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Overview

Part |: Very brief introduction to particle physics
Part Il: Symmetries & how to treat them

Part lll: Generative models

Part IV: Anomaly detection

Experimental particle physicist by training, do not expect
formal proofs

Happy to take questions anytime, just raise your hands
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REVIEWS

M) Choois for updates

'Machine learning in the search for new
fundamental physics

Georgia Karagiorgi
and David Shih®*®

searches and neutrino experiments.

For several decades, the standard model (SM) of par-
ticle physics has provided a clear theoretical guide
1o experiments, resulling in an exlensive search pro

gramme that culminated with the discovery of the Higgs
boson'”, Although the SM is now complete, there are
key experimental observations that compel the com-
munity to expand the search efforts for new particles
and forces of nature beyond the SM (BSM). For exam-
ple, the existence of dark matter (DM) and dark energy
is well established’, as are the mass of inos*” and

"%, Gregor Kasieczka’*™, Scott Kravitz(»**, Benjamin Nachman(***

Abstract | Compelling experimental evidence suggests the existence of new physics beyond the
well-established and tested standard model of particle physics. Various current and upcoming
experiments are searching for signatures of new physics. Despite the variety of approaches and
theoretical models tested in these experiments, what they all have in common is the very large
volume of complex data that they produce. This data challenge calls for powerful statistical
methods. Machine learning has been in use in high-energy particle physics for well over a decade,
but the rise of deep learning in the early 2010s has yielded a qualitative shift in terms of the scope
and ambition of research. These modern machine learning developments are the focus of the
present Review, which discusses methods and applications for new physics searches in the context
of terrestrial high-energy physics experiments, including the Large Hadron Collider, rare event

tens of thousands of tunable parameters) are well suited
for analysing large amounts of data in many dimensions

1o find sublle patterns, Mulliv sis has been

commanplace in HEP for decades (for example, the
TMVA ‘toolkit')', but the latest tools will qualitatively
extend the sensitivity to hypervariate analysis’ whereby
the entire phase space of available experimental infor-
mation can be analysed holistically. These new tools
also allow for new analysis strategics independent of
the di ionality (density ion, variable-length

the baryon-antibaryon asymmetry in the Universe’ —
yet none of these observations are explained by the SM.
Additionally, aesthetic’ problems plague the $M, includ-
ing the unexplained weak-scale mass of the Higgs boson,
the exi of three g ions of and the
minuteness of the neutron dipole moment’. Current and
near-future high-energy physics (HEP) experiments
have the potential to shed light on all of these funda-
mental challenges by creating new particles in the labo-
ratory, or by obscrving interactions of new particles with
normal matter or with other new particles.

This great potential for discovery comes with con-
siderable data challenges. New particle interactions are
expected to be rare, and their signature could be only
subtly different from the SM. This means that researchers
must collect and sift through an immense amount of
complex data to isolate potential BSM physics. Machine
learning (ML) offers a powerful solution to this chal
lenge. Deep learning techniques (used here to mean
madern ML, with deep neural networks (NNs) and
other advanced tools that contain (much) more than

inputs and so on).

In tandem with the growing data volume, a related
challenge is the increasing need for efficient (in terms
of computational time, power and resource utilization)
and accurate data processing for high-throughput appli-
cations. Efforts to that end include the development
and acceleration of deep learning-based processing

Igorithms on p: fficient hard platforms’,

In addition to the growing data challenge, thereis also
the compounding challenge of simulating expectations
for what experi may obscrve. HEP experi rely
heavily on simulations for all aspects of research, from
experimental design all the way to data analysis. Built
on a thorough understanding of the SM and the funda-
mental laws of nature, these simulations are extremely
comprehensive and sophisticated, but they are still only
an approximation to nature. It is therefore often necessary
to combine simulations with information directly from

data to improve si accuracy. The corresponding

ML madels must be robust against inaccuracies and he

able to integrate uncertainties
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GREGOR KASIECZKA | UWE KLEMRADT

“ World Scientific

https:.//arxiv.org/abs/2112.03769

https.//www.worldscientific.com/
worldscibooks/
10.1142/12294#t=aboutBook

HEPML-LivingReview

A Living Review of Machine Learning for Particle
Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and
developed for high energy physics. The goal of this document is to provide a nearly comprehensive list of
citations for those developing and applying these approaches to experimental, phenomenological, or
theoretical analyses. As a living document, it will be updated as often as possible to incorporate the latest
developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small
set of topics to be as useful as possible. Suggestions are most welcome.

download review

The purpose of this note is to collect references for modern machine learning as applied to particle physics.
A minimal number of categories is chosen in order to be as useful as possible. Note that papers may be
referenced in more than one category. The fact that a paper is listed in this document does not endorse or
validate its content - that is for the community (and for peer-review) to decide. Furthermore, the
classification here is a best attempt and may have flaws - please let us know if (a) we have missed a paper
you think should be included, (b) a paper has been misclassified, or (c) a citation for a paper is not correct or
if the journal information is now available. In order to be as useful as possible, this document will continue to
evolve so please check back before you write your next paper. If you find this review helpful, please consider
citing it using \cite{hepmllivingreview} in HEPML.bib.

* Reviews
Modern reviews

= Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and
Machine Learning [DOI]

= Deep Learning and its Application to LHC Physics [DOI]
= Machine Learning in High Energy Physics Community White Paper [DOI]

= Machine learning at the energy and intensity frontiers of particle physics

https://iml-wgq.qgithub.io/
HEPML-LivingReview/
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Part I: Very brief introduction
to particle physics



OILICATE CHEMISTRY IS SECOND
NATURE. TO US GEOCHEMISTS, SO
IT'S EASY TO FORGET THAT THE
AVERAGE PERSON PROBABLY ONLY
KNOWS THE FORMULAS FOR OLIVINE
AND ONE OR TWO FELDSPARS.

l AND QUARTZ, OF COURGSE.

OF CO{RSE. )

EVEN WHEN THEY'RE TRYING TO
COMPENSATE FOR IT, EXPERTS IN ANYTHING
WILDLY OVERESTIMATE THE AVERAGE
PERSON'S FAMILIARTY WITH THEIR FIELD.



Setting the stage

Daily Life: 10-3 - 103 m

Molecule: 10-°-10-10m

Atom: 10-19 m
Standard Model of Elementary Particles

three generations of matter
(fermions)
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Standard Model of Elementary Particles

three generations of matter
(fermions)

mass =1.28 GeV/c? =173.1 GeV/c2 0 £125.09 GeV/c*
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LEPTONS




Particle Physics

* Particle physicists study these smallest ; e N
constituents of matter OZ = | /) ]:

e The Standard Model is an incredible scientific Pl
achievement and describes three of four & }L % >L + @
fundamental forces

e Mathematical, quantum theoretical ;
understanding of matter at the smallest scales 3 >L “ Lﬁ() >L g ¢ +h <.

+ R -V (@)

ment at the LHC, CERN \

xperi
recorded: 2012-May-27 23:35:47.27%930 GMT
vent: 195099 / 137440354 |

AN

2013 Nobel Prize in Physics to Peter Higgs
and Francois Englert "for the theoretical
discovery of a mechanism that contributes to

2012: Higgs Boson Discovery our understanding of the origin of mass of
8 subatomic particles”



Open Questions

e The Standard Model cannot be the ultimate theory of Nature

e Both experimental and theoretical evidence

e Example: We know there must be a type of particle called dark
matter; but we don’t Know what it IS ciimaed matter-enerey content of the universe

Observations
from 21 € 26.8%

Dark Matter

68.3%
Dark Energy

WATLAS
- Temperature  Particle
“oF ‘ energy
- Quantum gravity era 32 19
10 K 10  GeV
O P ——— . B
27 K 14 GeV
Inflationary.epoch . ... 10 K . 10 Gev
3
2r x
>
2 2 £
= 8 =4 =4 o
8 ‘of 3 » S
s 0
& 10 K 100 GeV
B | ... .
2 o
= ., gl RS SN " Ouark Conﬁnement
3 .
T @ i - Neutrino transparency
& Deuterium stable
o g = =2 = Transparency point
ot 3 > = S for light
........... o..=...»... 6. 4
9 - 3K 10 eV
“'9 L Present time




Current Experiments

BIG ROCK 1S moST
FUNDAMENTAL PARTICLE
WV UNIWVERSE/

N7 BIG ROCK
IS MADE UP OF
SMALL ROCKS.

2
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Current Experiments

i s ¥
i, 5 y ,“.A';.,'a»f‘»‘?n ] (kg p ;
; \ ‘ - .

[

S

_______

........

| raI of HC (Geneva area)
B CMS Experient
Large Hadron Collider (LHC) at CERN laboratory 27 km circumference

Collide pairs of protons with a centre-of-mass energy of 13 TeV
(99.999999% of speed of light)

4 large experiments (ATLAS, CMS, LHCb, ALICE)
40 Million collisions/second / experiment

~25 Petabyte collision data/year / experiment




Particle Collisions




Particle Collisions




Particle Collisions

e hard scattering

= 7
@ @ e partonic decays, e.g.

t — bW

- e parton shower
< - evolution
\>
N

e

s e colo glets

e colourless clusters

~

/
N e® cluster fission

™~

e (Collisions turns kinetic energy into new particles (E=mc?2)
e Stochastic process, no control over which particles get produced
® \ery short lived (e.g. 10-25 s for the top quark)

e Chain of particle decays



Particle Collisions

Collisions turns kinetic energy into new particles (E=mc?)

Stochastic process, no control over which particles get produced
Very short lived (e.g. 10-2° s for the top quark)

Chain of particle decays, final states measures by detectors



Particle Collisions

CMS a2 cvs Experiment at the LHC, CERN
< //,/3 Data recorded: 2012-May-27 23:35:47. 2 30 GMT

Run/Event: 195099 / 137440354

Collisions turns kinetic energy into new particles (E=mc?)
Stochastic process, no control over which particles get produced
Very short lived (e.g. 10-2° s for the top quark)

Chain of particle decays, final states measures by detectors



‘Analysis

e As we can’t control which particles get made, we just keep trying
and store the data that look interesting, analyse afterwards

¢ One dataset allows many types of analyses:
e (Consider each analysis as one ‘experiment’

Overview of CMS cross section results

CMS preliminary 18 pb~1 - 138 fb~!(7,8,13,13.6 TeV)
w 7 TeV JHEP 10 (2011) 132 *  0(W)=9.5e+07 fb 36 pb’l
w 8Tev PRL 112 (2014) 191802 i o(W)=11e+08 fb 18 pb!
w 13 Tev SMP-15-004 W o(W)=1.8e+08fb 43 pb~t
z 7 Tev JHEP 10 (2011) 132 »  0(Z) =2.9e+07 fb 36 pb~?t
z 8TeV PRL 112 (2014) 191802 & 0(2) =3.4e+07 fb 18 pb~!
z 13TV SMP-15-011 ¥ 0(Z) =5.6e+07 fb 2fbt
Wy 7 Tev PRD 89 (2014) 092005 - a(Wy) = 3.4e+05 fb 5fb~t
wy 13TeV  PRL126 252002 (2021) - o(Wy) = 14e+05 fb 137 fb~*
zy 7Tev PRD 89 (2014) 092005 = 0(Zy) = 1.6e+05 fb 5fb~t
zy 8 Tev JHEP 04 (2015) 164 =  0(Zy) = 1.9e+05 fb 20 fb!
ww 7 Tev EPJC 73 (2013) 2610 i O(WW) = 5.2e+04 fb 5fb~t
§ ww 8 Tev EPJC 76 (2016) 401 W o(WW) = 6e+04 fb 19 fb~?!
s ww 13 Tev PRD 102 092001 (2020) " Oo(WW) = 1.2e+05 fb 36 bt
;j wz 7 Tev EPJC 77 (2017) 236 . 0(WZ) = 2e+04 fb 5fbt
wz 8Tev EPJC 77 (2017) 236 #i 0(W2) = 2.4e+04 fb 20 fb~t
wz 13 Tev Submitted to JHEP W o(Wz)=5.1e+04 fb 137 fbt
7z 7 Tev JHEP 01 (2013) 063 . 0(ZZ) = 6.2e+03 fb 5fb~1
7z 8Tev PLB 740 (2015) 250 8 0(z2) = 77e+03 fb 20 fb~t
7z 13 Tev EPJC 81 (2021) 200 & 0(zZ) = 17e+04 fb 137 fb?!
VW 13 TeV PRL 125 151802 (2020) ' o(VWV) = 1e+03 fb 137 fb~t
www 13TeV  PRL125 151802 (2020) . G(WWW) = 5.9e+02 fb 137 fot
wwz 13TeV  PRL 125151802 (2020) ' o(WW2) = 3e+02 fb 137 fot
s wzz 13 Tev PRL 125 151802 (2020) ' 0(WZZ) = 2e+02 fb 137 fbt
a 24 13 Tev PRL 125 151802 (2020) ' 0(222) < 2e+02 fb 137 fb~t
@ wvy 8Tev PRD 90 032008 (2014) — G(WVy) < 3.1e+02 fb 19 fb~t
E Wyy 8Tev JHEP 10 (2017) 072 -— o(Wyy) = 4.9 fb 19 b1
Wyy 13 TeV JHEP 10 (2021) 174 + o(Wyy) = 14 fb 19 fb~1
Zyy 8Tev JHEP 10 (2017) 072 == 0(Zyy)=13fb 19 fb~1
Zyy 13 TeV JHEP 10 (2021) 174 = o(Zyy)=541b 19 fb~1
VBF W 8TeV JHEP 11 (2016) 147 mill=  O(VBF W) =42e+02 fb 19 fb~?
VBF W 13 TeV EPJC 80 (2020) 43 W®  O(VBF W) = 62e+03 fb 36 fb~1
VBF Z 7 Tev JHEP 10 (2013) 101 0 o(VBF Z) = 1.5e+02 fb 5fb~1
VBF Z 8TeV EPJC 75 (2015) 66 = o(VBF 2) = 1.7e+02 fb 20 fo~*
VBF Z 13TeV  EPJC 78 (2018) 589 B O(VBF Z) = 5.3e+02fb 36 fb~!
EWWV  13TeV  Submitted to PLB wlll=  O(EW WV) = 1.9e+03 fb 138 fb~t
ex. yy - WWs Tev JHEP 08 (2016) 119 S olex. yy-ww) =221b 20 fb~*
EWqaWy 8 TeV JHEP 06 (2017) 106 m== e O(EWqaWy) = 11fb 20 fb~t
EWqqWy 13TeV  SMP-21-011 wfe= O(EW qaWy) = 19 fb 138 fb!
EWosWW 13TeV  Submitted to PLB G(EW 0s WW) = 10 fb 138 fb~t
EW ssWW 8 TeV PRL 114 051801 (2015) O(EW ss WW) = 4 fb 19 fb~?
EWssWW 13TeV  PRL 120 081801 (2018) =il O(EWssWW)=4fb 137 fb~*
EWqaZy 8 TeV PLB 770 (2017) 380 m=E  o(EWqazy) =191b 20 fb?
EWqaZy 13 Tev PRD 104 072001 (2021) o(EW qaZy) = 5.2 fb 137 fb~t
EWqqWZ 13 TeV PLB 809 (2020) 135710 O(EW qqWZ) = 1.8 fb 137 fb~1
EWqqZZ 13TeV  PLB 812 (2020) 135992 P=  o(EW qqzz) = 0.33 fb 137 fbt
tt 7TeV JHEP 08 (2016) 029 = oltt) = 1.7e+05 fb 5fbt
t 8 TeV JHEP 08 (2016) 029 = o(tt) = 2.4e+05 fb 20 fb~1
tt 13TeV  Accepted by PRD = o(tt) = 7.9e+05 fb 137 fb~t
tt 13.6TeV  TOP-22-012 B oltt) = 8.9e+05 fb 1o~
te-cn 7 Tev JHEP 12 (2012) 035 ®  O(t-cn) = 6.7e+04 fb 2 b7t
te—en 8TeV JHEP 06 (2014) 090 Hs  olti_c) = B.4e+04fb 5fb~t
te—cn 13 Tev PLB 72 (2017) 752 Bl ofte-cn) = 2.3e+05fb 2fbt
tw 7Tev PRL 110 (2013) 022003 - o(tW) = 1.6e+04 fb 5fbt
tw 8TeV PRL 112 (2014) 231802 Bl o(tw) = 2.3e+04 fb 20 fbt
tWw 13 TeV JHEP 10 (2018) 117 o(tw) = 6.3e+04 fb 36 fb!
to—ch 8 TeV JHEP 09 (2016) 027 - olts_cy) = 1.3e+04 fb 20 fb~!
tty 8 Tev JHEP 10 (2017) 006 oftty) = 3.5e+03 fb 20 fb~t
tty 13TeV  Submitted to JHEP = oltty) = 12e+03 fb 138 fb~*
tZq 8TeV JHEP 07 (2017) 003 = o(tza) = 2.9e+02 fb 20 fb?
tZq 13 TeV Submitted to JHEP I o(tzg) = 87e+02 fb 138 fb~?!
¥4 7Tev PRL 110 (2013) 172002 - o(ttZ) = 2.8e+02 fb 5fb~t
tZ 8TeV JHEP 01 (2016) 096 =l ott2) = 2.4e+02fb 20 fo~*
tZ 13TeV  JHEP 03 (2020) 056 = ofttZ) = 9.5e+02 fb 78 fbt
ty 13TeV  PRL121 221802 (2018) wnllll=  olty) = 1.1e+03 fb 36 fb~!
tw 8TeV JHEP 01 (2016) 096 = I o(ttw) = 3.8e+02 fb 20 fb~t
W 13TeV  TOP-21-011 m— i o(ttW) = 8.7e+02 fb 138 fb~*
et 13TeV  EPJC 80 (2020) 75 == oty =131 137 fb~*
ggH 7 Tev EPJC 75 (2015) 212 -— o(ggH) = 1.6e+04 fb 5fb-t
ggH 8TeV EPJC 75 (2015) 212 = o(ggH) = 1.5e+04 fb 20 fb~t
ggH 13 TeV Nature 607 60-68 (2022) & o(ggH) = 4.7e+04 fb 139 fb!
VBFqgH 7 TeV EPJC 75 (2015) 212 . o(VBF qqH) = 2.2e+03 fb 5 bt
VBFqgH 8 TeV EPJC 75 (2015) 212 = o(VBF qgH) = 1.6e+03 fb 20 fb~1
VBFqqH  13TeV  Nature 607 60-68 (2022) W= O(VBF qaH) = 3e+03 fb 138 fb~t
VH 8TeV EPJC 75 (2015) 212 IE  o(VH) = 1.1e+03 b 20 fo~*
WH 13TeV  Nature 607 60-68 (2022) » B o(WH) =2e+03fb 138 bt
ZH 13TeV  Nature 607 60-68 (2022) =l o(zH) = 1.1e+03fb 138 fb~t
ttH 8TeV EPJC 75 (2015) 212 - I o(ttH) = 4.2e+02 b 20 fb~t
ttH 13TeV  Nature 607 60-68 (2022) W= olttH) = 4.8e+02 fb 138 fb~t
tH 13TeV  Nature 607 60-68 (2022) . I o(tH) = 5.4e+02 b 138 fb~t
HH 13TeV  Nature 607 60-68 (2022) — o(HH) < 1.1e+02 fb 138 fb~!
n L L L L
1.0e-01 1.0e+01 1.0e+03 1.0e+05 1.0e+07 1.0e+09

Measured cross sections and exclusion limits at 95% C.L.

Inner colored bars statistical uncertainty, outer narrow bars statistical+systematic uncertainty o [fb]

September 2022



Experimental particle physics workflow

Connect observational data
with underlying theory:
Statistics & simulation



Experimental particle physics workflow




Triggering &
data taking

Triggering and
data taking

Particle collisions happen at a rate
of 40 MHz with size ~1 MB/event.

Need to distill to ~1 kHz via lossy,
irreversible filtering algorithms

(Trigger).

Data is very heterogenous: low-
level readouts in ~100M channels;
can condense to O(10) high-level
features

One collision = “one image”’;
sample i.i.d. from underlying
physics distribution



Event generation &
detector simulation

Simulation

Theoretically well motivated

Monte Carlo based simulations of
known and hypothetical processes
as well as detector responses.

As ~similar amount of simulated
and real data is needed, significant
compute goes here.



Reconstruction

Build high level objects (particles,
leptons, jets, ..) from raw
measurements in detectors and identify
different particle decays.

Same processing chain for simulation
and real data.

Reconstruction, object
identification & calibration




Analysis

Previous steps dominated by central running; from
here on increasingly local-compute dominated.

Select region of phase space that isolates a
physical phenomen of interest and perform detailed

statistical analysis.

Compares simulation and data, quantifies

uncertainties.

Triggering &
data taking

\ 4

Event generation &
detector simulation

\ 4

Reconstruction, object
identification & calibration

\ 4

19.7 o' (8 TeV) + 5.1 fb™ (7 TeV)

a5f CMS S/(S+B) weighted sum
¢ Data

—  S+B fits (weighted sum)
------ B component

Py
csmnns 22

no=1.1410%
05 iﬁH =124.70 + 0.34 GeV

200 " B component subtracted —_
100 * { { {:

0 { H'H t % HT# 2y
100 |

110 115 120 125 130 135 140 145 150

m,. (GeV)

S/(S+B) weighted events / GeV




Machine learning plays an increasing
role in all of these steps

Triggering &| |Event generation &
data taking| |detector simulation

\ 4 \ 4

Reconstruction, object
Identification & calibration

\ 4

Final analysis, statistical and
physical interpretation




Microsecond decisions
needed for deciding
whether to store events.




y [cells]

Efficient simulation needed
due to compute constraints.

Considering various data

representations and
generative models (GANSs,

VAEs, flows, diffusion models)




Difficult task of inferring
‘true’ physical process
from energies measured
In the detector.

Reconstruction, object
identification & calibration
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discovery of new
particles, e.g. via
anomaly detection




Machine Learning

Particle Physics

420 papers in 2022

\

1992 | |
Inspire: ("machine learning" or

"deep learning" or neural) and
(hep-ex or hep-ph or hep-th)

2023

29

Immense progress of machine
learning in HEP over the last
year

And corresponding increase of
applications.

Special role of HEP:

“Infinite” amounts of high quality
labelled training data from
realistic simulation accompanied
by huge experimental datasets

Interestingly structured data at
multiple scales

Detailed understanding of
systematic uncertainties

Asks fundamental questions
about Nature



Part lI: Symmetries & how
to treat them



Jet tagging

ATLAS . ..

E t: 474587238
EXPERIMENT  2015-10-21 06:26:57 cast

e |ntuitively a jet Is:
Collimated shower of particles in the detector



Top Quark Identification

Low top pt High top pr

* Top quark:
* Heaviest known elementary particle

¢ Relevant for measurement and searches for new
theories

* Hadronically decaying top/Higgs/W/Z
e Contained in one (large-R) jet
* m/pT >=~1

* How to distinguish from light quark/gluon jets
(and from each other)

* Used for new physics searches (and SM studies)

32



e Distinguish jets initiated by a top
quarks from jets from other particles

Concrete task

e Binary classification task

 Use simulation as synthetic training
data: perfect class labels available

e (Leads to domain shift when applied

to collider data)

104 ]

Background rejection &

10% 4

[
o
w

-
o
N

—— ParticleNet
- = TreeNiN

—-= ResNeXt
...... PFN
—— CNN
-== NSub(8)
LBN
------ NSub(6)
P-CNN
-~ LoLa
—-= EFN
---- nsub+m
— EFP
—- TopoDNN

00 01 02 03 04 05 06 0.7 08 09 1.0
Signal efficiency &5

Eve
0 010

EXPERIMENT

e 1.2M training examples (jets),
400k each for testing and validation

e Each example: Up to 200 particles with
3 features/particle
(2D position on detector surface+

energy)
e Metrics: AUC: area under curve and
Rs0:1/FPR @ TPR=0.3 ()
33 1902.09914



 Particles form a point
cloud in space

e How to solve with deep

 Permutation symmetry

e Symmetry of points in

space:

e Naively SO(3),
actually Lorentz group

learning?

Immense number of
results, showcase some
(useful) examples

Classifier

Jet embedding

Input Layer

Individual Const

ituents

Pr ()
()
00

O
O
O

Event

4 layers, 300-6 nodes per layer Binary Prediction
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e

Enter deep learning  » A s
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actvation,
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—| =02)

Ey FE, ... Eyn

| A— Pzo Pza1 --- Pz,N
i —

Py0 Py, s Py,N

Pz0 Pz1 e Pz,N

Combination Layer (CoLa): create linear combinations:

CoLa 7
k/l,i ’ ku,j = ku,i Cij

Lorentz Layer (LoLa): Use resulting matrix to extract
physics features.
Main assumption is the Minkowski metric

ki = > (ki — k;j)u(ki — kj)n* By
j

Input

(-1x3)+(0x0)+({1x1)+
(-2x2)+[0x6)+(2x2) +
(-1x2)+[0xd)+({1x1) «-3

%

Destination pixel

WAV V VLV
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Combine

to Particles Boost Feature

(4-vectors) PintoR engineering

& Rest frames

-

Trainable _#B}, \
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\
&
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Jet Images

High top pt

35 A

30 A |

25 A

20 A |

15 4 |

10 + | |

* Treat jets as images: Popular and done before deep learning
(1407.5675, 1501.05968, 1511.05190, 1612.01551,
1701.08784, 1803.00107,....)

 Measure particle energies in calorimeter
* Image preprocessing
e center, rotate, mirror, pixelate, trim, normalise

35

35

1071

102
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10 A

35 4
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e .
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10k QCD |ets i
36

Different initial
particles lead to

different distributions
of recorded energies



Convolutional network

- Analyse grid-like data with convolutional
networks

- Same architectures as for computer vision ...

« Accounts for locality (correlation of nearby
pixels) and translation invariance

* In fact not a symmetry of the images!

- Potential limitation due to sparsity/pixelisation
for high resolution data

* No strong effect observed in this study

« Careful how to pre-process (1803.00107)

Feature Feature Feature Feature
Inputs maps maps maps maps
1@40x40 8@39x39 8@38x38 8@18x18 8@17x17

MaxPooling
Convolution Convolution Convolution Convolution
4x4 kernel 4x4 kernel 4x4 kernel 4x4 kernel

37

AAAVAVV VAV

AV VAWA

ARV VAA

ERRRS \\\

/{{
|_—
>g/ 1| >+510 =l
3 \}7 4 /f 4| (-1x3)+(0x0)+(1x1)+
—16 —1 6 // 2 ((2x2)+(0x6)+(2x2)+
3. (-1x2)+(0x4)+(1x1) =-3
—1 4 }/ 0| 0
=1 A 2 P e b il
—1 6 }/ 6 | — 6 ~ ﬂ //
217 [ 9—T0 | 2] ﬂ L=
L= 1 LT //1 ﬂ //
2 // 4 |~ 6| — a |
= 2 | 6 11~ 3 T
2 1o // g B
// 11~ ]
— Convolution filter 1 ///
L=
(Sobel Gx) 1 //
Destination pixel | L
//
|~
Hidden Hidden Hidden
unlts umts unlts Outputs
Flatten Fully Fully Fully

connected connected connected

Architecture from 1701.08784



Deep Sets

ticles Observable  Data is a permutation invariant point
cloud: treat with set-based architecture

Per—Particle Representation Event Representation

Latent Space * Invariance/equivariance under

o symmetries

/ ==l e
= - How to make independent
| - A

- from ordering of four vectors?

g

=

|

)
~

- Use permutation invariance of sum

/ : % - = Deep set architecture (1703.06114)
O

* Apply to jets: energy flow network

Energy/Particle Flow Network (1 810.051 65)

- Simple and straightforward to implement
but limited use of neighbourhood

General : M information
PFN: F () ®(p;)
1=1
38

1810.05165



Graphs

 Basic motivation: Use physicists’
knowledge about data as an implicit (or u — (" |1’
explicit bias) to help networks train faster / \ puTY
achieve better performance 14 PV - —
\ pe—m pe—m
— e —
e Graphs are a general + powerful B ¢ _ _ £
framework that captures relevant Edge block = Node block Global block

properties for particle tagging

e e.g. best performance of ParticleNet
(message passing graph) in top tagging
comparison

Edges: e.g. geometrical distances

e versatile and well suited

e (Can impose graph on set-like data e.g. by
KNN clustering

Henrion et al ML4PS 2017; Qu, Gouskos |
1902.08570; Shalom, Battaglia, Valiant Nodes: e.g. per-particle features
2007.13681 (review) 39



Transformers; Attention is all you
need

* |n ParticleNet, data-space geometry )
defines neighbourhood in graph; o5 [
aggregation over all neighbours SES B

S |
e Attention allows the network to learn g
which parts of the input are truly .
relevant [ P-MHA
)
e Attention is data-hungry, Y
U4+——>@

transfer-learning helps!

L blocks
AL

Class

Particle
Attention p====-=--
xL~

Block

»‘.‘
)

(b) Particle Attention Block

Particle
Attention

Attention
Block

Block

Xclass XL
(¢) Class Attention Block

ParT architecture diagram

A

Performance comparison on

Accuracy AUC Rejs9 Rejs09 (Q f
(Linear) (Linear) (Linear)
R ) ')
ParticleNet 0.940 09858 3977 1615 4= 93 X
ParT 0.940 0.9858 413416 1602 4= 81
ParticleNet-f.t. 0.942 09866  487+9 1771 4+ 80
ParT-f.t. 0.944 09877 691+15 2766+130 |landscape dataset

Vaswani et al 1706.03762; Qu, Li, Qian
2202.03772; Mikuni, Canelli 2001.05311; ..

40



Attention is all you need

* In ParticleNet, data-space geometry
defines neighbourhood in graph;
aggregation over all neighbours

e Attention allows the network to learn
which parts of the input are truly
relevant

Accuracy #params FLOPs

e Attention is data-hungry,

transfer-learning helps! PFN 0.772 86.1k  4.62M
(Motivation for foundation models?) P-CNN 0.809 354k 155M
ParticleNet 0.844 370k 540 M

e So far, observed trend: ParT 0.861 2.14M  340M
Higher phySiCS perfOrmance comes at the ParT (plaln) 0.849 713 M 2760 M

cost of higher algorithm complexity &

compute cost (plain: standard multi-nead-attention vs particle-

multi-head-attention)
e |s this the only way?

Vaswani et al 1706.03762; Qu, Li, Qian

2202.03772; Mikuni, Canelli 2001.05311; Gong

et al 2201.08187 for a combination of 4]
transformers and attention


https://indico.cern.ch/event/1106990/contributions/5075335/

Aside:
Alternative to complex architecture

 Advantage of few high-level
features:
-easy to understand and calibrate
-cheap to evaluate

 Advantage of complex
architecture and low-level
features: performance

e (Can we combine both?

42



We need a basis

* Energy Flow Polynomials (EFPs) form a basis of jet substructure
* Nodes: energy fractions
 Edges: angular distances

* Depending on order considered, too many (e.g 7k) to efficiently train NN
(many features work if there is structure, not so much for EFPs)

M
.j <~ Zzij, k t <— e’ikie

ij=1

e.g.
® M M M M

2
® ® SJ SJ SJ SJ221212Z13Z7J4 Z122HZ2Z392224923i4°

® 11=119=113=1114=1

Komiske, Metodiev, Thaler 1712.07124 43



Looking for optimal feature set

e Solution: lterative feature selection,

again based on DisCo

Start with an

initial set of
known features

Repeat until the
chosen

performance
metric saturates

Das, GK, Shih 2212.00046; Faucett, Thaler,
Whiteson, 2010.11998

ep1: Train a neural

network on the
known features and

obtain a classifier.

Step 4: Add the
feature with the
highest score to the

initial set of known

features

Step 2: Find subset

data points X, where
the classifier is most

confused

Step 3: Rank the
features based on the
value of a score,

, on that
subset X,

44



Already selected
features New feature under test

X = {(fh(f)a'"7fin(f)>fi(f)>
Y = {tret(T)|7 € Xo}

fEX()}

/ s, = Affine-DisCo(X, )).

Truth label or reference
classifier

Start with an ep1: Train a neural Step 2: Find subset
data points X, where

network on the
known features and the classifier is most

initial set of
known features

obtain a classifier. confused

Repeat until the Step 4: Add the Step 3: Rank the
chosen feature with the features based on the
performance highest score to the value of a score,

metric saturates

initial set of known , on that
features subset X,

Das, GK, Shih 2212.00046; 45



Results

e DiscoFFS find relevant

features quicker than 1400
alternative feature ———
selection methods 1200 ~ -
1000 -
o 800 A
mM
C
600 -
— DisCo (truth)
400 - —— DisCo (LorentzNet)
—— DO-ADO (truth)
DO-ADO (LorentzNet)
200 - .
—  random selection

1 2 3 45 6 7 8 91011121314151617 181920
Features added

Das, GK, Shih 2212.00046; 46



Closing

2400 A PELICAN
® LLFtaggers . .
HLF taggers ¢ gorentzNet . Many r_nachme _Iearnlng problems
2000 A In particle physics
1600 - JarticleNet parT * Large amount of data and
mmetri llow br ran f
Disco-FFS on EFPs ParticleNet-lite SY etries allow broad range o
1200 - ¢ | ResNeXt different approaches: from
TreeNIN o .
RN s NN standard ML techniques to
800 - 6Nsub® Lola © @ methods tailored to HEP data
.EFN P-CNN
400 - Linear EFPs TopoDNN
¢ LDA
@
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103 104 10° 106
Parameters
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Closing

2400 A PE
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HLF taggers ®
2000 -
ParticleNet ParT
1600 - ® ®
Disco-FFS on EFPs .ParticIeNet-Iite
1200 - ResNeXt
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8 Neube @ ' DNN EFPs .iNN
800 A 6 Nsub L%La ® LBN
.EFN P-CNN
Linear EFPs
400 A TopoDNN
LDA
o
O"'I T L UL UL
103 104 10° 10°
Parameters
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Recent result that makes maximal use
of symmetries of the problem:

restrict learning to permutation
iInvariant mappings between Lorentz
tensors

See 2211.00454



Closing

Physics symmetries

- V'
24007 ¢  LLF taggers ‘PI;LLQKI(

LorentZNet
HLF taggers

2000 - > [ransformers

1600 - o

0

Disco-FFS on EFPs ‘ParticIeNet-Iite

(09

ResNext ~Graphs

12007 T TreeNiN
8 Nsub ‘PFN DNN EFPs ‘CNN
800 - 6 Nsub ‘hv\
400 Li”e{arEFPs ; NConvolutions
D learning
0+ —
103 04 10°

Parameters

Sets
Tabular representation
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Are we done?

* No () |
QCD rejection v. Top tagging efficiency

\ Pythia 8.223 simulation
) N eed ] L. nal: pp - tf, background: pp = jj
. | ] Ri-k; R = . e I T L P
. 10000 \ L Lontik 1 jets, p. > 500 GeV DL e 1 B Y Lo
\ e et I
_L\\ - nput features 1D convolutions Dense
I (N ( IEA IR Dense
® iIgger accurac " oo B H T HF -
1000 4 candidgates | —» |F || |[=||&| —> Prodict ot
(28 x 17) 3)g)lg)l= £ & ;
LA . ellnllall 2|l 8| . cos
g Neutral PF (E)E) E]) 2] § el (b, pﬂS
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- Secondary ; E § £ b4 .
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o ::Ti;; allefle . e g8 Predict jet
— LundNet-5 : e - T (2] & > comen
- i \ Global (14) | > i elle (smmulation
. . . 10 + LundNet-3 . s | data)
domain adaptation issue @=m) -U 1
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— ramicenet 06190 2(0]2.08526 A KL 080§ 1] AL diiaf 9 N Lo
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Are we done?

[
Yes |
QCD rejection v. Top tagging efficiency

‘ Py:_hna 8.223 simulation
.. nal: pp - tt, background: pp = Jj
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. _L‘\ = nput features 10 ct:nvolullom Dense '
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