Study of polarization fractions in same-sign W boson scattering

Prasham Jain, Beate Heinemann, Oleg Kuprash

Albert-Ludwigs-Universität Freiburg

GRK Fall Workshop September 30, 2022

Outline

- 2 Monte Carlo Simulation
- 3 Distributions separating $W_L W_L$ events
- 4) Truth-level Classification: $W_L W_L$ vs $W_X W_T$
- 5 Reco-level Classification: W_LW_L vs Backgrounds

6 Summary

Introduction: Polarized same-sign WW(ssWW)

- Measurement of longitudinally polarized *ssWW* production is sensitive to the way electroweak symmetry is broken
- At high energies, Higgs boson with mass < 1 TeV preserves the unitarity of the tree-level amplitude of W_LW_L → W_LW_L
- Only purely longitudinal scattering breaks unitarity without Higgs boson
- Measurement of W_LW_L polarization fraction can probe deviations from SM: BSM physics (additional Higgs, new couplings, new resonances)

M.Szleper, arXiv:1412.8367

Same-sign WW process: Event Selections

Event Signature: 2 forward jets + 2 same-sign leptons + E_{τ}^{miss}

Event Selections

2 same-sign leptons $p_T^\ell > 27 \text{ GeV}$ Veto if \geq 3 lepton $m_{\ell\ell} > 20 GeV$ $|m_{\ell\ell} - m_Z| > 15 \text{ GeV}$ $n_{\rm jets} \geq 2$ $p_{\tau}^{j1(j2)} > 65(35) \text{ GeV}$ $E_{\tau}^{\rm miss} > 30 \, {\rm GeV}$ $n_{\rm biets} = 0$ $|\Delta y_{ii}| > 2$ $m_{ii} > 500 \, {\rm GeV}$

Observation with 6.5σ using 2015-2016 data

Same-sign WW process: Backgrounds

$W^{\pm}Zjj$ background ($W^{\pm}Zjj \rightarrow \ell^{\pm}\nu\ell^{\pm}\ell^{\mp}jj$)

- Dominant background, ℓ^{\mp} (from Z decay) out of detector acceptance or not identified
- Estimation \rightarrow Sherpa 2.2.2 MC with data-driven *Mjj* shape correction

Non-prompt background

- Non-prompt/fake lepton: Any object, which is not a prompt lepton, reconstructed as a lepton in the detector
 - Main sources: W+jets and $t\overline{t}$ events
- $\bullet~$ Estimation \rightarrow data-driven techniques: fake factor method

Charge flip background

• *e* charge misidentification because of incorrect track curvature measurements or wrong *e*-reconstruction

• Main sources: high p_T tracks, $e^\pm o e^\pm \gamma o e^\pm e^+ e^-$

• Estimation \rightarrow data-driven method

Photon conversion background ($V\gamma jj$)

- e channel contributions through γ conversions
- Estimation ightarrow Sherpa 2.2.12 $V\gamma$ MC

Introduction: ss*WW* Polarization Studies

2 Monte Carlo Simulation

- 3 Distributions separating W_LW_L events
- 4 Truth-level Classification: $W_L W_L$ vs $W_X W_T$
- B Reco-level Classification: *W_LW_L* vs Backgrounds

Summary

Signal Monte Carlo generation

Electroweak polarized *ssWW* Monte Carlo (MC)

- generated using MadGraph v2.9.5 and Pythia v8.245
- process: $pp \rightarrow W_X^{\pm} W_Y^{\pm} jj, W^{\pm} \rightarrow \ell^{\pm} \nu$ (for XY = LL, LT, TT)
 - Here *L*=longitudinal (helicity=0) and *T*=transverse (helicity= \pm 1) polarization of *W* boson
- reference frames considered (W boson polarization is frame-dependent):
 - partonic center of mass (pCoM)
 - WW center of mass (WWCoM)

Final States (+ <i>jj</i>)	Cross - <i>p</i> CoM	section (fb)	
WW	31.06		
$W_L W_L W_L W_T W_L W_T W_T W_T$	1.98 10.73 18.04	2.88 9.37 18.45	
Sum of pol. xsec	30.75	30.70	

• Polarization fractions $-f_{LL}$, f_{LT} , f_{TT} – differ from frame-to-frame

Polarization and its Influence

- Polarization dictates the angular distribution of decay products
 - Used in MC Validation
- *W* boson only couples to left-handed particles and right-handed anti-particles
 - (*W*_L, *h*=0) ℓ^+ escapes $\perp W^+$ direction
 - ($W_{\mathcal{T},R}$, h=+1) ℓ^+ escapes $\parallel W^+$ direction
 - $(W_{T,L}, h=-1) \ell^+$ escapes anti-parallel to W^+ direction

Consider
$$W^+
ightarrow e^+
u_e$$
:

Directions of momenta and spins in boson rest frame

Decay angle of W boson in the W rest frame (denoted in blue)

MC Validation of LL, TT polarization modes

In different lepton flavor events, $\cos \theta$ between the lighter lepton and its parent *W* is fit to eq. (1).

 \implies in $W_L W_L$ MC fit $\rightarrow f_L \approx 1$, & in $W_T W_T$ MC fit $\rightarrow (f_{T,L} + f_{T,R}) \approx 1$.

MC Validation of LT polarization mode

MadGraph bug (fixed):

[Launchpad Ticket]

- Mixed polarization mode samples *LT* & *TL* should be equivalent
- Bug: when final states include τ lepton, polarization preference was given based on syntax
 - for *LT* syntax, $W_T \rightarrow \tau \nu$ always
 - for *TL* syntax, $W_L \rightarrow \tau \nu$ always

- 2 Monte Carlo Simulation
- 3 Distributions separating $W_L W_L$ events
- 4 Truth-level Classification: $W_L W_L$ vs $W_X W_T$
- B Reco-level Classification: *W_LW_L* vs Backgrounds

Summary

- Important variables include invariant masses, p_T , $\Delta \phi$, ΔR , etc. of final state particles
- Examples of normalized plots (*W* polarization defined in *p*CoM frame):

- 2 Monte Carlo Simulation
- 3 Distributions separating W_LW_L events
- 4 Truth-level Classification: $W_L W_L$ vs $W_X W_T$
- 5 Reco-level Classification: *W_LW_L* vs Backgrounds

Summary

DNN for classification of $W_L W_L$ vs $W_X W_T$

	Label	Class	Pol. modes	SR evts pCoM	(/100k evts) <i>WW</i> CoM
Statistics	1	Signal	$W_L W_L$	10821	11560
	0	Background	$W_L W_T$	10940	10954
	0	Background	$W_T W_T$	10726	10857

Weights Signal has 2× weight to account for unbalanced dataset Input Variables m_T^{WW} , $m_{\ell\ell}$, $\Delta\phi_{jj}$, $\Delta\phi_{\ell\ell}$, $\Delta\phi_{\ell\ell-E_T^{miss}}$, $p_T^{\ell_1}$, $p_T^{\ell_2}$, $p_T^{j_1}$, $p_T^{j_2}$, p_T^{ℓ} , $\frac{p_T^{\ell_1} \cdot p_T^{\ell_2}}{p_1^{j_1} \cdot p_T^{j_2}}$, E_T^{miss} , $z_{\ell_1}^*$, $z_{\ell_2}^*$, $\Delta R_{j_1-\ell\ell}$, $\Delta R_{j_2-\ell\ell}$ Preprocessing Standardized normally distributed data

• Gaussian with zero mean and unit variance

Dataset Split (Training, Testing, Validation) = (60, 20, 20) in %

Avoiding Overtraining Dropout layers, Early stopping, Model checkpoint

Model:

- 5 hidden layers: random normal init., ReLU activation
- 1 dropout layer (40%) to reduce overtraining
- 1 sigmoid output layer with random uniform activation

Compilation:

- Adam Optimizer with learning rate = 0.001
- Loss = binary crossentropy
- Metrics = Accuracy

Model Fit:

- Batch Size = 1000
- Epochs \rightarrow stops if val. loss doesn't improve for 5 epochs

Classification Performance

Trained DNN shows good signal discrimination

 Tested on statistically different sample of SR evts (/100k evts)

Extracting $W_L W_L$ polarization fraction

 χ^2 fit for $W_L W_L$ polarization fraction (Signal Region):

$$\chi^{2}(c_{LL}) = \sum_{i \in \text{bins}} \frac{\left((c_{LL} \cdot N_{LL}^{i} + N_{XT}^{i}) - N_{\text{pdata}}^{i} \right)^{2}}{(\Delta N_{LL}^{i})^{2} + (\Delta N_{XT}^{i})^{2} + (\Delta N_{\text{pdata}}^{i})^{2}}$$
(2)

*Other backgrounds, systematics, etc. are yet to be included.

Prasham Jain (University of Freiburg)

Study of pol. fractions in ssWW scattering

In SM MC, $c_{LL} = 1$. $f_{LL} = \frac{c_{LL} \cdot \sum N_{LL}}{c_{LL} \cdot \sum N_{LL} + \sum N_{XT}} \qquad (3)$

$$f_{LL} = 0.062^{+0.027}_{-0.029} (pCoM)$$

$$f_{LL} = 0.100^{+0.029}_{-0.032} (WWCoM)$$

- 2 Monte Carlo Simulation
- 3 Distributions separating W_LW_L events
- 4) Truth-level Classification: $W_L W_L$ vs $W_X W_T$

B Reco-level Classification: $W_L W_L$ vs Backgrounds

Summary

Dataset DNN trained with reco-level information

		Label	Class	No. of events		
	Statistics	Label	Class	<i>р</i> СоМ	<i>WW</i> CoM	
	Statistics	1	Signal	19673	21643	
		0	Background	131343	132210	

Signal LL pol. $(W_L^{\pm}W_L^{\pm})$

Background TL, TT pol., $W^{\pm}W^{\pm}$ QCD, WZ QCD, WZ EW6, charge Flip

Weights class_weight(sig) = n(Bkg)/n(Sig) for unbalanced dataset

Misc. Features Input variables, preprocessing, dataset split, overtraining checks, etc. are unchanged

Classification Performance

Trained DNN shows good signal discrimination

• Tested on the entire dataset of SR evts and backgrounds

Extracting $W_L W_L$ polarization fraction

 χ^2 fit for $W_L W_L$ polarization fraction (Signal Region):

$$\chi^{2}(c_{LL}) = \sum_{i \in \text{bins}} \frac{\left((c_{LL} \cdot N_{LL}^{i} + N_{\text{Bkgs}}^{i}) - N_{\text{pdata}}^{i} \right)^{2}}{(\Delta N_{LL}^{i})^{2} + (\Delta N_{\text{Bkgs}}^{i})^{2} + (\Delta N_{\text{pdata}}^{i})^{2}}$$
(4)

In SM MC, $c_{LL} = 1$. $f_{LL} = \frac{c_{LL} \cdot \sum N_{LL}}{c_{LL} \cdot \sum N_{LL} + \sum N_{XT}}$ (5)

$$f_{LL} = 0.056^{+0.043}_{-0.048} (pCoM)$$

$$f_{LL} = 0.089^{+0.049}_{-0.055} (WWCoM)$$

Note: Pseudodata = \sum all backgrounds *Systematics and some other backgrounds yet to be included.

Prasham Jain (University of Freiburg)

Study of pol. fractions in ssWW scattering

Summary

Electroweak polarized *ssWWjj* production:

- MC Samples successfully generated and validated
- Classification of $W_L W_L$ polarization modes:
 - Deep Neural Networks constructed to classify
 - $W_L W_L$ vs $W_X W_T$ at truth-level
 - W_LW_L vs Bkgs at reco-level
 - $W_L W_L$ polarization fraction:

Frame	Fraction	Truth-level Result	Reco-level Result	
<i>р</i> СоМ <i>WW</i> СоМ	f _{LL} f _{LL}	$\begin{array}{c} 0.062\substack{+0.027\\-0.029}\\ 0.100\substack{+0.029\\-0.032}\end{array}$	$\begin{array}{c} 0.056\substack{+0.043\\-0.048}\\ 0.089\substack{+0.049\\-0.055}\end{array}$	

- Outlook:
 - Include remaining backgrounds and systematics
 - Optimize the classification algorithm further

Thank you for your attention!

Prasham Jain (University of Freiburg)

Study of pol. fractions in ssWW scattering

Backup slides

MadGraph commands for MC generation:

```
generate p p > w+{X} w+{Y} j j QED=4 QCD=0, w+ > l+ vl @1
add process p p > w+{X} w+{Y} j j QED=4 QCD=0, w+ > l+ vl, w+ > ta+ vl @1
add process p p > w+{X} w+{Y} j j QED=4 QCD=0, w+ > ta+ vl, w+ > l+ vl @2
add process p p > w+{X} w+{Y} j j QED=4 QCD=0, w+ > ta+ vl @1
add process p p > w-{X} w-{Y} j j QED=4 QCD=0, w- > l- vl~ @1
add process p p > w-{X} w-{Y} j j QED=4 QCD=0, w- > l- vl~ @1
add process p p > w-{X} w-{Y} j j QED=4 QCD=0, w- > l- vl~ w- > ta - vl~ @2
add process p p > w-{X} w-{Y} j j QED=4 QCD=0, w- > ta- vl~ @2
add process p p > w-{X} w-{Y} j j QED=4 QCD=0, w- > ta- vl~ @2
```

 \implies using explicit τ decays

(a)

Total events = 100,000 each

Final States (+jj)	BW cutoff	Cross-se <i>p</i> CoM	ction (fb) <i>WW</i> CoM	
$\ell u \ell u$	1000	35.17		
WW	15	31.01 ± 0.16		
$W_L W_L$	15	1.97 ± 0.01	2.89 ± 0.02	
$W_T W_L$	15	10.78 ± 0.06	9.41 ± 0.05	
$W_T W_T$	15	18.06 ± 0.10	18.49 ± 0.10	
Sum of pol. xsec		30.80 ± 0.12	30.79 ± 0.11	

MC: $\cos \theta$ Validation

 $\cos \theta$ validation fit:

- Polar angle θ = angle between the flight direction of one of the *W*s (rest frame in which sample is generated) and the lepton ℓ it decays into (*W*'s rest frame)
- Opposite flavor leptons, W decaying to lightest ℓ selected
- W, ℓ boosted from lab frame into the rest frame in which sample is generated
- ℓ further boosted to its *W*'s rest frame

Normalized, p-CoM

Normalized, p-CoM

Normalized, WW-CoM

Normalized, WW-CoM

Prasham Jain (University of Freiburg)

Study of pol. fractions in ssWW scattering

Definitions

$$m_T^{WW} = \sqrt{(\sum_i E_i)^2 + (\sum_i p_{z,i})^2}$$
(6)
$$z_{\ell_1}^* = \left| \frac{\eta_{\ell_1} - 0.5 \cdot (\eta_{j_1} + \eta_{j_2})}{\Delta \eta_{jj}} \right|$$
(7)

Prasham Jain (University of Freiburg) Study of pol. fractions in ssWW scattering

DNN Discriminant (truth-level)

p-CoM, WW-CoM

Prasham Jain (University of Freiburg)

Study of pol. fractions in ssWW scattering

September 30, 2022 27/17

Chi-squared fit (truth-level)

Prasham Jain (University of Freiburg)

Study of pol. fractions in ssWW scattering

DNN Discriminant (reco-level)

p-CoM, WW-CoM

Prasham Jain (University of Freiburg)

Study of pol. fractions in ssWW scattering

September 30, 2022 29/17

Chi-squared fit (reco-level)

Prasham Jain (University of Freiburg)

Study of pol. fractions in ssWW scattering

September 30, 2022 30 / 1