
Adriano Di Florio (INFN & Politecnico Bari)
Alexis Pompili (INFN & Università Bari)

Dung Hoang (Rhodes College)

IntroductionThe Goal

Introduction

2

o 8 weeks project with a student from INFN-DOE collaboration (Chris).

o The goal of the project was to write up a «framework» which could allow us to deploy the
full chain from data handling, selection, skimming and up to fitting in a single Jupyter
notebook.

o The simple benchmark we used was the reconstruction of B0s meson into J/Psi and Phi
mesons with the CMS experiment.

o We have chosen to run it locally rather than relying on services such as SWAN:

o opportunity reasons (Chris couldn’t get access to it immediately given is not
affiliated to CERN)

o we wanted to benchmark a «realistic» setup in which the final user could run on its
institution cluster (where available);

o to test the performances of Bari T2 new GPU-cluster.

o The first block of the chain is accessing, filtering and skimming the ROOT files coming
from CMSSW analyzers. This is the piece I will be discussing here.

o In the past we had been using uproot that, before the introduction of RDFs, allowed quick
way of interfacing ROOT with the python-based data-analysis tools (pandas, matplotlib).
Thus we have tried to compare the two.

o Everything is based on CERN Run2 OpenData and the ROOT files in output are “flat” tuples
composed of either TLorentzVectors or scalars.

IntroductionWhy here?

Introduction

3

We had found some strange behaviour (RDF much slower
than uproot) and so we asked a slot here to give our
feedback and get yours to understand if this was expected.

In the meanwhile we understood what was happening but
this was still a good occasion to exchange feedbacks and
present here as “user experience”.

IntroductionThe Setup

Introduction

4

o The measurements were done on the following machines at the ReCaS-Bari T2.

• tesla04: 32 CPUs, 251GB RAM, Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz
• wn-gpu-8-3-22: 256 CPUs, 2003GB RAM, AMD EPYC 7742 64-Core Processor
• wn-1-8-9: 64 CPUs, 251GB RAM, AMD EPYC 7281 16-Core Processor

o For tesla04, data could be accessed either locally (via optical disks, no SSD) or remotely (via InfiniBand). For other machines,
data could only be accessed remotely.

o There were 126.78GB of data in total (45M events).

o The original dataset was split into 128 files, each of which contains the same number of events.
o The following operations are included in the runtime measurements:

o opening the TTrees inside root files;
o applying specific filters on the TTree to expose the invariant mass distribution of the B0s meson;
o converting the mass column to a numpy array (to be sent to the next step).

o At the time of the measurements, there were no other tasks on the machine that may interfere with the above operations.

o Software setup (here it comes the unintentional bias):
o ROOT 6.26 for tesla04
o ROOT 6.24 for the other two nodes (we were having some issues with glibc at the beginning)

IntroductionParallel processing with Uproot

Introduction

5

- Uproot doesn’t have a built-in option for implicit parallel processing.

- But it allows user to specify the number of events to be processed in each TTree.

- To enable parallelism, we set up a routine through multiprocessing module. Each
subprocess will handle a slice of data.

- So it’s always possible to split the work equally between the subprocesses.

- In other words, each subprocess will handle approximately the same number of
events. This means all the subprocesses will take similar amounts of time to finish.

IntroductionParallel processing with RDataFrame

Introduction

6

o RDF has a built-in option for parallel processing: EnableImplicitMT().

o RDF doesn’t provide (does it?) the option to specify the number of events to be processed in
each file. Thus, with this approach, RDataFrame could only parallelize over ROOT files. In
other words, each subprocess will work on approximately the same number of files rather
than the same number of events.

o As a result, the workload is not always divided equally. For example, if we have 5 files but only
4 subprocesses, one subprocess will have to deal with 2 files. Even when every subprocess
handle exactly the same number of files, we may still face uneven workload distribution if the
files have different sizes. Since we have to wait for the slowest subprocess to finish, this may
create a bottleneck.

o To mitigate this issues, we split the original dataset into 128 files (to match the #of CPUs we
have), each containing the same number of events.

o For a fair comparison, we used these files as input for both Uproot and RDataFrame
performance studies.

IntroductionRDF With EnableImplicitMT()

Introduction

7

This is the plot that started everything

Specifying the number of threads didn’t help with the inconsistency. In every test the full data sample is processed.
(n_threads)

Runtime vs Threads

Introduction

8

Together with this one

Server monitoring

Introduction

9

This is not us

This is us

At 1 process,
multiprocessing is not
used, and there is no
parallelism.

For the plots with varying
number of processes, all
128 files are included.

Runtime vs Processes

Introduction

10

RDF is winning here!

The speed-up at n processes is the ratio
between the runtime at 1 process and the
runtime at n processes. The machine
tesla04 has 32 CPUs, so we gain no speed-
up after exceeding 32 processes.

Speedup vs Processes

Introduction

11

Also here!

This is a 128 CPU machine.

In this situation: Uproot seems not being able to
improve w.r.t. to Tesla04 while RDF does!

This seems related to the Uproot function to
open all the files (at the beginning of the task)
that is dominating the overall time. Here we see
the feature of RDF vs Uproot.

Runtime vs Processes (ROOT 6.24)

Introduction

12

The jumps are expected and reflect the fact that RDataFrame can only parallelize over files? With 32
subprocesses, for example, it took similar amounts of time to process 36 and 64 files. This is because in
both cases, the subprocess with the heaviest workload has to handle 2 files (⌈36 / 32⌉ = ⌈64 / 32⌉ = 2).

Runtime vs SIzes (multiple machines)

Introduction

Comparing locally with remotely

Introduction

Linearly increasing gap: expected!

This tells us that there is no network relevant delay in our testbed configuration (just some ~ constant relative delay of
~20% amount)

The smoking gun: 6.24vs6.26

Introduction

On tesla04, we need to rerun on 128 CPU machine.

Bottom lines

Introduction

16

o The bottom line here is that going from 6.24 to 6.26 things improve
dramatically.

o At the end of the day RDF performs much better than uproot!

o We have chosen it to go in our workflow.

Introduction

Thanks!

Introduction

