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Overview

• Part I: Very brief introduction to particle physics

• Part II: Symmetries & how to treat them

• Part III: Generative models

• Part IV: Anomaly detection 

Experimental particle physicist by training, do not expect 
formal proofs 

Happy to take questions anytime, just raise your hands
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https://www.worldscientific.com/
worldscibooks/

10.1142/12294#t=aboutBook
https://arxiv.org/abs/2112.03769 https://iml-wg.github.io/

HEPML-LivingReview/

Resources

https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook
https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook
https://www.worldscientific.com/worldscibooks/10.1142/12294#t=aboutBook
https://arxiv.org/abs/2112.03769
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Part I: Very brief introduction 
to particle physics
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Daily Life: 10-3 - 103 m

Molecule: 10-9 - 10-10 m

Nucleus: 10-14 m

Proton/Neutron: 10-15 m

Elementary Particles eg. Quarks: <10-18 m

Atom: 10-10 m

Setting the stage
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• Particle physicists study these smallest 
constituents of matter


• The Standard Model is an incredible scientific 
achievement and describes three of four 
fundamental forces


• Mathematical, quantum theoretical 
understanding of matter at the smallest scales

2012: Higgs Boson Discovery

2013 Nobel Prize in Physics to Peter Higgs 
and  François Englert "for the theoretical 
discovery of a mechanism that contributes to 
our understanding of the origin of mass of 
subatomic particles"

Particle Physics
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• The Standard Model cannot be the ultimate theory of Nature

• Both experimental and theoretical evidence

• Example: We know there must be a type of particle called dark 

matter; but we don’t know what it is

Open Questions



Current Experiments
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Current Experiments



• Large Hadron Collider (LHC) at CERN laboratory 27 km circumference


• Collide pairs of protons with a centre-of-mass energy of 13 TeV  
(99.999999% of speed of light)


• 4 large experiments (ATLAS, CMS, LHCb, ALICE)


• 40 Million collisions/second / experiment


• ~25 Petabyte collision data/year / experiment

Current Experiments

Aerial view of LHC (Geneva area)

CMS Experiment



Particle Collisions
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Particle Collisions

• Collisions turns kinetic energy into new particles (E=mc2)


• Stochastic process, no control over which particles get produced


• Very short lived (e.g. 10-25 s for the top quark)


• Chain of particle decays
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• As we can’t control which particles get made, we just keep trying 
and store the data that look interesting, analyse afterwards


• One dataset allows many types of analyses:

• Consider each analysis as one ‘experiment’


‘Analysis’



Experimental particle physics workflow

This is what happens in the experiment

This is what we want to knowConnect observational data 
with underlying theory: 
Statistics & simulation



Triggering & 
data taking

Event generation &

detector simulation

Reconstruction, object 
identification & calibration

Final analysis, statistical and 
physical interpretation

Experimental particle physics workflow



Particle collisions happen at a rate 
of 40 MHz with size ~1 MB/event. 


Need to distill to ~1 kHz via lossy, 
irreversible filtering algorithms 
(Trigger).


Data is very heterogenous: low-
level readouts in ~100M channels; 
can condense to O(10) high-level 
features


One collision = “one image”;  
sample i.i.d. from underlying 
physics distribution 
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Triggering & 
data taking

Event generation &

detector simulation

Reconstruction, object 
identification & calibration

Final analysis, statistical and 
physical interpretation

Simulation
Theoretically well motivated  
Monte Carlo based simulations of  
known and hypothetical processes 
as well as detector responses.


As ~similar amount of simulated  
and real data is needed, significant

compute goes here.


&



Triggering & 
data taking

Event generation &

detector simulation

Reconstruction, object 
identification & calibration

Final analysis, statistical and 
physical interpretation

Reconstruction
Build high level objects (particles, 
leptons, jets, ..) from raw 
measurements in detectors and identify 
different particle decays.


Same processing chain for simulation 
and real data.




Triggering & 
data taking

Event generation &

detector simulation

Reconstruction, object 
identification & calibration

Final analysis, statistical and 
physical interpretation

Analysis
Previous steps dominated by central running; from 
here on increasingly local-compute dominated. 


Select region of phase space that isolates a 
physical phenomen of interest and perform detailed 
statistical analysis.


Compares simulation and data, quantifies 
uncertainties.




Machine learning plays an increasing 
role in all of these steps
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Microsecond decisions 
needed for deciding  
whether to store events.



Triggering & 
data taking

Event generation &

detector simulation

Reconstruction, object 
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Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed 7

Fig. 5 Examples of individual 50 GeV photon showers generated by Geant4 (left), the GAN (center left), WGAN (center
right), and BIB-AE (right) architectures. Colors encode the deposited energy per cell.

a WGAN with additional energy constrainer (Sec. 3.2),
and a BIB-AE with energy-MMD and post processing
(Secs. 3.3, 3.4 and 3.5). A detailed discussion of the ar-
chitectures and training hyper parameters can be found
in Appendix A. All architectures are trained on the
same sample of 950k Geant4 showers. Tests are either
shown for the full momentum range (labeled full spec-
trum) or for specific shower energies (labeled with the
incident photon energy in GeV).

4.1 Physics Performance

We first verify in Fig. 5 that the showers generated by
all network architectures visually appear to be accept-
able compared to Geant4. Were we attempting to gen-
erate cute cat pictures, our work would be done already
at this point. Alas, these shower images are eventually
to be used as realistic substitutes in physics analyses so
we need to pay careful attention to relevant di↵erential
distributions and correlations.

In Figure 6 a comparison between two di↵erential
distributions for all studied architectures and Geant4
is shown. The left plot compares the per-cell hit-energy
spectrum averaged over showers for the full spectrum
of photon energies. We observe that while the high-
energy hits are well described by all generative models,
both GAN and WGAN fail to capture the bump around
0.2 MeV. The BIB-AE is able to replicate this feature
thanks to the Post Processor Network.4 This energy
corresponds to the most probable energy loss of a MIP
passing a silicon sensor of the ILD Si-W ECal at per-
pendicular incident angle. Since this is a well-defined
energy, it can be used in highly granular calorimeters
for the equalisation of the cell response as well as for
setting an absolute energy scale. It also leads to a sharp
rise in the spectrum, as lower energies can only be de-
posited by ionizing particles that pass only a fraction of

4 We studied applying post processing to the WGAN ar-
chitecture as well. This is discussed in Section 4.2.

the thickness at the edges of sensitive cells or that are
stopped. The region below half a MIP, corresponding
to around 0.1 MeV, is shaded in dark grey. These cell
energies are very small and therefore will be discarded
in a realistic calorimeter, as their signal to noise ratio is
too low. For the following discussion cell energies below
0.1 MeV will therefore not be considered and only cells
above this cut-o↵ are included in all other performance
plots and distributions.

Next, the plot on the right shows the number of hits
for three discrete photon energies (20 GeV, 50 GeV, and
80 GeV). Here, the GAN andWGAN setups slightly un-
derestimate the total number of hits, while the BIB-AE
accurately models the mean and width of the distribu-
tion. This behavior can be traced back to the left plot.
Since we apply a cuto↵ removing hits below 0.1 MeV, a
model that does not correctly reproduce the hit-energy
spectrum around the cut-o↵ will have di�culties cor-
rectly describing the number of hits.

Additional distributions are shown in Fig. 7. The
top left depicts the visible energy distribution for the
same three discrete photon energies. Both, the shape,
center and width of the peak are well reproduced for all
models. Due to the sampling nature of the calorimeter
under study, the visible energy is of course much lower
than the incoming photons’ energy.

In the top right and bottom two plots we compare
the spatial properties of the generated showers. First,
on the top right, the position of the center of gravity
along the z axis is shown. The Geant4 distribution is
well modelled by the GANs, however there are slight
deviations for the BIB-AE. A detailed investigation of
this discrepancy showed that the z axis center of gravity
is largely encoded in a single latent space variable. A
mismatch between the observed latent distribution for
real samples and the normal distribution drawn from
when generating new samples directly translates into
the observed di↵erence. Sampling from a modified dis-
tribution would remove the problem.

Efficient simulation needed 
due to compute constraints. 
 
Considering various data 

representations and  
generative models (GANs, 
VAEs, flows, diffusion models)



Triggering & 
data taking

Event generation &

detector simulation

Reconstruction, object 
identification & calibration

Final analysis, statistical and 
physical interpretation

Difficult task of inferring  
‘true’ physical process 
from energies measured 
in the detector.  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Use AI to for robust 
measurements or

discovery of new 
particles, e.g. via 
anomaly detection
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Immense progress of machine 
learning in HEP over the last 
year


And corresponding increase of 
applications.

Inspire: ("machine learning" or 
"deep learning" or neural) and 
(hep-ex or hep-ph or hep-th)

420 papers in 2022

29

Machine Learning 
Particle Physics

• Special role of HEP: 

• “Infinite” amounts of high quality 
labelled training data from 
realistic simulation accompanied 
by huge experimental datasets


• Interestingly structured data at 
multiple scales


• Detailed understanding of 
systematic uncertainties


• Asks fundamental questions 
about Nature
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Part II: Symmetries & how 
to treat them



Jet tagging

• Intuitively a jet is:  
   Collimated shower of particles in the detector



Top Quark Identification

• Top quark: 

• Heaviest known elementary particle

• Relevant for measurement and searches for new  

theories

• Hadronically decaying top/Higgs/W/Z

• Contained in one (large-R) jet

• m/pT >= ~1


• How to distinguish from light quark/gluon jets  
(and from each other)


• Used for new physics searches (and SM studies)
32



Concrete task
• Distinguish jets initiated by a top 

quarks from jets from other particles

• Binary classification task


• Use simulation as synthetic training 
data: perfect class labels available

• (Leads to domain shift when applied 

to collider data)

33

• 1.2M training examples (jets),  
400k each for testing and validation


• Each example: Up to 200 particles with  
3 features/particle 
(2D position on detector surface+ 
energy)


• Metrics: AUC: area under curve and  
R30:1/FPR @ TPR=0.3 ()

1902.09914
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FIG. 1. QCD-motivated recursive jet embedding for classifi-
cation. For each individual jet, the embedding hjet

1 (tj) is com-
puted recursively from the root node down to the outer nodes
of the binary tree tj . The resulting embedding is chained to
a subsequent classifier, as illustrated in the top part of the
figure. The topology of the network in the bottom part is
distinct for each jet and is determined by a sequential recom-
bination jet algorithm (e.g., kt clustering).

B. Full events

We now embed entire events e of variable size by feed-
ing the embeddings of their individual jets to an event-
level sequence-based recurrent neural network.

As an illustrative example, we consider here a gated re-
current unit [21] (GRU) operating on the pT ordered se-
quence of pairs (v(tj),h

jet
1 (tj)), for j = 1, . . . ,M , where

v(tj) is the unprocessed 4-momentum of the jet tj and

hjet
1 (tj) is its embedding. The final output hevent

M
(e) (see

Appendix B for details) of the GRU is chained to a subse-
quent classifier to solve an event-level classification task.
Again, all parameters (i.e., of the inner jet embedding
function, of the GRU, and of the classifier) are learned
jointly using backpropagation through structure [9] to
minimize the loss Levent. Figure 2 provides a schematic
of the full classification model. In summary, combining
two levels of recurrence provides a QCD-motivated event-
level embedding that e↵ectively operates at the hadron-
level for all the particles in the event.

In addition and for the purpose of comparison, we
also consider the simpler baselines where i) only the 4-
momenta v(tj) of the jets are given as input to the GRU,
without augmentation with their embeddings, and ii) the
4-momenta vi of the constituents of the event are all di-
rectly given as input to the GRU, without grouping them
into jets or providing the jet embeddings.

IV. DATA, PREPROCESSING AND
EXPERIMENTAL SETUP

In order to focus attention on the impact of the
network architectures and the projection of input 4-
momenta into images, we consider the same boosted W
tagging example as used in Refs. [1, 2, 4, 6]. The signal
(y = 1) corresponds to a hadronically decaying W boson
with 200 < pT < 500 GeV, while the background (y = 0)
corresponds to a QCD jet with the same range of pT .
We are grateful to the authors of Ref. [6] for shar-

ing the data used in their studies. We obtained both
the full-event records from their PYTHIA benchmark sam-
ples, including both the particle-level data and the tow-
ers from the DELPHES detector simulation. In addition,
we obtained the fully processed jet images of 25⇥25 pix-
els, which include the initial R = 1 anti-kt jet clustering
and subsequent trimming, translation, pixelisation, rota-
tion, reflection, cropping, and normalization preprocess-
ing stages detailed in Ref. [2, 6].

Our training data was collected by sampling from the
original data a total of 100,000 signal and background jets
with equal prior. The testing data was assembled sim-
ilarly by sampling 100,000 signal and background jets,
without overlap with the training data. For direct com-
parison with Ref. [6], performance is evaluated at test
time within the restricted window of 250 < pT < 300
and 50  m  110, where the signal and background jets
are re-weighted to produce flat pT distributions. Results
are reported in terms of the area under the ROC curve
(ROC AUC) and of background rejection (i.e., 1/FPR) at
50% signal e�ciency (R✏=50%). Average scores reported
include uncertainty estimates that come from training 30
models with distinct initial random seeds. About 2% of
the models had technical problems during training (e.g.,
due to numerical errors), so we applied a simple algo-
rithm to ensure robustness: we discarded models whose
R✏=50% was outside of 3 standard deviations of the mean,
where the mean and standard deviation were estimated
excluding the five best and worst performing models.

For our jet-level experiments we consider as input to
the classifiers the 4-momenta vi from both the particle-
level data and the DELPHES towers. We also compare the
performance with and without the projection of those
4-momenta into images. While the image data already
included the full pre-processing steps, when considering
particle-level and tower inputs we performed the initial
R = 1 anti-kt jet clustering to identify the constituents of
the highest pT jet t1 of each event, and then performed

Introduction Jet Physics Previous work Proposed model Experiments Conclusions
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Enter deep learning

• Particles form a point  
cloud in space

• Permutation symmetry

• Symmetry of points in  

space:

• Naively SO(3),  

actually Lorentz group

• How to solve with deep 

learning?


• Immense number of  
results, showcase some  
(useful) examples



+

• Treat jets as images: Popular and done before deep learning 
(1407.5675, 1501.05968, 1511.05190, 1612.01551, 
1701.08784, 1803.00107,….)


• Measure particle energies in calorimeter

• Image preprocessing


• center, rotate, mirror, pixelate, trim, normalise

35

Jet Images

=
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Single top jet 10k top jets

Single QCD jet 10k QCD jets

Different initial 
particles lead to 
different distributions 
of recorded energies



37

Convolutional network
• Analyse grid-like data with convolutional 

networks

• Same architectures as for computer vision


• Accounts for locality (correlation of nearby 
pixels) and translation invariance 

• In fact not a symmetry of the images! 

• Potential limitation due to sparsity/pixelisation 
for high resolution data

• No strong effect observed in this study

• Careful how to pre-process (1803.00107) 9

Figure 4. Architecture [29] of our default networks for fully pre-processed images, defined in Tab. I.

classification is a parameter that allows to link the signal e�ciency ✏S with the mis-tagging rate of
background events ✏B.

In Sec. III we will use this trained network to test the performance in terms of ROC curves,
correlating the signal e�ciency and the mis-tagging rate.

Before we move to the performance study, we can get a feeling for what is happening inside
the trained ConvNet by looking at the output of the di↵erent layers in the case of fully pre-
processed images. In Fig. 5 we show the di↵erence of the averaged output for 100 signal and 100
background images. For each of those two categories, we require a classifier output of at least 0.8.
Each row illustrates the output of a convolutional layer. Signal-like red areas are typical for jet
images originating from top decays; blue areas are typical for backgrounds. The first layer seems
to consistently capture a well-separated second subjet, and some kernels of the later layers seem
to capture the third signal subjet in the right half-plane. However, one should keep in mind that
there is no one-to-one correspondence between the location in feature maps of later layers and the
pixels in the input image.

Figure 5. Averaged signal minus background for our default network and full pre-processing. The rows
correspond to ConvNet layers one to four. After two rows MaxPooling reduces the number of pixels by
roughly a factor of four. The columns indicate the feature maps one to eight. Red areas indicate signal-like
regions, blue areas indicate background-like regions.

Architecture from 1701.08784



Deep Sets

381810.05165 

General :

• Data is a permutation invariant point 
cloud: treat with set-based architecture


• Invariance/equivariance under 
symmetries


• How to make independent 
from ordering of four vectors?

• Use permutation invariance of sum

• →Deep set architecture (1703.06114)

• Apply to jets: energy flow network 

(EFN) / particle flow network (PFN) 
(1810.05165)


• Simple and straightforward to implement  
but limited use of neighbourhood  
information



Graphs
• Basic motivation: Use physicists’ 

knowledge about data as an implicit (or 
explicit bias) to help networks train faster / 
achieve better performance


• Graphs are a general + powerful 
framework that captures relevant 
properties for particle tagging


• e.g. best performance of ParticleNet  
(message passing graph) in top tagging 
comparison


• versatile and well suited


• Can impose graph on set-like data e.g. by 
kNN clustering

Henrion et al ML4PS 2017; Qu, Gouskos 
1902.08570; Shalom, Battaglia, Valiant 
2007.13681 (review) 

Graph Neural Networks in Particle Physics 8

In practice the �e, �v, and �u are often implemented as a simple trainable neural

network, e.g. a fully connected network. The ⇢e!v, ⇢e!u, and ⇢v!u functions are

typically implemented as permutation invariant reduction operators, such as element-

wise sums, means, or maximums. The ⇢ functions must be permutation invariant if the

GN block is to maintain permutation equivariance.

(a)

GM
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<latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit><latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit><latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit><latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit>

GN2
<latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit><latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit><latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit><latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit>

GNM
<latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit><latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit><latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit><latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit>

. . .
<latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit><latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit><latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit><latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit>G1

<latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit><latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit><latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit><latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit>

G0
<latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit>
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Unshared, deep GN stack

Shared, recurrent GN stack

(b)

Figure 4. (a) A GN block (from [13]). An input graph, G = (u, V, E), is processed
and a graph with the same edge structure but di↵erent attributes, G

0 = (u0
, V

0
, E

0),
is returned as output. The component functions are described in Equation 1. (b) GN
blocks can be composed into more complex computational architectures. The top row
shows a sequence of di↵erent GN blocks arranged in series, or depth-wise, fashion. The
bottom row replaces the distinct GN blocks with a shared, recurrent, configuration.

Some key benefits of GNs are that they are generic: if a problem can be expressed

as requiring a graph to be mapped to another graph or some summary output, GNs

are often suitable. They also tend to generalize well to graphs not experienced during

training, because the learning is focused on the edge- and node-level—in fact if the global

block is omitted, the GN is not even aware of the full graph in any of its computations,

as the edge and node blocks take only their respective localities as input. Yet when

multiple GN blocks are arranged in deep or recurrent configurations, as in Figure 4b,

information can be processed and propagated across the graph’s structure, to allow more
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Transformers; Attention is all you 
need

• In ParticleNet, data-space geometry 
defines neighbourhood in graph; 
aggregation over all neighbours


• Attention allows the network to learn  
which parts of the input are truly  
relevant


• Attention is data-hungry,  
transfer-learning helps!

Vaswani et al 1706.03762; Qu, Li, Qian 
2202.03772; Mikuni, Canelli 2001.05311; ..
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Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

of particles, in a shape (N, N,C 0). The particle and inter-
action inputs are each followed by an MLP to project them
to a d- and d0-dimensional embedding, x0

2 RN⇥d and
U 2 RN⇥N⇥d0

, respectively. Unlike Transformers for NLP
and vision, we do not add any ad-hoc positional encodings,
as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix U is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same U is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-

teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging
task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The

Particle Transformer for Jet Tagging

Table 5. Comparison between ParT and existing models on the
top quark tagging dataset. ParT refers to the model trained from
scratch on this dataset. ParticleNet-f.t. and ParT-f.t. denote the
corresponding models pre-trained on JETCLASS and fine-tuned
on this dataset. Results for other models are quoted from their
published results: P-CNN and ParticleNet (Qu & Gouskos, 2020),
PFN (Komiske et al., 2019b), JEDI-net (Moreno et al., 2020), PCT
(Mikuni & Canelli, 2021), LGN (Bogatskiy et al., 2020), rPCN
(Shimmin, 2021), and LorentzNet (Gong et al., 2022).

Accuracy AUC Rej50% Rej30%
P-CNN 0.930 0.9803 201 ± 4 759 ± 24
PFN — 0.9819 247 ± 3 888 ± 17
ParticleNet 0.940 0.9858 397 ± 7 1615 ± 93
JEDI-net (w/

P
O) 0.930 0.9807 — 774.6

PCT 0.940 0.9855 392 ± 7 1533 ± 101
LGN 0.929 0.964 — 435 ± 95
rPCN — 0.9845 364 ± 9 1642 ± 93
LorentzNet 0.942 0.9868 498 ± 18 2195 ± 173
ParT 0.940 0.9858 413 ± 16 1602 ± 81
ParticleNet-f.t. 0.942 0.9866 487 ± 9 1771 ± 80
ParT-f.t. 0.944 0.9877 691 ± 15 2766 ± 130

the JETCLASS dataset. In the “full” scenario, we consider
all particle types and further distinguish electrically charged
(and neural) hadrons into more types, such as pions, kaons,
and protons. We perform the pre-training on JETCLASS
using only kinematic and particle identification inputs un-
der the “exp” scenario. For the fine-tuning, we then carry
out experiments in both scenarios. The construction of the
input features is described in Table 2. The pre-training and
fine-tuning setup is the same as in the top quark tagging
benchmark, and the fine-tuning also lasts for 20 epochs.
Results are summarized in Table 6. The pre-trained ParT
achieves the best performance and improves existing base-
lines by a large margin in both scenarios.

6. Discussion and Conclusion
Large-scale datasets have always been a catalyst for new
breakthroughs in deep learning. In this work, we present
JETCLASS, a new large-scale open dataset to advance deep
learning research in particle physics. The dataset consists
of 100 M simulated jets, about two orders of magnitude
larger than existing public jet datasets, and covers a broad
spectrum of 10 classes of jets in total, including several
novel types that have not been studied with deep learning
so far. While we focus on investigating a classification
task, i.e., jet tagging, with this dataset, we highlight that
this dataset can serve as the basis for many important deep
learning researches in particle physics, e.g., unsupervised or
self-supervised training techniques for particle physics (e.g.,
Dillon et al. (2021)), generative models for high-fidelity fast
simulation of particle collisions (e.g., Kansal et al. (2021a)),
regression models to predict jet energy and momentum with
higher precision (e.g., CMS Collaboration (2020a)), and
more. We invite the community to explore and experiment

Table 6. Comparison between ParT and existing models on the
quark-gluon tagging dataset. ParT refers to the model trained from
scratch on this dataset. ParticleNet-f.t. and ParT-f.t. denote the
corresponding models pre-trained on JETCLASS and fine-tuned on
this dataset. Results for other models are quoted from their pub-
lished results: P-CNN and ParticleNet (Qu & Gouskos, 2020), PFN
(Komiske et al., 2019b), ABCNet (Mikuni & Canelli, 2020), PCT
(Mikuni & Canelli, 2021), rPCN (Shimmin, 2021), and LorentzNet
(Gong et al., 2022). The subscript “exp” and “full” distinguish
models using partial or full particle identification information.

Accuracy AUC Rej50% Rej30%
P-CNNexp 0.827 0.9002 34.7 91.0
PFNexp — 0.9005 34.7 ± 0.4 —
ParticleNetexp 0.840 0.9116 39.8 ± 0.2 98.6 ± 1.3
rPCNexp — 0.9081 38.6 ± 0.5 —
ParTexp 0.840 0.9121 41.3 ± 0.3 101.2 ± 1.1
ParticleNet-f.t.exp 0.839 0.9115 40.1 ± 0.2 100.3 ± 1.0
ParT-f.t.exp 0.843 0.9151 42.4 ± 0.2 107.9 ± 0.5

PFNfull — 0.9052 37.4 ± 0.7 —
ABCNetfull 0.840 0.9126 42.6 ± 0.4 118.4 ± 1.5
PCTfull 0.841 0.9140 43.2 ± 0.7 118.0 ± 2.2
LorentzNetfull 0.844 0.9156 42.4 ± 0.4 110.2 ± 1.3
ParTfull 0.849 0.9203 47.9 ± 0.5 129.5 ± 0.9
ParT-f.t.full 0.852 0.9230 50.6 ± 0.2 138.7 ± 1.3

with this dataset and extend the boundary of deep learning
and particle physics even further.

With this large dataset, we introduce Particle Transformer
(ParT), a new architecture that substantially improves jet
tagging performance over previous state-of-the-art. We pro-
pose it as a new jet tagging baseline for future research
to improve upon. The effectiveness of ParT arises mainly
from the augmented self-attention, in which we incorpo-
rate physics-inspired pairwise interactions together with the
machine-learned dot-product attention. This approach is
likely to be effective for other tasks on similar datasets, such
as point clouds or many-body systems, especially when
prior knowledge is available to describe the interaction or
the geometry. On the other hand, one limitation of using the
full pairwise interaction matrix is the increase in computa-
tional time and memory consumption. Novel approaches for
particle (point) embeddings and self-attentions that alleviate
the computational cost (e.g., Zhou et al. (2021); Kitaev et al.
(2020)) could be an interesting direction for future research.
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Table 3. Impacts of the training dataset size. Entries in bold correspond to the training using the full 100 M training dataset.

All classes H ! bb̄ H ! cc̄ H ! gg H ! 4q H ! `⌫qq0 t ! bqq0 t ! b`⌫ W ! qq0 Z ! qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

ParticleNet (2 M) 0.828 0.9820 5540 1681 90 662 1654 4049 4673 260 215
ParticleNet (10 M) 0.837 0.9837 5848 2070 96 770 2350 5495 6803 307 253
ParticleNet (100 M) 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283

ParT (2 M) 0.836 0.9834 5587 1982 93 761 1609 6061 4474 307 236
ParT (10 M) 0.850 0.9860 8734 3040 110 1274 3257 12579 8969 431 324
ParT (100 M) 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402

Table 4. Number of trainable parameters and FLOPs.

Accuracy # params FLOPs

PFN 0.772 86.1 k 4.62 M
P-CNN 0.809 354 k 15.5 M
ParticleNet 0.844 370 k 540 M
ParT 0.861 2.14 M 340 M

ParT (plain) 0.849 2.13 M 260 M

Impacts of the training dataset size. To evaluate the im-
pacts of the training dataset size on the jet tagging perfor-
mance, we perform additional trainings using only 2% and
10% of the JETCLASS dataset. For the former, the training
is performed for only 100 k iterations, as it is already con-
verged by then. For the latter, the training still lasts for 1 M
iterations, although very little gain is observed compared
to the training with only 100 k iterations. No overfitting is
found in either case. The results are summarized in Table 3.
For the ParticleNet model, a drop of 0.7% in accuracy is
observed when the training dataset size is reduced to 10 M,
and the drop in accuracy increases to 1.6% when only 2 M
jets are used in the training. For the ParT model, the impact
is even larger, the degradation in accuracy becomes 1.1%
and 2.5% when the training dataset is reduced to 10% and
2%, respectively.

Model complexity. Table 4 compares the model complexity
of ParT with the baselines. While the number of trainable
parameters is increased by more than 5⇥ compared to Par-
ticleNet, the number of floating point operations (FLOPs)
is actually 40% lower. We also observe that the FLOPs
of ParT are 30% higher than ParT (plain), which mostly
comes from the encoding of the pairwise features, because
the computational cost there scales quadratically with the
number of particles in a jet.

5.2. Fine-Tuning for Other Datasets

Top quark tagging dataset. The top quark tagging bench-
mark (Butter et al., 2019) provides a dataset of 2 M
(1.2/0.4/0.4 M for train/validation/test) jets in two classes,
t ! bqq0 (signal) and q/g (background). Only kinematic
features, i.e., the energy-momentum 4-vectors, are provided.
Therefore, we pre-train a ParT model on the JETCLASS
dataset using only the kinematic features, and then fine-

tune it on the top quark tagging dataset. The particle input
features are the 7 kinematic features listed in Table 2, the
same as used by ParticleNet. The JETCLASS pre-training
follows the same setup as described in Section 5.1. For the
fine-tuning, we replace the last MLP with a new randomly-
initialized MLP with 2 output nodes, and then fine-tune all
the weights on the top tagging dataset for 20 epochs. A
smaller LR of 0.0001 is used for the pre-trained weights,
while a larger LR of 0.005 is used to update the randomly-
initialized weights of the MLP. The LR remains constant
across the full training, with a weight decay of 0.01. We run
a total of 9 experiments, starting from the same pre-trained
model but different random initializations of the replaced
MLP, and report the performance of the model with median
accuracy and the spread across the 9 trainings, following
the procedure used by ParticleNet. For comparison, we also
train ParT from scratch on this dataset for 20 epochs, using
a start LR of 0.001, a schedule that decays the LR to 1%
in the last 30% of the epochs, and a weight decay of 0.01.
Both results are presented in Table 5. The pre-trained ParT
achieves a significant improvement over the existing base-
lines, increasing Rej30% by 70% compared to ParticleNet,
and by 26% compared to the best-performing model on this
dataset, LorentzNet. On the other hand, the ParT model
trained from scratch only reaches similar performance as
ParticleNet. We also investigate a similar pre-training and
fine-tuning procedure using the ParticleNet model, but only
a small improvement is observed compared to the training
from scratch, due to the limited capacity of the ParticleNet
model.

Quark-gluon tagging dataset. We also benchmark ParT
on the quark-gluon tagging dataset (Komiske et al., 2019a)
proposed in Komiske et al. (2019b), the target of which
is to separate jets initiated by quarks (signal) from those
by gluons (background). This dataset also consists of 2 M
jets, with a recommended train/validation/test splitting of
1.6/0.2/0.2 M. It provides not only the kinematic features,
but also particle identification information. We consider two
scenarios in the usage of the particle identification informa-
tion. In the “exp” scenario, we restrict the information to
only 5 classes and do not attempt to separate electrically
charged (and neural) hadrons of different types, which is the
procedure adopted by ParticleNet, and also prescribed by

(plain: standard multi-head-attention vs particle-
multi-head-attention)
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• In ParticleNet, data-space geometry 
defines neighbourhood in graph; 
aggregation over all neighbours


• Attention allows the network to learn  
which parts of the input are truly  
relevant


• Attention is data-hungry,  
transfer-learning helps! 
(Motivation for foundation models?)


• So far, observed trend:  
Higher physics performance comes at the 
cost of higher algorithm complexity & 
compute cost


• Is this the only way?

https://indico.cern.ch/event/1106990/contributions/5075335/


Aside: 
Alternative to complex architecture

• Advantage of few high-level 
features: 
-easy to understand and calibrate 
-cheap to evaluate 

• Advantage of complex 
architecture and low-level 
features: performance


• Can we combine both?
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We need a basis
• Energy Flow Polynomials (EFPs) form a basis of jet substructure


• Nodes: energy fractions


• Edges: angular distances


• Depending on order considered, too many (e.g 7k) to efficiently train NN 
(many features work if there is structure, not so much for EFPs)

2 Energy flow polynomials

IRC-safe observables have long been of theoretical and experimental interest because ob-

servables which lack IRC safety are not well defined [78–81], or require additional care to

calculate [82–86], in perturbative quantum chromodynamics (pQCD). More broadly, though,

IRC safety is a simple and natural organizing principle for high-energy physics observables,

since IRC-safe observables probe the high-energy structure of an event while being insensitive

to low-energy and collinear modifications. IRC safety is also an important property experi-

mentally as IRC-safe observables are more robust to noise and finite detector granularity.

As argued in Refs. [74, 87–89], the C-correlators in Eq. (1.3) are a generic way to capture

the IRC-safe structure of a jet, as long as one chooses an appropriate angular weighting

function fN . Later in Sec. 3, we give an alternative proof that C-correlators span the space

of IRC-safe observables and go on to give a systematic expansion for fN . This expansion

results in the EFPs, which yield an (over)complete linear basis for IRC-safe observables. In

this section, we highlight the basic features of the EFPs and their relationship to previous jet

substructure observables.

2.1 The energy flow basis

One can think of the EFPs as C-correlators that make specific, discrete choices for the angular

weighting function fN in Eq. (1.3). True to their name, EFPs have angular weighting functions

that are polynomial in pairwise angular distances ✓ij . The energy flow basis is therefore all

C-correlators with angular structures that are unique monomials in ✓ij , meaning monomials

that give algebraically di↵erent expressions once the sums in Eq. (1.3) are performed. Since

we intend to apply the energy flow basis for jet substructure, we remove the dependence

on the overall jet kinematics by normalizing the particle energies by the total jet energy,

EJ ⌘
PM

i=1 Ei, leading to the EFPs written in terms of the energy fractions zi ⌘ Ei/EJ as

in Eq. (1.1).

The uniqueness requirement on angular monomials can be better understood by devel-

oping a correspondence between monomials in ✓ij and multigraphs:

Multigraph/EFP Correspondence. The set of loopless multigraphs on N vertices corre-

sponds exactly to the set of angular monomials in {✓iki`}k<`2{1,··· ,N}. Each edge (k, `) in a

multigraph is in one-to-one correspondence with a term ✓iki` in an angular monomial; each

vertex j in the multigraph corresponds to a factor of zij and summation over ij in the EFP:

j
()

MX

ij=1

zij , k ` () ✓iki` . (2.1)

Using Eq. (2.1), the EFPs can be directly encoded by their corresponding multigraphs.

For instance:

=
MX

i1=1

MX

i2=1

MX

i3=1

MX

i4=1

zi1zi2zi3zi4✓i1i2✓i2i3✓
2
i2i4✓i3i4 . (2.2)
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FIG. 1: Overview of a boosted forward feature selection algorithm

4. Step 4: Add the feature with best relevance

score to the list of known features

We select the feature with the best score and up-
date Fknown = [f1, f2, f3, .., fbest score]. Then we
proceed back to the 1st step to train a network on
the updated set of features Fknown. The procedure
is stopped when the performance metric saturates
and the final set Fknown is returned.

While the above method explicitly describes the
DisCo-Forward Feature Selection (DisCo-FFS), the pro-
tocol is general enough to accommodate also other it-
erative feature selection techniques. In appendix VA,
we outline how the DO-ADO Forward Feature Selection
(DO-ADO-FFS) by Faucett et al [7] operates.

III. APPLICATION TO TOP-TAGGING

A. Data set

We study the performance of the DisCo-Feature Selec-
tion algorithms on the top quark tagging referemce data
set [13, 14]. This data set contains boosted, hadronically-
decaying top jets as signal, and QCD (i.e. light quark
and gluon) jets as background, which are generated us-
ing Pythia8 [15], with a center-of-mass energy of 14 TeV.
Multiple interactions and pile-up are not included in this
data set. The detector simulation is done using Delphes

[16], with the ATLAS detector card. FastJet [17] is used
to create fat jets using the anti-kT algorithm [18] with
R = 0.8. Only jets in the pT range [500, 650] GeV, and
|⌘j | < 2, are considered. The data set contains only kine-
matic information, in the form energy-momentum four-
vectors, which are extracted using the Delphes energy-
flow algorithm. No additional tracking information, or
particle information, is included which allows for a fair
comparison amongst di↵erent techniques. Jets with less
than 200 constituents are padded with zero four-vectors.

The full data set contains 2 million events, with 1 mil-
lion signal events and 1 million background events. This
data is split into 1.2M events in the training set, 400k in
the validation set, and 400k in the test set, each set con-
taining equal number of signal and background events.

B. Feature Space

For top-tagging we start with Fknown =
[mJ , pT ,mW�candidate], where mJ is the mass of
the jet, pT is the transverse momentum of the jet and
mW�candidate is the mass of the W-candidate in the jet,
calculated as . . ..
We then apply feature selection algorithms to a large

set of Energy Flow Polynomials (EFPs)[8]. EFPs are
functions of energy fractions, and angular separation of
jet constituents. Each polynomial has a one to one cor-
respondence with a graph:

X

a2J

za ! (each node) (2)

✓
k=1
ab ! (each edge) (3)

A single edge graph, corresponds to k = 1, and a
multi-edge, corresponds to higher powers of k. Each
graph/polynomial is further characterized by two other
parameters (,�):

z
()
a =

0

@ pT aP
i2J

pT i

1

A


(4)

✓
(�)
ab = (�⌘

2
ab +��

2
ab)

�/2
, (5)

where pT a is the transverse momentum of ath jet con-
stituent, and the denominator in za is summed over all
jet constituents in a jet J .

Looking for optimal feature set
• Solution: Iterative feature selection,  

again based on DisCo

Das, GK, Shih 2212.00046; Faucett, Thaler, 
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FIG. 1: Overview of a boosted forward feature selection algorithm

4. Step 4: Add the feature with best relevance

score to the list of known features

We select the feature with the best score and up-
date Fknown = [f1, f2, f3, .., fbest score]. Then we
proceed back to the 1st step to train a network on
the updated set of features Fknown. The procedure
is stopped when the performance metric saturates
and the final set Fknown is returned.

While the above method explicitly describes the
DisCo-Forward Feature Selection (DisCo-FFS), the pro-
tocol is general enough to accommodate also other it-
erative feature selection techniques. In appendix VA,
we outline how the DO-ADO Forward Feature Selection
(DO-ADO-FFS) by Faucett et al [7] operates.

III. APPLICATION TO TOP-TAGGING

A. Data set

We study the performance of the DisCo-Feature Selec-
tion algorithms on the top quark tagging referemce data
set [13, 14]. This data set contains boosted, hadronically-
decaying top jets as signal, and QCD (i.e. light quark
and gluon) jets as background, which are generated us-
ing Pythia8 [15], with a center-of-mass energy of 14 TeV.
Multiple interactions and pile-up are not included in this
data set. The detector simulation is done using Delphes

[16], with the ATLAS detector card. FastJet [17] is used
to create fat jets using the anti-kT algorithm [18] with
R = 0.8. Only jets in the pT range [500, 650] GeV, and
|⌘j | < 2, are considered. The data set contains only kine-
matic information, in the form energy-momentum four-
vectors, which are extracted using the Delphes energy-
flow algorithm. No additional tracking information, or
particle information, is included which allows for a fair
comparison amongst di↵erent techniques. Jets with less
than 200 constituents are padded with zero four-vectors.

The full data set contains 2 million events, with 1 mil-
lion signal events and 1 million background events. This
data is split into 1.2M events in the training set, 400k in
the validation set, and 400k in the test set, each set con-
taining equal number of signal and background events.

B. Feature Space

For top-tagging we start with Fknown =
[mJ , pT ,mW�candidate], where mJ is the mass of
the jet, pT is the transverse momentum of the jet and
mW�candidate is the mass of the W-candidate in the jet,
calculated as . . ..
We then apply feature selection algorithms to a large

set of Energy Flow Polynomials (EFPs)[8]. EFPs are
functions of energy fractions, and angular separation of
jet constituents. Each polynomial has a one to one cor-
respondence with a graph:
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multi-edge, corresponds to higher powers of k. Each
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where pT a is the transverse momentum of ath jet con-
stituent, and the denominator in za is summed over all
jet constituents in a jet J .
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in which case we are performing ab initio forward fea-
ture selection in order to produce the highest-performing
classifier that we can; or the reference label could be a
pre-trained state-of-the-art classifier, in which case we are
performing forward feature selection for the purposes of
AI explainability (explaining the pre-trained “black box”
classifier).

In any event, for a set of features, the point is that
the relevance score can be obtained much more quickly
than training a classifier on the features, and the forward
feature selection algorithm can select the feature with the
highest score as the next feature.

The 4 steps involved in our feature selection algorithm
are illustrated in Fig. 1 and explained in the following:

1. Step 1: Train on known features

Train a classifier network on a set of features Fn =
{fi1 , fi2 , . . . fin} using the full training sample of all
events Xall, and obtain the classifier output ypred
for all events in Xall.

For simplicity and best possible performance, we
use a dense neural network (details in Appendix B),
although any other classification algorithm (e.g.
XGBoost, logistic regressor) could be used as well.

2. Step 2: Select the confusion set X0 ⇢ Xall

Instead of calculating the relevance scores using the
full dataset, we choose to instead focus on a sub-
set of the full data X0 ⇢ Xall that we call the
“confusion set”. These are events where we believe
the features in Fn are least e↵ective in separating
signal from background, and where adding a new
feature may have the largest impact. To identify
this subset, we select all events in a window around
ypred = 0.5, as shown in Fig. 2 – these should be the
events where the classifier is most confused about
whether it is a signal or a background. We observe
that using a confusion set instead of the full dataset
improves performance.

3. Step 3: Assign a relevance score to each fea-
ture

To each feature fi in the feature space F , we assign
a relevance score sfi , which gauges how much the
feature will improve classification performance.

The relevance score is calculated using the feature
vectors evaluated on the events in the confusion set
X0, together with the classifier output of a reference
label yref :

X =
n⇣

fi1(~x), . . . , fin(~x), fi(~x)
⌘���~x 2 X0

o

Y = {yref(~x)|~x 2 X0}
(2)

The relevance score assigned to each feature fi is:

sfi = A�ne-DisCo(X ,Y). (3)

FIG. 2. Events in a window around the classifier output value
ypred = 0.5 are selected as the confusion set X0 for DisCo-
FFS.

As described in the Introduction, DisCo is short for
distance correlation [35–38], a measure of statistical
dependence that is zero i↵ the random vectors X
and Y are statistically independent, and positive
(and  1) otherwise. Therefore, it is well-suited
to judging whether adding fi to the feature vector
(fi1 , . . . fin) produces a stronger correlation with
the reference label yref or not. Here we are using
the a�ne-invariant version of DisCo [53], which is
invariant under arbitrary linear transformations of
X and Y, in order to make it more robust against
basis reparametrizations in the EFP space. The
multivariate A�ne-DisCo calculation is described
in more detail in Appendix C.

4. Step 4: Add the feature with best relevance
score to the list of known features

We select the feature with the best score and add
it to Fn. Then we proceed back to the first step
to train a network on the updated set of features
Fn+1. The procedure is stopped when the perfor-
mance metric saturates and the final set of features
is returned.

While the above method explicitly describes our
DisCo-based Forward Feature Selection algorithm
(DisCo-FFS), the protocol is general enough to accom-
modate also other iterative feature selection techniques.
In Appendix A, we use the same framework to outline
how the Forward Feature Selection from [30] operates.
This is based on Decision Ordering (DO) for the confu-
sion set, and Average Decision Ordering (ADO) for the
relevance score, and we will refer to it as DO-ADO-FFS
throughout this work.Truth label or reference 
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in which case we are performing ab initio forward fea-
ture selection in order to produce the highest-performing
classifier that we can; or the reference label could be a
pre-trained state-of-the-art classifier, in which case we are
performing forward feature selection for the purposes of
AI explainability (explaining the pre-trained “black box”
classifier).

In any event, for a set of features, the point is that
the relevance score can be obtained much more quickly
than training a classifier on the features, and the forward
feature selection algorithm can select the feature with the
highest score as the next feature.

The 4 steps involved in our feature selection algorithm
are illustrated in Fig. 1 and explained in the following:

1. Step 1: Train on known features

Train a classifier network on a set of features Fn =
{fi1 , fi2 , . . . fin} using the full training sample of all
events Xall, and obtain the classifier output ypred
for all events in Xall.

For simplicity and best possible performance, we
use a dense neural network (details in Appendix B),
although any other classification algorithm (e.g.
XGBoost, logistic regressor) could be used as well.

2. Step 2: Select the confusion set X0 ⇢ Xall

Instead of calculating the relevance scores using the
full dataset, we choose to instead focus on a sub-
set of the full data X0 ⇢ Xall that we call the
“confusion set”. These are events where we believe
the features in Fn are least e↵ective in separating
signal from background, and where adding a new
feature may have the largest impact. To identify
this subset, we select all events in a window around
ypred = 0.5, as shown in Fig. 2 – these should be the
events where the classifier is most confused about
whether it is a signal or a background. We observe
that using a confusion set instead of the full dataset
improves performance.

3. Step 3: Assign a relevance score to each fea-
ture

To each feature fi in the feature space F , we assign
a relevance score sfi , which gauges how much the
feature will improve classification performance.

The relevance score is calculated using the feature
vectors evaluated on the events in the confusion set
X0, together with the classifier output of a reference
label yref :

X =
n⇣

fi1(~x), . . . , fin(~x), fi(~x)
⌘���~x 2 X0

o

Y = {yref(~x)|~x 2 X0}
(2)

The relevance score assigned to each feature fi is:

sfi = A�ne-DisCo(X ,Y). (3)

FIG. 2. Events in a window around the classifier output value
ypred = 0.5 are selected as the confusion set X0 for DisCo-
FFS.

As described in the Introduction, DisCo is short for
distance correlation [35–38], a measure of statistical
dependence that is zero i↵ the random vectors X
and Y are statistically independent, and positive
(and  1) otherwise. Therefore, it is well-suited
to judging whether adding fi to the feature vector
(fi1 , . . . fin) produces a stronger correlation with
the reference label yref or not. Here we are using
the a�ne-invariant version of DisCo [53], which is
invariant under arbitrary linear transformations of
X and Y, in order to make it more robust against
basis reparametrizations in the EFP space. The
multivariate A�ne-DisCo calculation is described
in more detail in Appendix C.

4. Step 4: Add the feature with best relevance
score to the list of known features

We select the feature with the best score and add
it to Fn. Then we proceed back to the first step
to train a network on the updated set of features
Fn+1. The procedure is stopped when the perfor-
mance metric saturates and the final set of features
is returned.

While the above method explicitly describes our
DisCo-based Forward Feature Selection algorithm
(DisCo-FFS), the protocol is general enough to accom-
modate also other iterative feature selection techniques.
In Appendix A, we use the same framework to outline
how the Forward Feature Selection from [30] operates.
This is based on Decision Ordering (DO) for the confu-
sion set, and Average Decision Ordering (ADO) for the
relevance score, and we will refer to it as DO-ADO-FFS
throughout this work.
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FIG. 4. Performance comparison between DisCo-FFS and DO-ADO-FFS methods, truth-guided and LorentzNet-guided.
Shown in gray is also the random selection baseline. The shaded bands around each curve come from training the NN classifier
ten times on the same set of features (similar to [1]). Overall, DisCo-FFS seems to select more relevant features than DO-ADO-
FFS, resulting in a higher-performing classifier at every step. Interestingly, while DO-ADO-FFS with truth labels actually
performs worse than with LorentzNet (a phenomenon also observed in [30]), no degradation in performance is observed for
DisCo-FFS with truth labels.

significantly worse than the performance using the small
subset of EFPs selected by DisCo-FFS. Clearly, the use
of uninformative features in the training deteriorates the
performance of the network. In principle, it should be
possible to optimize the hyper-parameters to recover the
lost performance, but this is not so straightforward in
practice, given the amount of time and resources it takes
to train a network on all 7k EFPs.4 This emphasizes the
need of doing feature selection.

As a further aside, this result also indicates why an-
other popular feature selection method, which is based
on assigning feature attributions using Shapley values, is
not suitable here. Shapley values assume the existence of
a high-performing classifier trained on a set of features,
and then ranks those features in terms of their estimated
contributions to the classifier outputs. In fact, the orig-
inal Shapley values [43, 44, 47] are very much ill-suited
to the problem at hand – their computational complex-
ity grows exponentially with the number of features, so
in practice can never be computed for more than ⇠ 10
features. Also the features are assumed to be uncorre-
lated, for the computation of Shapley values. With 7k

4This is also why the R30 quoted here does not come with an
error bar from multiple retrainings – a single training was already
prohibitively time consuming for us.

highly correlated features, this is clearly not the right
approach. Later approaches such as SHAP [48] attempt
to overcome the computational complexity issue by ap-
proximating the Shapley values in various ways. SHAP
also used (approximate) Shapley values to unify di↵erent
feature attribution methods [42, 45, 46, 60]. But gen-
erally all these works still assume independence of the
features. This is an area of active research and it is pos-
sible a Shapley-inspired approach will work well on this
problem in the future. Su�ce to say that in our exper-
iments (based on Deep SHAP [46, 48] and the sub-par
DNN trained on 7k EFPs), we obtained results that were
only marginally better than random selection.

E. Ablation studies

To showcase another important benefit of feature se-
lection, we compare the performance of the features
we obtained using DisCo-FFS to ParticleNet and
LorentzNet, on smaller training datasets. We take the
set of features obtained in section III C and train the
same neural network with same hyper-parameters on
5%, 1% and 0.5% of the same training data. While
both LorentzNet and ParticleNet had a superior per-
formance for the full training dataset, our set of fea-
tures outperforms ParticleNet at lower training frac-
tions, and more-or-less matches LorentzNet at 0.5% and

• DiscoFFS find relevant 
features quicker than 
alternative feature 
selection methods
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FIG. 5. R30 vs. number of parameters of the model, for many di↵erent approaches to top-tagging. LorentzNet[23], PaticleNet
[14], ParT [19], and PELICAN [24] are the some of the recent taggers with very good performances. “DisCo-FFS on EFPs”
corresponds to the simple DNN trained on the first nine EFPs selected by DisCo-FFS, while “DNN EFPs” is our DNN trained
on all the 7k EFPs. The remaining taggers are taken from [1]. We see that the nine EFPs selected using Disco-FFS have a
very competitive performance, especially given the number of parameters.

FIG. 6. Performance of training on 0.5%, 1% and 5% of
the training data. The EFPs selected using DisCo out-
perform ParticleNet, and match up to the performance of
LorentzNet [23] at 0.5% of the total training data.

lected feature that probes wide-angle radiation. In the
other path, we see the appearance of the first EFP which
probes 4-prong substructure with small-angle radiation
(� = 0.5), and this is followed up by an IRC-safe EFP
probing 3-prong substructure.

Interestingly in our single run of LorentzNet-guided
DisCo-FFS, the first 6 features are the same as Table II,

whereas after that the 7th-EFP is the same one selected in
Path 1 in III. This confirms that the similar performance
between DisCo-FFS with truth and with LorentzNet is
no coincidence, and is likely because LorentzNet (being
so high-performing) is quite close to the truth labels.

IV. CONCLUSIONS

In this work, we have introduced a new forward fea-
ture selection method, based on the distance correlation
measure of statistical dependence — dubbed DisCo-FFS.
Our method can operate equally well on either truth-
labels (for ab initio feature selection) or on the outputs
of a pre-trained classifier (for explaining a “black box”
AI).

We demonstrated the performance of our method using
the task of boosted top tagging, as boosted top jets have
a rich substructure and many subtle correlations that
have proven to be a fruitful laboratory for developing
increasingly powerful state-of-the-art taggers in the HEP
literature.

Following [30], we have trained our DisCo-FFS method
on a large set (7,000+) of Energy Flow Polynomials,
which aim to provide a complete description of the jet
substructure. We have seen that DisCo-FFS is very e↵ec-
tive at selecting EFPs from this large feature set; DisCo-
FFS can achieve nearly-state-of-the-art top tagging per-
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corresponds to the simple DNN trained on the first nine EFPs selected by DisCo-FFS, while “DNN EFPs” is our DNN trained
on all the 7k EFPs. The remaining taggers are taken from [1]. We see that the nine EFPs selected using Disco-FFS have a
very competitive performance, especially given the number of parameters.
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the training data. The EFPs selected using DisCo out-
perform ParticleNet, and match up to the performance of
LorentzNet [23] at 0.5% of the total training data.

lected feature that probes wide-angle radiation. In the
other path, we see the appearance of the first EFP which
probes 4-prong substructure with small-angle radiation
(� = 0.5), and this is followed up by an IRC-safe EFP
probing 3-prong substructure.

Interestingly in our single run of LorentzNet-guided
DisCo-FFS, the first 6 features are the same as Table II,

whereas after that the 7th-EFP is the same one selected in
Path 1 in III. This confirms that the similar performance
between DisCo-FFS with truth and with LorentzNet is
no coincidence, and is likely because LorentzNet (being
so high-performing) is quite close to the truth labels.

IV. CONCLUSIONS

In this work, we have introduced a new forward fea-
ture selection method, based on the distance correlation
measure of statistical dependence — dubbed DisCo-FFS.
Our method can operate equally well on either truth-
labels (for ab initio feature selection) or on the outputs
of a pre-trained classifier (for explaining a “black box”
AI).

We demonstrated the performance of our method using
the task of boosted top tagging, as boosted top jets have
a rich substructure and many subtle correlations that
have proven to be a fruitful laboratory for developing
increasingly powerful state-of-the-art taggers in the HEP
literature.

Following [30], we have trained our DisCo-FFS method
on a large set (7,000+) of Energy Flow Polynomials,
which aim to provide a complete description of the jet
substructure. We have seen that DisCo-FFS is very e↵ec-
tive at selecting EFPs from this large feature set; DisCo-
FFS can achieve nearly-state-of-the-art top tagging per-
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FIG. 5. R30 vs. number of parameters of the model, for many di↵erent approaches to top-tagging. LorentzNet[23], PaticleNet
[14], ParT [19], and PELICAN [24] are the some of the recent taggers with very good performances. “DisCo-FFS on EFPs”
corresponds to the simple DNN trained on the first nine EFPs selected by DisCo-FFS, while “DNN EFPs” is our DNN trained
on all the 7k EFPs. The remaining taggers are taken from [1]. We see that the nine EFPs selected using Disco-FFS have a
very competitive performance, especially given the number of parameters.

FIG. 6. Performance of training on 0.5%, 1% and 5% of
the training data. The EFPs selected using DisCo out-
perform ParticleNet, and match up to the performance of
LorentzNet [23] at 0.5% of the total training data.

lected feature that probes wide-angle radiation. In the
other path, we see the appearance of the first EFP which
probes 4-prong substructure with small-angle radiation
(� = 0.5), and this is followed up by an IRC-safe EFP
probing 3-prong substructure.

Interestingly in our single run of LorentzNet-guided
DisCo-FFS, the first 6 features are the same as Table II,

whereas after that the 7th-EFP is the same one selected in
Path 1 in III. This confirms that the similar performance
between DisCo-FFS with truth and with LorentzNet is
no coincidence, and is likely because LorentzNet (being
so high-performing) is quite close to the truth labels.

IV. CONCLUSIONS

In this work, we have introduced a new forward fea-
ture selection method, based on the distance correlation
measure of statistical dependence — dubbed DisCo-FFS.
Our method can operate equally well on either truth-
labels (for ab initio feature selection) or on the outputs
of a pre-trained classifier (for explaining a “black box”
AI).

We demonstrated the performance of our method using
the task of boosted top tagging, as boosted top jets have
a rich substructure and many subtle correlations that
have proven to be a fruitful laboratory for developing
increasingly powerful state-of-the-art taggers in the HEP
literature.

Following [30], we have trained our DisCo-FFS method
on a large set (7,000+) of Energy Flow Polynomials,
which aim to provide a complete description of the jet
substructure. We have seen that DisCo-FFS is very e↵ec-
tive at selecting EFPs from this large feature set; DisCo-
FFS can achieve nearly-state-of-the-art top tagging per-
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