frac{\sigma_{nj}^{\Delta \rm NLO_0}}{\sigma_{nj}^{\rm LO_0}}\right) \left(1 + \frac{\sigma_{nj}^{\Delta \rm NLO_1}}{\sigma_{nj}^{\rm LO_0}}\right) \end{array}$$

• estimate of unknown $\mathcal{O}(\alpha_s \alpha)$ NNLO corrections:

$$\sigma_{\rm QCD \times EW}^{\rm NLO} - \sigma_{\rm QCD + EW}^{\rm NLO} = \frac{\delta \sigma_{\rm QCD}^{\rm NLO} \times \delta \sigma_{\rm EW}^{\rm NLO}}{\sigma^{\rm LO}}$$

multijet merging in EW_{virt} approximation: [Kallweit et al., 2016]

$$\mathrm{d}\sigma_{\mathsf{NLO}\,\mathsf{EW}_{\mathsf{virt}}} = \left[B(\Phi_n) + V_{\mathsf{EW}}(\Phi_n) + I_{\mathsf{EW}}(\Phi_n)\right]\mathrm{d}\Phi_n$$

- $\Rightarrow\,$ no double counting issue
- \Rightarrow EW-NLO accurate multijet merging with LO complexity

Uncertainties in $\alpha_s(M_Z^2)$ Determination

[Workman, 2022]

[Czakon et al., 2021]

