
Differentiable Programming
ÖAW AI Winter School

Lukas Heinrich

Why Derivatives are important

Derivatives at a point encode non-local information about functions

• valuable if we do not have global knowledge but can only 

evalulate the function (and now maybe its derivatives) locally

• From Taylor Expansion: higher order derivatives ↔ longer reach

Derivatives in ML & Physics

In optimization tasks (training Neural Nets, finding best-fit parmeters)

having a cheap way to compute gadients is crucial

Gives you a sense of direction 
in high-dimensional space

→ walk towards a minimum 
 by just following the gradient

→ crucial ingredient ot make  
 e.g. Deep Learning work

Example: Neural Networks

Training neural networks: 
Gradient of loss function w.r.t. 
neural network parameters

Input

Intermediate

Layer 1

pred

Layer 2

label

loss

y = Loss(x; ϕ)

ϕ ← ϕ − ∇ϕLoss

NN pars

Example: Statistical Analysis

Maximum likelihood fit: 
Gradient of likelihood function w.r.t. 
model parameters useful to find 
best-fit point (MIGRAD)

p(x |α)

α̂ = argmaxαp(x |α)

Standard Ways to get Derivatives
For an arbitrary function, the easiest way to get a derivative is

through "numeric differentiation" (also called "finite differences")

∂f
∂x

|x=x0
≈

Δy
Δx

≈
f(x + Δx) − f(x)

Δx

Standard Ways to get Derivatives
Pro: very easy to code up, works in any programming language.

Con: to be precise you need a small - does not work in high-D

(completely infeasible for neural nets w/ millions of params)

will always stay an approximation, never exact

Δx

Standard Ways to get Derivatives
Computer Algebra Systems allow you to get exact gradients!

(Mathematica, SymPy) through "symbolic diffferentiation"

Standard Ways to get Derivatives
Pro: Gradients are exact independent of where you evaluate

Standard Ways to get Derivatives
Pro: Gradients are exact independent of where you evaluate

Con: Symbolic frameworks can be inefficient/memory-intensive 
 (repeated subexprs, etc...) & hard to integrate into larger systems

Standard Ways to get Derivatives
Automatic Differentiation is a third method that

• produces exact gradients like symbolic differentiation

• is more efficient than symbolic differentiation

• more easily integratable into standard programming languages

Symbolic
Differrentiation

Numeric
Differrentiation

Automatic
Differrentiation

Smooth Functions
In general we're interested in derivatives functions that map between
spaces with different dimensionality

• how do gradients look like in this case?

f : ℝn → ℝm

y = f(x)

In general we're interested in derivatives functions that map between
spaces with different dimensionality

• how do gradients look like in this case?

• Jacobian Matrix captures full first-order derivatives

f : ℝn → ℝm

y = f(x)
dy = Jf dx

Jf =
∂(y1, …, ym)
∂(x1, …, xn

Smooth Functions

Composition
We also often chain functions together

• how are gradients of ingredients related to gradients of total?

f : ℝn → ℝm g : ℝm → ℝl

z = (g ∘ f)(x) = g(f(x)) = g(y)

Composition
We also often chain functions together

• how are gradients of ingredients related to gradients of total?

• just the matrix product of individual Jacobians

f : ℝn → ℝm g : ℝm → ℝl

dz = Jg∘f = JgJf dx = Jgdy
z = (g ∘ f)(x) = g(f(x)) = g(y)

Upshot: Jacobians are all we need
Jacobian Matrices fully capture the gradient information

• we'll look at efffective ways to calculate them

f : ℝn → ℝm g : ℝm → ℝl

dz = Jg∘f = JgJf dx = Jgdy

Inspecting Linear Maps via Appplication

?

?

?

?

?

?

?

?

?

?

?

?

=

Linear Maps (i.e. Matrices) can be fully characterized by how they  
act on vectors

Q: can we extract values of this matrix by a good choice of vector ?

Inspecting Linear Maps via Appplication
Linear Maps (i.e. Matrices) can be fully characterized by how they  
act on vectors

Q: can we extract values of this matrix by a good choice of vector ?

=

Inspecting Linear Maps via Appplication
Linear Maps (i.e. Matrices) can be fully characterized by how they  
act on vectors

Q: can we extract values of this matrix by a good choice of vector ?

1

0

0

0

=

Inspecting Linear Maps via Appplication

0

1

0

0

=

Linear Maps (i.e. Matrices) can be fully characterized by how they  
act on vectors

Q: can we extract values of this matrix by a good choice of vector ?

Inspecting Linear Maps via Appplication

0

0

1

0

=

Linear Maps (i.e. Matrices) can be fully characterized by how they  
act on vectors

Q: can we extract values of this matrix by a good choice of vector ?

Inspecting Linear Maps via Appplication

0

0

0

1

=

Linear Maps (i.e. Matrices) can be fully characterized by how they  
act on vectors

Q: can we extract values of this matrix by a good choice of vector ?

Inspecting Linear Maps via Appplication
Take-Away: by computing Matrix-Vector Products (MVP) with basis
vectors we can extact columns unknown linear map / matrix

• do not need the explicit matrix, just ability to compute MVPs

• to get full Jacobian we need to compute N matrix-vector products

== ==

Inspecting Linear Maps via Appplication
Gives us a new way to "store"/express matrics via computer 
programs instead of arrays of numbers in memory
• useful if matrix is sparse or regular (coding logic << enumeration)
• recover the array-picture by running program multiple times on

all basis vectors
<latexit sha1_base64="lQ3UcBvh9NXt43M61J7K9BDXnwA=">AAACH3icbVDLTgIxFO3gC8cX6tJNI9G4IjOg6JLoxiUm8kgYQjrlAg2dzqTtGMmEP3Hjr7hxoTHGHX9jB0hU8CYnPTnn3vTe40ecKe04Eyuzsrq2vpHdtLe2d3b3cvsHdRXGkkKNhjyUTZ8o4ExATTPNoRlJIIHPoeEPb1K/8QBSsVDc61EE7YD0BesxSrSROrmy7fnQZyLxA6IlexzbRXyKSwaO59lO+hpc2B6I7k+P3cnlnYIzLbxM3DnJo3lVO7kvrxvSOAChKSdKtVwn0u2ESM0oh7HtxQoiQoekDy1DBQlAtZPpfWN8YpQu7oXSQGg8VX9PJCRQahT4ptNsOFCLXir+57Vi3btqJ0xEsQZBZx/1Yo51iNOwcJdJoJqPDCFUMrMrpgMiCdUm0jQEd/HkZVIvFtxyoXR3nq9cz+PIoiN0jM6Qiy5RBd2iKqohip7QC3pD79az9Wp9WJ+z1ow1nzlEf8qafAOOjJ5X</latexit>
2 3 0
0 0 5

�

If we change the order we can extract rows!
Vector-Matrix Products instead of Matrix-Vector Products
• do not need the explicit matrix, just ability to compute VMPs

Inspecting Linear Maps via Appplication

?

?

?

?

?

?

?

?

?

?

?

?

=

If we change the order to extract rows!
Vector-Matrix Products instead of Matrix-Vector Products
• do not need the explicit matrix, just ability to compute VMPs

Inspecting Linear Maps via Appplication

= 00

1

Inspecting Linear Maps via Appplication

= 0

10

If we change the order to extract rows!
Vector-Matrix Products instead of Matrix-Vector Products
• do not need the explicit matrix, just ability to compute VMPs

Inspecting Linear Maps via Appplication

= 100

If we change the order to extract rows!
Vector-Matrix Products instead of Matrix-Vector Products
• do not need the explicit matrix, just ability to compute VMPs

Inspecting Linear Maps via Appplication

=

==

If we change the order to extract rows!
Vector-Matrix Products instead of Matrix-Vector Products
• do not need the explicit matrix, just ability to compute VMPs

Again as Programs
Again, savings if elements are 
easier/compactly expressed by 
logic than enumeration

<latexit sha1_base64="UvRqwseuRHepxUl6TPozPZz3bSQ=">AAACH3icbVDLSgMxFM34rONr1KWbYFFclZm2VpdFNy4r2Ad0Ssmkt21oJjMkGbEM/RM3/oobF4qIu/6N6QPU1guHHM65l9x7gpgzpV13bK2srq1vbGa27O2d3b195+CwpqJEUqjSiEeyERAFnAmoaqY5NGIJJAw41IPBzcSvP4BULBL3ehhDKyQ9wbqMEm2ktlOy/QB6TKRBSLRkjyM7j89wwcD1fds174VB0fZBdH567LaTdXPutPAy8eYki+ZVaTtffieiSQhCU06UanpurFspkZpRDiPbTxTEhA5ID5qGChKCaqXT+0b41Cgd3I2kgdB4qv6eSEmo1DAMTKfZsK8WvYn4n9dMdPeqlTIRJxoEnX3UTTjWEZ6EhTtMAtV8aAihkpldMe0TSag2kU5C8BZPXia1fM4r5Qp3xWz5eh5HBh2jE3SOPHSJyugWVVAVUfSEXtAbereerVfrw/qcta5Y85kj9Kes8TeU8J5b</latexit>
2 3 0
0 5 4

�

Upshot: Row- or Columnwise Extraction
We can fully characterize a Matrix through its products with vectors
• Matrix-vector products extract columns (N times for full Matrix)

• vector-Matrix products extract rows (M times for full Matrix)

Gives us a new way to "store" a matrix: as a computer program (e.g.
source code) mapping vectors to vectors vs as array of numbers.

= 0

10

0

1

0

0

=

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Compositions

=

M M3M2M1

Compositions

1

0

0

0

1

0

0

0

= =

ci = Mei ci = Mei = M3M2M1ei

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Compositions

1

0

0

0

1

0

0

0

= =

ci = Mei ci = Mei = M3M2M1ei

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Compositions

1

0

0

0

= =

ci = Mei ci = Mei = M3M2v1

Compositions

1

0

0

0

= =

ci = Mei ci = Mei = M3M2v1

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Compositions

1

0

0

0

= =

ci = Mei ci = Mei = M3v2

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Compositions

1

0

0

0

= =

ci = Mei ci = Mei = M3v2

Compositions

1

0

0

0

= =

ci = Mei ci = Mei = M3v2

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Compositions
Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

1

0

0

0

= =

ci = Mei ci = Mei = v3

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Compositions

M M = M1M2M3

=

Compositions

=

ri = eT
i M ri = eT

i M = eT
i M3M2M1

00

1

00

1=

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Compositions

=

ri = eT
i M

00

1

00

1=

ri = eT
i M = eT

i M3M2M1

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Compositions

=

ri = eT
i M ri = eT

i M = v̄1M2M1

00

1 =

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Compositions

=

ri = eT
i M ri = eT

i M = v̄1M2M1

00

1 =

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Compositions

=

ri = eT
i M ri = eT

i M = v̄2M1

00

1 =

Compositions

=

ri = eT
i M ri = eT

i M = v̄2M1

00

1 =

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
• just successive MVP/VMP until exhausted

Compositions

=

ri = eT
i M ri = eT

i M = v̄3

00

1 =

Upshot: Forward and Backward
MVPs/VMPs can characterize a Products of Marices efficiently

Depending on the type of product either go forwards or backwards

• to get a row/column we never need explicit representations of . 

Ability to compute MVP/VMPs is all we need ("matrix-free approach)
Mi

ri = eT
i M = eT

i M3M2M1

ri = eT
i M = v̄1M2M1

ri = eT
i M = v̄2M1

ri = eT
i M = v̄3

ci = Mei = M3M2M1ei

ci = Mei = M3M2v1

ci = Mei = M3v2

ci = Mei = v3

backward (or reverse)forward

Back to Derivatives
From our discussion we now have a tool to efficiently compute 
Jacobian matrices of deep compositions of functions

• need only ability to compute Jacobian-vector products (JVP) or

vector-Jacobian products (VJP)

• as in the Matrix-case: we can represent Jacobians as 

computer programs that map vectors to vectors

f : ℝn → ℝm g : ℝm → ℝl

Jg∘f = JgJf

Forward and Backward Propagation
As in the Matrix-case, we can compute Jacobians in

• forward-mode (with Jacobian-Vector Products)

• reverse-mode (with Vector-Jacobian Products)

ci = Jk∘h∘g∘f ei = JkJhJgJf ei

ri = eT
i Jk∘h∘g∘f = eT

i JkJhJgJf

Forward and Backward Propagation
As in the Matrix-case, we can compute Jacobians in

• forward-mode (with Jacobian-Vector Products)

• reverse-mode (with Vector-Jacobian Products)

• also known as "Backpropagation" in ML

ci = Jk∘h∘g∘f ei = JkJhJgJf ei

ri = eT
i Jk∘h∘g∘f = eT

i JkJhJgJf

<latexit sha1_base64="vfdHkNIwT16S5/qGlHlBPdCEmPA=">AAACOXicbVDLSsNAFJ34rPUVdelmsAh1UxIVdSMU3YirCvYBTQiT6aQdOnkwMymGkN9y41+4E9y4UMStP+CkDT5aDwycOffcO3OPGzEqpGE8aXPzC4tLy6WV8ura+samvrXdEmHMMWnikIW84yJBGA1IU1LJSCfiBPkuI213eJnX2yPCBQ2DW5lExPZRP6AexUgqydEb1WvHg6MDh8JzaInYd4YwVVLmpHSYwZG6/uhWhLikiMFE2a1QzYXf0p0zsTt6xagZY8BZYhakAgo0HP3R6oU49kkgMUNCdE0jknaaj8WMZGUrFiRCeIj6pKtogHwi7HS8eQb3ldKDXsjVCSQcq787UuQLkfiucvpIDsR0LRf/q3Vj6Z3ZKQ2iWJIATx7yYgZlCPMYYY9ygiVLFEGYU/VXiAeIIyxV2GUVgjm98ixpHdbMk9rRzXGlflHEUQK7YA9UgQlOQR1cgQZoAgzuwTN4BW/ag/aivWsfE+ucVvTsgD/QPr8AqO2sWA==</latexit>

(Jfv)i =
X

k

Jf ikvk =
X

k

@yi
@xk

vk

<latexit sha1_base64="h+/KW5UI3/XhHI0WZb9Vud8Jx0Y=">AAACTnicbVHLS8MwHE7na87X1KOX4BDmZbQq6kUYehFPE9wD1lLSLN2ypQ+SdFhK/0Iv4s0/w4sHRTTdiui2DwIf3/d7JF+ckFEhdf1VKywtr6yuFddLG5tb2zvl3b2WCCKOSRMHLOAdBwnCqE+akkpGOiEnyHMYaTujm8xvjwkXNPAfZBwSy0N9n7oUI6kku0yqpoN4Mk7hne3CY3sIr6ApIs8ewdxQLFFeaiejYQoX2maIuKSIwTjTA7UP/kqPtuqyyxW9pk8A54mRkwrI0bDLL2YvwJFHfIkZEqJr6KG0kmwmZiQtmZEgIcIj1CddRX3kEWElkzhSeKSUHnQDro4v4UT925EgT4jYc1Slh+RAzHqZuMjrRtK9tBLqh5EkPp4uciMGZQCzbGGPcoIlixVBmFN1V4gHiCMs1Q+UVAjG7JPnSeukZpzXTu/PKvXrPI4iOACHoAoMcAHq4BY0QBNg8ATewAf41J61d+1L+56WFrS8Zx/8Q6H4A51vtCk=</latexit>

(v̄Jf)j =
X

k

v̄kJf kj =
X

k

v̄k
@yk
@xj

Why Backpropagation for ML?
Neural Net Loss functions map network parameters to losses

Shape of the Jacobian: a single row! (i.e. the gradient)∇ϕL

L : ℝN → ℝ

xJL = ∇ϕLx =

Example
<latexit sha1_base64="ZzocWxegl+z6uGfozU0hKSpwbII=">AAACO3icbVC7SgNBFJ2Nr7i+opY2g0GwCrtGVKxEG8so5gHZGGYnd5Mhs7PLzKy4LPkvG3/CzsbGQhFbeycPRBMPDBzOOZe59/gxZ0o7zrOVm5tfWFzKL9srq2vrG4XNrZqKEkmhSiMeyYZPFHAmoKqZ5tCIJZDQ51D3+xdDv34HUrFI3Og0hlZIuoIFjBJtpHbhOjjFng9dJjI/JFqy+4F973l2ansgOj8a9nQ0m0uHwdvyVLRdKDolZwQ8S9wJKaIJKu3Ck9eJaBKC0JQTpZquE+tWRqRmlMPA9hIFMaF90oWmoYKEoFrZ6PYB3jNKBweRNE9oPFJ/T2QkVCoNfZM0C/bUtDcU//OaiQ5OWhkTcaJB0PFHQcKxKWJYJO4wCVTz1BBCJTO7YtojklBt6rZNCe70ybOkdlByj0rlq8Pi2fmkjjzaQbtoH7noGJ2hS1RBVUTRA3pBb+jderRerQ/rcxzNWZOZbfQH1tc3sNWugg==</latexit>

f :


x
y

�
!


xy
y3

� <latexit sha1_base64="vIiZkweOonwrb7NOZM0XwrsbSWk=">AAACq3ichVFda9swFJW9buvSbsvax72IhpUMtmA3Y+tLoawvow+lZcsHjVMjy9epqCwbSR4WJn+uP2Fv/TeTU1Mad7ALQodzz/2Ocs6U9rw7x3228fzFy81Xna3t12/edt/tjFVWSAojmvFMTiOigDMBI800h2kugaQRh0l0c1L7J79BKpaJX9rkME/JQrCEUaItFXZvT8ME4yMcRLBgoopSoiUrl50gJ1IzwsMS90vzEe/jB8asmCBY05irYVtUU7UKRPyQN6xKW6wMvU/YHJnQW9ra7dLG5iltoGf/obk6+F+GsNvzBt7K8FPgN6CHGjsPu3+COKNFCkJTTpSa+V6u51XdOeVgZy8U5ITekAXMLBQkBTWvVrte4g+WiXGSSfuExiv2cURFUqVMGlml7fhatX01+S/frNDJ4bxiIi80CHpfKCk41hmuD4djJoFqbiwgVDLbK6bXRBKq7Xk7dgl+e+SnYHww8L8Ohhdfesffm3VsovdoD/WRj76hY/QDnaMRok7fOXMmztT97P50L93gXuo6TcwuWjMX/gK16MyM</latexit>

Jf =


@x(xy) @y(xy)
@x(y3) @y(y3)

�

x=x0,y=y0

=


y x
0 3y2

�

x=x0,y=y0

Note: JVP program 
depends on the point where

the derivative is taken

Composition

x0

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

The JVP/VJP programs must be generated as you step through the
composition (b/c of position dependence of Jacobian at each step)

Composition

make
JVP/VJP
program

f1
evaluate funcx0

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

J1

x1

The JVP/VJP programs must be generated as you step through the
composition (b/c of position dependence of Jacobian at each step)

Composition

make
JVP/VJP
program

f1
evaluate funcx0 x1 x2

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

f2

J1 J2

The JVP/VJP programs must be generated as you step through the
composition (b/c of position dependence of Jacobian at each step)

Composition

make
JVP/VJP
program

f1
evaluate funcx0 x1 x2 x3

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

f2 f3

J1 J2 J3

The JVP/VJP programs must be generated as you step through the
composition (b/c of position dependence of Jacobian at each step)

Composition
The JVP/VJP programs must be generated as you step through the
composition (b/c of position dependence of Jacobian at each step)

make
JVP/VJP
program

f1
evaluate funcx0 x1 x2 x3

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

x4f2 f3 f4

J1 J2 J3 J4

Composition

f1

c = Jv0 = J4J3J2J1v0

evaluate funcx0 x1

v0

x2 x3

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

x4f2 f3 f4make
JVP/VJP
program

J1 J2 J3 J4

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward is in the same order as original composition

Composition

f1

c = Jv0 = J4J3J2J1v0

evaluate funcx0 x1

v0

x2 x3

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

x4f2 f3 f4make
JVP/VJP
program

evaluate JVP v1
J1 J2 J3 J4

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward is in the same order as original composition

Composition

f1

c = Jv0 = J4J3J2J1v0

evaluate func

evaluate JVP

x0 x1

v0

x2 x3

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

v1 v2

x4f2 f3 f4make
JVP/VJP
program

J1 J2 J3 J4

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward is in the same order as original composition

Composition

f1

c = Jv0 = J4J3J2J1v0

evaluate func

evaluate JVP

x0 x1

v0

x2 x3

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

v1 v2 v3

x4f2 f3 f4make
JVP/VJP
program

J1 J2 J3 J4

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward is in the same order as original composition

Composition
Once you have the JVP programs you can evaluate the JVP/VJPs

Forward is in the same order as original composition

f1

c = Jv0 = J4J3J2J1v0

evaluate func

evaluate JVP

x0 x1

v0

x2 x3

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

v1 v2 v3 v4

x4f2 f3 f4make
JVP/VJP
program

J1 J2 J3 J4

Composition
Once you have the JVP programs you can evaluate the JVP/VJPs

Forward can be done "on-the-fly". The become available as-you-goJi

c = Jv0 = J4J3J2J1v0

x0

v0

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

Composition

f1

c = Jv0 = J4J3J2J1v0

x0 x1

v0

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

v1
J1

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward can be done "on-the-fly". The become available as-you-goJi

Composition

c = Jv0 = J4J3J2J1v0

x1 x2

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

v1 v2

f2

J2

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward can be done "on-the-fly". The become available as-you-goJi

Composition

c = Jv0 = J4J3J2J1v0

x2 x3

v2 v3

f3

J3

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward can be done "on-the-fly". The become available as-you-goJi

Composition

c = Jv0 = J4J3J2J1v0

x3

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

v3 v4

x4f4

J4

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward can be done "on-the-fly". The become available as-you-goJi

Once you have the JVP programs you can evaluate the JVP/VJPs

Backward is in the rerverse order from original composition

Composition

J1

f1

c = vT
0 J = vT

0 J4J3J2J1

evaluate func

J2 J3 J4

x0 x1

vT
0

x2 x3

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

x4f2 f3 f4make
JVP/VJP
program

Once you have the JVP programs you can evaluate the JVP/VJPs

Backward is in the rerverse order from original composition

Composition

J1

f1

c = vT
0 J = vT

0 J4J3J2J1

evaluate func

evaluate VJP

J2 J3 J4

x0 x1

vT
0

x2 x3

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

vT
1

x4f2 f3 f4make
JVP/VJP
program

Once you have the JVP programs you can evaluate the JVP/VJPs

Backward is in the rerverse order from original composition

Composition

J1

f1

c = vT
0 J = vT

0 J4J3J2J1

evaluate func

evaluate VJP

J2 J3 J4

x0 x1

vT
0

x2 x3

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

vT
2 vT

1

x4f2 f3 f4make
JVP/VJP
program

Once you have the JVP programs you can evaluate the JVP/VJPs

Backward is in the rerverse order from original composition

Composition

J1

f1

c = vT
0 J = vT

0 J4J3J2J1

evaluate func

evaluate VJP

J2 J3 J4

x0 x1

vT
0

x2 x3

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

vT
3 vT

2 vT
1

x4f2 f3 f4make
JVP/VJP
program

Once you have the JVP programs you can evaluate the JVP/VJPs

Backward is in the rerverse order from original composition

Composition

J1

f1

c = vT
0 J = vT

0 J4J3J2J1

evaluate func

evaluate VJP

J2 J3 J4

x0 x1

vT
0

x2 x3

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

vT
3 vT

2 vT
1

x4f2 f3 f4

vT
4

make
JVP/VJP
program

Once you have the JVP programs you can evaluate the JVP/VJPs

Backward cannot be done "on-the-fly", needs all before startingJi

Composition

J1

f1

c = vT
0 J = vT

0 J4J3J2J1

evaluate func

evaluate VJP

J2 J3 J4

x0 x1

vT
0

x2 x3

(f4 ∘ f3 ∘ f2 ∘ f1)(x)

vT
3 vT

2 vT
1

x4f2 f3 f4

vT
4

make
JVP/VJP
program

Computation are naturally expressed as graphs.

• edges represent a data dependence

• correspond to Jacobian matrix element 

 
 

• Matrix Multiplication: summation over edges.

(generalizes beyond "feed-forward" graphs)

The Graph Picture

y1 y2 y3 y3

x1 x2 x3

z1 z2 z3

(g ∘ f)(x)

y = f(x)

z = g(y)

yi xj

Jij =
∂yi

∂xj

<latexit sha1_base64="vfdHkNIwT16S5/qGlHlBPdCEmPA=">AAACOXicbVDLSsNAFJ34rPUVdelmsAh1UxIVdSMU3YirCvYBTQiT6aQdOnkwMymGkN9y41+4E9y4UMStP+CkDT5aDwycOffcO3OPGzEqpGE8aXPzC4tLy6WV8ura+samvrXdEmHMMWnikIW84yJBGA1IU1LJSCfiBPkuI213eJnX2yPCBQ2DW5lExPZRP6AexUgqydEb1WvHg6MDh8JzaInYd4YwVVLmpHSYwZG6/uhWhLikiMFE2a1QzYXf0p0zsTt6xagZY8BZYhakAgo0HP3R6oU49kkgMUNCdE0jknaaj8WMZGUrFiRCeIj6pKtogHwi7HS8eQb3ldKDXsjVCSQcq787UuQLkfiucvpIDsR0LRf/q3Vj6Z3ZKQ2iWJIATx7yYgZlCPMYYY9ygiVLFEGYU/VXiAeIIyxV2GUVgjm98ixpHdbMk9rRzXGlflHEUQK7YA9UgQlOQR1cgQZoAgzuwTN4BW/ag/aivWsfE+ucVvTsgD/QPr8AqO2sWA==</latexit>

(Jfv)i =
X

k

Jf ikvk =
X

k

@yi
@xk

vk

<latexit sha1_base64="h+/KW5UI3/XhHI0WZb9Vud8Jx0Y=">AAACTnicbVHLS8MwHE7na87X1KOX4BDmZbQq6kUYehFPE9wD1lLSLN2ypQ+SdFhK/0Iv4s0/w4sHRTTdiui2DwIf3/d7JF+ckFEhdf1VKywtr6yuFddLG5tb2zvl3b2WCCKOSRMHLOAdBwnCqE+akkpGOiEnyHMYaTujm8xvjwkXNPAfZBwSy0N9n7oUI6kku0yqpoN4Mk7hne3CY3sIr6ApIs8ewdxQLFFeaiejYQoX2maIuKSIwTjTA7UP/kqPtuqyyxW9pk8A54mRkwrI0bDLL2YvwJFHfIkZEqJr6KG0kmwmZiQtmZEgIcIj1CddRX3kEWElkzhSeKSUHnQDro4v4UT925EgT4jYc1Slh+RAzHqZuMjrRtK9tBLqh5EkPp4uciMGZQCzbGGPcoIlixVBmFN1V4gHiCMs1Q+UVAjG7JPnSeukZpzXTu/PKvXrPI4iOACHoAoMcAHq4BY0QBNg8ATewAf41J61d+1L+56WFrS8Zx/8Q6H4A51vtCk=</latexit>

(v̄Jf)j =
X

k

v̄kJf kj =
X

k

v̄k
@yk
@xj

Upshot: Jacobians as Programs
• Since Jacobians are Matrices we can use our tools to express 

rows & columns of them as programs (JVP, VJP)

• Jacobians of deep compositions are easy to compute without 
ever explicitly calculating all matrix elements once we have these 
Jacobian Programs for the individual functions being composed 

• Corollary: based on a small set building blocks (where we
manually code JVP, VJP) we can compute Jacobians (i.e.
derivatives) automatically for an almost unlimited set of functions 
(all the ways the building blocks can be built

• Since Jacobians are Matrices we can use our tools to express 
rows & columns of them as programs (JVP, VJP)

• Jacobians of deep compositions are easy to compute without 
ever explicitly calculating all matrix elements once we have these 
Jacobian Programs for the individual functions being composed 

• Corollary: based on a small set building blocks (where we
manually code JVP, VJP) we can compute Jacobians (i.e.
derivatives) automatically for an almost unlimited set of functions 
(all the ways the building blocks can be built

Upshot: Jacobians as Programs

Automatic Differentiation

Automatic Differentiation Systems
Systems that allow you to write numerical programs:  
(i.e. complex compositios of basic building blocks), 
that are efficietly differentiable

They do it by:

• implementing (+,-,*,/,√,^,exp,log,sin,cos,tan,...)

• JVP/VJP for basic operations

• automating for you the composition for running either 

forward or backward propagation

ℝn → ℝm

Automatic Differentiation Systems
Most Deep Learning Framework are at their core Autodiff systems

• I'll focus on Jax, since it's more elegeant from a AD perspective

Beyond Deep Learning
But there is a long list of non-DL focused AD frameworks as well

• idea exist in many language (C++, Julia, Fortran, ...)

Enzyme.jl (Julia)

autodiff (C++)

Example: Autodiff with Jax

Manual Automatic

Example: Autodiff with Jax

Manual Automatic

Higher-level APIs
As a standard user you care about 
the derivatives/Jacobians.

Autodiff frameworks give you  
nice wrappers. 

Thinking in terms of JVP/VJP

is not necessary for day-to-day use

(but useful to understand once)

Getting the derivative for 
an arbitrary python function 

with a single line

Higher-level APIs
With autodiff you can not only get first-order derivatives

Higher-level APIs
With autodiff you can not only get first-order derivatives

Applications

Acceleration of Computation 
(e.g. sometimes by searching for a good approximation)

Search for new (better) Algorithms 
(e.g. targeted search based on samples)

ML Opportunities in Fundamental Physics

Start

End

Target

x

space of possible algorithms

up to us to find best observables
→search for best reconstruction

simulation side: the physics is fixed:
nothing to search for →speed up simulation 88

Learning: data-driven search for a function with optimal performance in a huge

Space of Algorithms

inputs Algorithm fϕ output

Feedback

parameters

Evaluation objective

training data
algorithm

<latexit sha1_base64="oVXfQu0IWU+xUIdPK5DoEAJdyZA=">AAACFHicbVDLSsNAFJ34rPVVdelmsAgtlpJIUZdFEVy4qGAf0IQwmU7aoZMHMxNpCPkIN/6KGxeKuHXhzr9xknahrQcuHM65l3vvcUJGhdT1b21peWV1bb2wUdzc2t7ZLe3td0QQcUzaOGAB7zlIEEZ90pZUMtILOUGew0jXGV9lfveBcEED/17GIbE8NPSpSzGSSrJLJ6aH5MhxkuvUTiqTWlxNcwUjltymFdc2wxGtTKo1GFftUlmv6zngIjFmpAxmaNmlL3MQ4MgjvsQMCdE39FBaCeKSYkbSohkJEiI8RkPSV9RHHhFWkj+VwmOlDKAbcFW+hLn6eyJBnhCx56jO7GAx72Xif14/ku6FlVA/jCTx8XSRGzEoA5glBAeUEyxZrAjCnKpbIR4hjrBUORZVCMb8y4ukc1o3zuqNu0a5eTmLowAOwRGoAAOcgya4AS3QBhg8gmfwCt60J+1Fe9c+pq1L2mzmAPyB9vkDpTSd6Q==</latexit>

E(x,y)L(f�(x), y)
performance 

evaluation

Lightning Summary of ML

89

Performance:
How do we learn practically?

search space should be large enough → trillions of parameters! How could this work?
→ gradient-based optimization (“good sense of direction”)

→ requires algorithms and evaluation to 
be differentiable

Lightning Summary of ML

To deal with hyper-planes in a 14-dimensional space, visualize a 3D  
space and say 'fourteen' to yourself very loudly. -Hinton (DL pioneer)

∂L
∂ϕ

=
∂L
∂f

∂f
∂ϕ

90

Finding the right Search Space

manual derivation of efficient 
gradient computation

fixed but generic, large and easily 
differentiable function class:

domain-specific, arbitrary computation 
encoding e.g. symmetries, dynamics, …

?

Rgy = f(Rgx) ·x = f(x)

[M. Bronstein]

91

At first Increasingly

Immediate Gains from DiffProg: allows us to add physics into ML models 

• bias towards good solutions by constraining solution space
• hard-coded knowledge does not need to be learned from data (efficiency)

Differentiable Programming in ML

Start

End

Target

x

no structure

differentiable 
structure

Data

Er
ro

rs

put physics here

92

Differentiable Programming in ML

Hamiltonian Neural Nets

Lorentz-Invariance

Neural Nets with 
QCD-like Structure

arXiv:1906.01563

arXiv:2006.04780

arXiv:1702.00748

Gauge-Equivariant 
Convolutional Neural Networks

SU(N)-Equivariant Normalizing Flows

Lagrangian Neural Nets
arXiv: 2003.04630

93

Complementary Approach: add physics-driven evaluation 

Differentiable Programming in ML

put physics here

94

Training Fast Simulators: produce events at correct relative proportions

At parton level, events should follow Matrix Element proportions

If we have differentiable Matrix Elements we can check directly
|ℳ |2 ({ ⃗pi }, θ)

Differentiable Programming in ML

σ(x, θ) = ∑
i

|ℳi(x, θ) |2

noise eventsML model

sample diversity

result
Matrix Elements

parameters

physics-driven evaluation 95

MadJax: MadGraph calculations (originally FORTRAN) transpiled into differentiable
programming language (JAX) → usable as evaluation function during training

Differentiable Programming in ML

∇xσ(x, θ) ∇θσ(x, θ)
phase-space 
derivatives

theory Parameter 
derivatives

better description of density than 
pure ML training

mg5_aMC —mode=madjax_me_gen -f ee_to_mumu.mg5
arxiv:2203.00057 96

[LH, M. Kagan]

Same approach in Lattice QCD:

Learn proposal distribution for sampling 
of fields on a lattice (for MCMC / IS)

• encode symmetries in ML sampler

• evaluate on LQCD action in DiffProg 

language (pytorch)

Differentiable Programming in ML

noise fieldsML model

sample diversity

result
LQCD Action

parameters

physics-driven evaluation
arxiv: 1904.12072
arxiv:2101.08176

Albergo et al.

97

Parton Density Functions: DP can train NNPDF as it was meant to be trained
One of the early use-cases of NNs in HEP: PDF parametrizations 
 

Differentiable Programming in ML

physics-driven evaluation

Curiosity:  
traditionally not(!) trained via gradient-descent 
→ too difficult to get gradients

→ use genetic algorithms (mutation + select) 
→ works but is slow

genetic algorithms

χ2
3

DGLAP

χ2
1

PDF at Q0NN @ Q1

χ2
2

@ Q2DGLAP @ Q3DGLAP

pars ϕ

χ2
global

[Source] 98

https://www.cs.ubc.ca/~van/papers/2013-TOG-MuscleBasedBipeds/index.html

More recently: PDF evolution kernels implemented in DiffProg (Tensorflow)

• allows finally for a gradient-based training of NN

Differentiable Programming in ML

arxiv: 1907.05075
99[Carrazza et al]

Gradients useful far beyond ML: e.g. complex fits via differentiable programming

Differentiable Programming Beyond ML

ComPWA [R. deBoer, M. Mikhasenko]

Partial Wave Analysis

Const

Cast

89×8×1×23

Greater

Cast_9

89×1

add

einsum_3

89×1

Const_2

Cast_1

89×8×23

Greater_1

Cast_10

13×1

add_6

concat_2

23×8×1×23

strided_slice

Poisson

23

ones_8

einsum_7

8

ones_9

mul_17

1

ones_1

einsum_2

89×8×2389×8×23

ones_2

einsum

89×1

ones_3

einsum_1

89×1

ones_4

mul

89×1

ones_5

einsum_6

13×8×23

ones_6

mul_6

13×1

ones_7

mul_16

10×8×1×23

Reshape

concat_1

1×8×1×23

Sum

Reshape_2

8×1×23

add_1

Pow

89×8×1×23

Cast_7

GatherV2_2

23×23

Cast_4

einsum_4

13×8×23

Cast_5

einsum_5

13×8×23

Cast_2

89×8×23

Cast_3

sub_5

13×8×1×23

mul_10

13×8×1×23

add_7

10×8×1×23

89×8×23

add_9

add_8

Cast_8

1

sub

89×189×1

mul_1

89×1

89×1

sub_2

89×8×1×23

mul_4

89×8×1×23

Normal

Sum_3

mul_5

89×8×1×23

sub_3

mul_7

13×1

sub_1

mul_3

89×8×1×23

sub_6

mul_13

23×8×1×23

sub_7

10×8×1×23

sub_4

mul_9

13×8×1×23

mul_11

13×8×1×23

Prod

123×8×1×23

boolean_mask

IsFinite

mul_2 mul_8

mul_12

Sum_1

8×1×23

add_3

13×1

13×1

add_2

89×8×1×23

89×8×1×23

89×8×1×23

89×8×1×23

89×1

add_4

13×8×1×23

13×8×1×23

zeros

89×1

strided_slice_2

23

Sum_2

Const_21

GatherV2_5

125

GatherV2_4

125 125

23×23

GatherV2_3

Reshape_1

10×1

GatherV2_1

13×1 13×113×1

Const_17

Cast_12

23×8×1×23

Const_16

Cast_11

23×8×1×23

Const_15

135

135135

GatherV2

135

concat

135

Const_14

148

strided_slice_1

148

Const_13

8×23

Const_12

1

Const_11

1

Const_10

23×23

Const_19

125

Const_18

1

Const_3

89×8×23

Cast_6

10×8×1×23

mul_14

10×8×1×23

mul_15

10×8×1×23

Const_1

89×1

Const_7

13×8×23

Const_6

13×8×23

Const_5

13×1

Const_4

13×8×1×23

Const_9

10×1

Const_8

10×8×1×23

13×1

89×8×1×23

add_5

13×8×1×23

14×8×1×23

23

13×8×1×23

Const_22

1

Const_20

125

zeros_2

13×1

zeros_1

13×8×1×23

Abs

89×1

1×8×1×23

10×1×1×1

89×1 89×1

1×23

13×113×1 23×8×1×23 23×8×1×23

23×8×1×23

13×8×1×2313×8×1×23

23×8×1×23

23×8×1×23

10×8×1×23

10×8×1×23 10×8×1×23

125

136

89×8×1×23

ones

89×8×1×23

pyhf [LH, G. Start, M. Feickert]

Binned Likelihoods (LHC, EIC, Belle-II, …)

100

https://app.slack.com/team/U0353VC9XNX

