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Why Derivatives are important

Derivatives at a point encode non-local information about functions

• valuable if we do not have global knowledge but can only 

evalulate the function (and now maybe its derivatives) locally

• From Taylor Expansion: higher order derivatives ↔ longer reach



Derivatives in ML & Physics

In optimization tasks (training Neural Nets, finding best-fit parmeters) 

having a cheap way to compute gadients is crucial


Gives you a sense of direction 
in high-dimensional space


→ walk towards a minimum 
     by just following the gradient


→ crucial ingredient ot make  
    e.g. Deep Learning work



Example: Neural Networks

Training neural networks: 
Gradient of loss function w.r.t. 
neural network parameters

Input

Intermediate

Layer 1

pred

Layer 2

label

loss

y = Loss(x; ϕ)

ϕ ← ϕ − ∇ϕLoss

NN  pars



Example: Statistical Analysis

Maximum likelihood fit: 
Gradient of likelihood function w.r.t. 
model parameters useful to find 
best-fit point (MIGRAD)

p(x |α)

α̂ = argmaxαp(x |α)



Standard Ways to get Derivatives
For an arbitrary function, the easiest way to get a derivative is

through "numeric differentiation" (also called "finite differences")

∂f
∂x

|x=x0
≈

Δy
Δx

≈
f(x + Δx) − f(x)

Δx



Standard Ways to get Derivatives
Pro: very easy to code up, works in any programming language.

Con: to be precise you need a small  - does not work in high-D


(completely infeasible for neural nets w/ millions of params)

will always stay an approximation, never exact

Δx



Standard Ways to get Derivatives
Computer Algebra Systems allow you to get exact gradients!

(Mathematica, SymPy) through "symbolic diffferentiation"




Standard Ways to get Derivatives
Pro: Gradients are exact independent of where you evaluate




Standard Ways to get Derivatives
Pro: Gradients are exact independent of where you evaluate

Con: Symbolic frameworks can be inefficient/memory-intensive 
        (repeated subexprs, etc...) & hard to integrate into larger systems




Standard Ways to get Derivatives
Automatic Differentiation is a third method that

• produces exact gradients like symbolic differentiation

• is more efficient than symbolic differentiation

• more easily integratable into standard programming languages


Symbolic 
Differrentiation

Numeric 
Differrentiation

Automatic 
Differrentiation



Smooth Functions
In general we're interested in derivatives functions that map between 
spaces with different dimensionality

• how do gradients look like in this case?

f : ℝn → ℝm

y = f(x)



In general we're interested in derivatives functions that map between 
spaces with different dimensionality

• how do gradients look like in this case? 

• Jacobian Matrix captures full first-order derivatives

f : ℝn → ℝm

y = f(x)
dy = Jf dx

Jf =
∂(y1, …, ym)
∂(x1, …, xn

Smooth Functions



Composition
We also often chain functions together

• how are gradients of ingredients related to gradients of total?

f : ℝn → ℝm g : ℝm → ℝl

z = (g ∘ f )(x) = g( f(x)) = g(y)



Composition
We also often chain functions together

• how are gradients of ingredients related to gradients of total?

• just the matrix product of individual Jacobians

f : ℝn → ℝm g : ℝm → ℝl

dz = Jg∘f = JgJf dx = Jgdy
z = (g ∘ f )(x) = g( f(x)) = g(y)



Upshot: Jacobians are all we need
Jacobian Matrices fully capture the gradient information

• we'll look at efffective ways to calculate them

f : ℝn → ℝm g : ℝm → ℝl

dz = Jg∘f = JgJf dx = Jgdy



Inspecting Linear Maps via Appplication
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Linear Maps (i.e. Matrices) can be fully characterized by how they  
act on vectors


Q: can we extract values of this matrix by a good choice of vector ? 
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Inspecting Linear Maps via Appplication

0
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0
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Linear Maps (i.e. Matrices) can be fully characterized by how they  
act on vectors


Q: can we extract values of this matrix by a good choice of vector ? 



Inspecting Linear Maps via Appplication
Take-Away: by computing Matrix-Vector Products (MVP) with basis 
vectors we can extact columns unknown linear map / matrix

• do not need the explicit matrix, just ability to compute MVPs

• to get full Jacobian we need to compute N matrix-vector products

== ==



Inspecting Linear Maps via Appplication
Gives us a new way to "store"/express matrics via computer 
programs instead of arrays of numbers in memory 
• useful if matrix is sparse or regular (coding logic << enumeration) 
• recover the array-picture by running program multiple times on 

all basis vectors
<latexit sha1_base64="lQ3UcBvh9NXt43M61J7K9BDXnwA=">AAACH3icbVDLTgIxFO3gC8cX6tJNI9G4IjOg6JLoxiUm8kgYQjrlAg2dzqTtGMmEP3Hjr7hxoTHGHX9jB0hU8CYnPTnn3vTe40ecKe04Eyuzsrq2vpHdtLe2d3b3cvsHdRXGkkKNhjyUTZ8o4ExATTPNoRlJIIHPoeEPb1K/8QBSsVDc61EE7YD0BesxSrSROrmy7fnQZyLxA6IlexzbRXyKSwaO59lO+hpc2B6I7k+P3cnlnYIzLbxM3DnJo3lVO7kvrxvSOAChKSdKtVwn0u2ESM0oh7HtxQoiQoekDy1DBQlAtZPpfWN8YpQu7oXSQGg8VX9PJCRQahT4ptNsOFCLXir+57Vi3btqJ0xEsQZBZx/1Yo51iNOwcJdJoJqPDCFUMrMrpgMiCdUm0jQEd/HkZVIvFtxyoXR3nq9cz+PIoiN0jM6Qiy5RBd2iKqohip7QC3pD79az9Wp9WJ+z1ow1nzlEf8qafAOOjJ5X</latexit>
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If we change the order we can extract rows! 
Vector-Matrix Products instead of Matrix-Vector Products 
• do not need the explicit matrix, just ability to compute VMPs

Inspecting Linear Maps via Appplication
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If we change the order to extract rows! 
Vector-Matrix Products instead of Matrix-Vector Products 
• do not need the explicit matrix, just ability to compute VMPs

Inspecting Linear Maps via Appplication

= 00
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Inspecting Linear Maps via Appplication
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Inspecting Linear Maps via Appplication
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Inspecting Linear Maps via Appplication
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If we change the order to extract rows! 
Vector-Matrix Products instead of Matrix-Vector Products 
• do not need the explicit matrix, just ability to compute VMPs



Again as Programs
Again, savings if elements are 
easier/compactly expressed by 
logic than enumeration
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Upshot: Row- or Columnwise Extraction 
We can fully characterize a Matrix through its products with vectors 
• Matrix-vector products extract columns (N times for full Matrix)

• vector-Matrix products extract rows (M times for full Matrix)


Gives us a new way to "store" a matrix: as a computer program (e.g. 
source code)  mapping vectors to vectors vs as array of numbers.
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Matrix-Vector/Vector Matrix Products allow us to characterize 
Matrix Composition without expensive Matrix multiplication 
• just successive MVP/VMP until exhausted

Compositions

=

M M3M2M1



Compositions
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Matrix-Vector/Vector Matrix Products allow us to characterize 
Matrix Composition without expensive Matrix multiplication 
• just successive MVP/VMP until exhausted
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Matrix-Vector/Vector Matrix Products allow us to characterize 
Matrix Composition without expensive Matrix multiplication 
• just successive MVP/VMP until exhausted
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Matrix Composition without expensive Matrix multiplication 
• just successive MVP/VMP until exhausted



Compositions
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Matrix-Vector/Vector Matrix Products allow us to characterize 
Matrix Composition without expensive Matrix multiplication 
• just successive MVP/VMP until exhausted
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Compositions
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Matrix-Vector/Vector Matrix Products allow us to characterize 
Matrix Composition without expensive Matrix multiplication 
• just successive MVP/VMP until exhausted



Compositions
Matrix-Vector/Vector Matrix Products allow us to characterize 
Matrix Composition without expensive Matrix multiplication 
• just successive MVP/VMP until exhausted
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ci = Mei ci = Mei = v3



Matrix-Vector/Vector Matrix Products allow us to characterize 
Matrix Composition without expensive Matrix multiplication 
• just successive MVP/VMP until exhausted

Compositions

M M = M1M2M3

=
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Matrix-Vector/Vector Matrix Products allow us to characterize 
Matrix Composition without expensive Matrix multiplication 
• just successive MVP/VMP until exhausted
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Matrix-Vector/Vector Matrix Products allow us to characterize 
Matrix Composition without expensive Matrix multiplication 
• just successive MVP/VMP until exhausted
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Matrix-Vector/Vector Matrix Products allow us to characterize 
Matrix Composition without expensive Matrix multiplication 
• just successive MVP/VMP until exhausted



Matrix-Vector/Vector Matrix Products allow us to characterize 
Matrix Composition without expensive Matrix multiplication 
• just successive MVP/VMP until exhausted
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Matrix-Vector/Vector Matrix Products allow us to characterize 
Matrix Composition without expensive Matrix multiplication 
• just successive MVP/VMP until exhausted
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Compositions
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Matrix-Vector/Vector Matrix Products allow us to characterize 
Matrix Composition without expensive Matrix multiplication 
• just successive MVP/VMP until exhausted



Matrix-Vector/Vector Matrix Products allow us to characterize 
Matrix Composition without expensive Matrix multiplication 
• just successive MVP/VMP until exhausted

Compositions

=

ri = eT
i M ri = eT

i M = v̄3

00

1 =



Upshot: Forward and Backward 
MVPs/VMPs can characterize a Products of Marices efficiently

Depending on the type of product either go forwards or backwards

• to get a row/column we never need explicit representations of . 

Ability to compute MVP/VMPs is all we need ("matrix-free approach)
Mi

ri = eT
i M = eT

i M3M2M1

ri = eT
i M = v̄1M2M1

ri = eT
i M = v̄2M1

ri = eT
i M = v̄3

ci = Mei = M3M2M1ei

ci = Mei = M3M2v1

ci = Mei = M3v2

ci = Mei = v3

backward (or reverse)forward



Back to Derivatives
From our discussion we now have a tool to efficiently compute 
Jacobian matrices of deep compositions of functions

• need only ability to compute Jacobian-vector products (JVP) or 

vector-Jacobian products (VJP) 

• as in the Matrix-case: we can represent Jacobians as 

computer programs that map vectors to vectors

f : ℝn → ℝm g : ℝm → ℝl

Jg∘f = JgJf



Forward and Backward Propagation
As in the Matrix-case, we can compute Jacobians in

• forward-mode (with Jacobian-Vector Products)

• reverse-mode (with Vector-Jacobian Products)

ci = Jk∘h∘g∘f ei = JkJhJgJf ei

ri = eT
i Jk∘h∘g∘f = eT

i JkJhJgJf



Forward and Backward Propagation
As in the Matrix-case, we can compute Jacobians in

• forward-mode (with Jacobian-Vector Products)


• reverse-mode (with Vector-Jacobian Products)

• also known as "Backpropagation" in ML

ci = Jk∘h∘g∘f ei = JkJhJgJf ei

ri = eT
i Jk∘h∘g∘f = eT

i JkJhJgJf

<latexit sha1_base64="vfdHkNIwT16S5/qGlHlBPdCEmPA="></latexit>

(Jfv)i =
X

k

Jf ikvk =
X

k

@yi
@xk

vk

<latexit sha1_base64="h+/KW5UI3/XhHI0WZb9Vud8Jx0Y="></latexit>

(v̄Jf )j =
X

k

v̄kJf kj =
X

k

v̄k
@yk
@xj



Why Backpropagation for ML?
Neural Net Loss functions map network parameters to losses


Shape of the Jacobian: a single row! (i.e.  the gradient )∇ϕL

L : ℝN → ℝ

xJL = ∇ϕLx =



Example
<latexit sha1_base64="ZzocWxegl+z6uGfozU0hKSpwbII=">AAACO3icbVC7SgNBFJ2Nr7i+opY2g0GwCrtGVKxEG8so5gHZGGYnd5Mhs7PLzKy4LPkvG3/CzsbGQhFbeycPRBMPDBzOOZe59/gxZ0o7zrOVm5tfWFzKL9srq2vrG4XNrZqKEkmhSiMeyYZPFHAmoKqZ5tCIJZDQ51D3+xdDv34HUrFI3Og0hlZIuoIFjBJtpHbhOjjFng9dJjI/JFqy+4F973l2ansgOj8a9nQ0m0uHwdvyVLRdKDolZwQ8S9wJKaIJKu3Ck9eJaBKC0JQTpZquE+tWRqRmlMPA9hIFMaF90oWmoYKEoFrZ6PYB3jNKBweRNE9oPFJ/T2QkVCoNfZM0C/bUtDcU//OaiQ5OWhkTcaJB0PFHQcKxKWJYJO4wCVTz1BBCJTO7YtojklBt6rZNCe70ybOkdlByj0rlq8Pi2fmkjjzaQbtoH7noGJ2hS1RBVUTRA3pBb+jderRerQ/rcxzNWZOZbfQH1tc3sNWugg==</latexit>

f :


x
y

�
!


xy
y3

� <latexit sha1_base64="vIiZkweOonwrb7NOZM0XwrsbSWk="></latexit>

Jf =


@x(xy) @y(xy)
@x(y3) @y(y3)

�

x=x0,y=y0

=


y x
0 3y2

�

x=x0,y=y0

Note: JVP program 
depends on the point where 

the derivative is taken



Composition

x0

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

The JVP/VJP programs must be generated as you step through the 
composition (b/c of position dependence of Jacobian at each step)



Composition

make 
JVP/VJP 
program

f1
evaluate funcx0

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

J1

x1

The JVP/VJP programs must be generated as you step through the 
composition (b/c of position dependence of Jacobian at each step)



Composition

make 
JVP/VJP 
program

f1
evaluate funcx0 x1 x2

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

f2

J1 J2

The JVP/VJP programs must be generated as you step through the 
composition (b/c of position dependence of Jacobian at each step)



Composition

make 
JVP/VJP 
program

f1
evaluate funcx0 x1 x2 x3

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

f2 f3

J1 J2 J3

The JVP/VJP programs must be generated as you step through the 
composition (b/c of position dependence of Jacobian at each step)



Composition
The JVP/VJP programs must be generated as you step through the 
composition (b/c of position dependence of Jacobian at each step)

make 
JVP/VJP 
program

f1
evaluate funcx0 x1 x2 x3

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

x4f2 f3 f4

J1 J2 J3 J4



Composition

f1

c = Jv0 = J4J3J2J1v0

evaluate funcx0 x1

v0

x2 x3

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

x4f2 f3 f4make 
JVP/VJP 
program

J1 J2 J3 J4

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward is in the same order as original composition



Composition

f1

c = Jv0 = J4J3J2J1v0

evaluate funcx0 x1

v0

x2 x3

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

x4f2 f3 f4make 
JVP/VJP 
program

evaluate JVP v1
J1 J2 J3 J4

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward is in the same order as original composition



Composition

f1

c = Jv0 = J4J3J2J1v0

evaluate func

evaluate JVP

x0 x1

v0

x2 x3

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

v1 v2

x4f2 f3 f4make 
JVP/VJP 
program

J1 J2 J3 J4

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward is in the same order as original composition



Composition

f1

c = Jv0 = J4J3J2J1v0

evaluate func

evaluate JVP

x0 x1

v0

x2 x3

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

v1 v2 v3

x4f2 f3 f4make 
JVP/VJP 
program

J1 J2 J3 J4

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward is in the same order as original composition



Composition
Once you have the JVP programs you can evaluate the JVP/VJPs

Forward is in the same order as original composition

f1

c = Jv0 = J4J3J2J1v0

evaluate func

evaluate JVP

x0 x1

v0

x2 x3

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

v1 v2 v3 v4

x4f2 f3 f4make 
JVP/VJP 
program

J1 J2 J3 J4



Composition
Once you have the JVP programs you can evaluate the JVP/VJPs

Forward can be done "on-the-fly". The  become available as-you-goJi

c = Jv0 = J4J3J2J1v0

x0

v0

( f4 ∘ f3 ∘ f2 ∘ f1)(x)



Composition

f1

c = Jv0 = J4J3J2J1v0

x0 x1

v0

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

v1
J1

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward can be done "on-the-fly". The  become available as-you-goJi



Composition

c = Jv0 = J4J3J2J1v0

x1 x2

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

v1 v2

f2

J2

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward can be done "on-the-fly". The  become available as-you-goJi



Composition

c = Jv0 = J4J3J2J1v0

x2 x3

v2 v3

f3

J3

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward can be done "on-the-fly". The  become available as-you-goJi



Composition

c = Jv0 = J4J3J2J1v0

x3

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

v3 v4

x4f4

J4

Once you have the JVP programs you can evaluate the JVP/VJPs

Forward can be done "on-the-fly". The  become available as-you-goJi



Once you have the JVP programs you can evaluate the JVP/VJPs

Backward is in the rerverse order from original composition

Composition

J1

f1

c = vT
0 J = vT

0 J4J3J2J1

evaluate func

J2 J3 J4

x0 x1

vT
0

x2 x3

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

x4f2 f3 f4make 
JVP/VJP 
program



Once you have the JVP programs you can evaluate the JVP/VJPs

Backward is in the rerverse order from original composition

Composition
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evaluate VJP
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vT
1

x4f2 f3 f4make 
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Once you have the JVP programs you can evaluate the JVP/VJPs

Backward is in the rerverse order from original composition

Composition
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f1
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0 J4J3J2J1

evaluate func

evaluate VJP

J2 J3 J4

x0 x1

vT
0

x2 x3

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

vT
2 vT

1

x4f2 f3 f4make 
JVP/VJP 
program



Once you have the JVP programs you can evaluate the JVP/VJPs

Backward is in the rerverse order from original composition

Composition

J1

f1

c = vT
0 J = vT

0 J4J3J2J1

evaluate func

evaluate VJP

J2 J3 J4

x0 x1

vT
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3 vT
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Once you have the JVP programs you can evaluate the JVP/VJPs

Backward is in the rerverse order from original composition

Composition

J1

f1

c = vT
0 J = vT

0 J4J3J2J1

evaluate func

evaluate VJP

J2 J3 J4

x0 x1

vT
0

x2 x3

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

vT
3 vT

2 vT
1

x4f2 f3 f4

vT
4

make 
JVP/VJP 
program



Once you have the JVP programs you can evaluate the JVP/VJPs

Backward cannot be done "on-the-fly", needs all  before startingJi

Composition

J1

f1

c = vT
0 J = vT

0 J4J3J2J1

evaluate func

evaluate VJP

J2 J3 J4

x0 x1

vT
0

x2 x3

( f4 ∘ f3 ∘ f2 ∘ f1)(x)

vT
3 vT

2 vT
1

x4f2 f3 f4

vT
4

make 
JVP/VJP 
program



Computation are naturally expressed as graphs.


• edges represent a data dependence

• correspond to Jacobian matrix element 

 
 

• Matrix Multiplication: summation over edges.


(generalizes beyond "feed-forward" graphs)

The Graph Picture

y1 y2 y3 y3

x1 x2 x3

z1 z2 z3

(g ∘ f )(x)

y = f(x)

z = g(y)

yi xj

Jij =
∂yi

∂xj
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Upshot: Jacobians as Programs
• Since Jacobians are Matrices we can use our tools to express 

rows & columns of them as programs (JVP, VJP)


• Jacobians of deep compositions are easy to compute without 
ever explicitly calculating all matrix elements once we have these 
Jacobian Programs for the individual functions being composed 

• Corollary: based on a small set  building blocks (where we 
manually code JVP, VJP) we can compute Jacobians (i.e. 
derivatives) automatically for an almost unlimited set of functions 
(all the ways the building blocks can be built
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Upshot: Jacobians as Programs

Automatic Differentiation



Automatic Differentiation Systems
Systems that allow you to write numerical programs:  
(i.e. complex compositios of basic building blocks), 
that are efficietly differentiable


They do it by:


• implementing (+,-,*,/,√,^,exp,log,sin,cos,tan,...)

• JVP/VJP for basic operations

• automating for you the composition for running either 

forward or backward propagation

ℝn → ℝm



Automatic Differentiation Systems
Most Deep Learning Framework are at their core Autodiff systems

• I'll focus on Jax, since it's more elegeant from a AD perspective




Beyond Deep Learning
But there is a long list of non-DL focused AD frameworks as well

• idea exist in many language (C++, Julia, Fortran, ...)

Enzyme.jl (Julia)

autodiff (C++)



Example: Autodiff with Jax

Manual Automatic



Example: Autodiff with Jax

Manual Automatic



Higher-level APIs
As a standard user you care about 
the derivatives/Jacobians.


Autodiff frameworks give you  
nice wrappers. 

Thinking in terms of JVP/VJP

is not necessary for day-to-day use

(but useful to understand once)

Getting the derivative for 
an arbitrary python function 

with a single line



Higher-level APIs
With autodiff you can not only get first-order derivatives




Higher-level APIs
With autodiff you can not only get first-order derivatives




Applications



Acceleration of Computation 
(e.g. sometimes by searching for a good approximation)

Search for new (better) Algorithms 
(e.g. targeted search based on samples)

ML Opportunities in Fundamental Physics

Start

End

Target

x

space of possible algorithms

up to us to find best observables 
→search for best reconstruction

simulation side: the physics is fixed: 
nothing to search for  →speed up simulation 88



Learning: data-driven search for a function with optimal performance in a huge 

Space of Algorithms

inputs Algorithm  fϕ output

Feedback

parameters

Evaluation objective

training data
algorithm
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E(x,y)L(f�(x), y)
performance 

evaluation

Lightning Summary of ML

89

Performance:
How do we learn practically?



search space should be large enough → trillions of parameters! How could this work? 
→ gradient-based optimization (“good sense of direction”)

→ requires algorithms and evaluation to 
be differentiable

Lightning Summary of ML

To deal with hyper-planes in a 14-dimensional space, visualize a 3D  
space and say 'fourteen' to yourself very loudly. -Hinton (DL pioneer)

∂L
∂ϕ

=
∂L
∂f

∂f
∂ϕ

90



Finding the right Search Space

manual derivation of efficient 
gradient computation

fixed but generic, large and easily 
differentiable function class:

domain-specific, arbitrary computation 
encoding e.g. symmetries, dynamics, …

? 

Rgy = f(Rgx) ·x = f(x)

[M. Bronstein]

91

At first Increasingly



Immediate Gains from DiffProg: allows us to add physics into ML models 

• bias towards good solutions by constraining solution space 
• hard-coded knowledge does not need to be learned from data (efficiency)

Differentiable Programming in ML

Start

End

Target

x

no structure

differentiable 
structure

Data

Er
ro

rs

put physics here
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Differentiable Programming in ML

Hamiltonian Neural Nets

Lorentz-Invariance

Neural Nets with 
QCD-like Structure

arXiv:1906.01563

arXiv:2006.04780

arXiv:1702.00748

Gauge-Equivariant 
Convolutional Neural Networks

SU(N)-Equivariant Normalizing Flows

Lagrangian Neural Nets
arXiv: 2003.04630
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Complementary Approach: add physics-driven evaluation 

Differentiable Programming in ML

put physics here

94



Training Fast Simulators: produce events at correct relative proportions 

At parton level, events should follow Matrix Element proportions 


If we have differentiable Matrix Elements  we can check directly
|ℳ |2 ({ ⃗pi }, θ)

Differentiable Programming in ML

σ(x, θ) = ∑
i

|ℳi(x, θ) |2

noise eventsML model

sample diversity

result
Matrix Elements

parameters

physics-driven evaluation 95



MadJax: MadGraph calculations (originally FORTRAN) transpiled into differentiable 
programming language (JAX) → usable as evaluation function during training


Differentiable Programming in ML

∇xσ(x, θ) ∇θσ(x, θ)
phase-space 
derivatives

theory Parameter 
derivatives

better description of density than 
pure ML training

mg5_aMC  —mode=madjax_me_gen -f ee_to_mumu.mg5
arxiv:2203.00057 96

[LH, M. Kagan]



Same approach in Lattice QCD:  

Learn proposal distribution for sampling 
of fields on a lattice (for MCMC / IS)

• encode symmetries in ML sampler

• evaluate on LQCD action in DiffProg 

language (pytorch)


Differentiable Programming in ML

noise fieldsML model

sample diversity

result
LQCD Action

parameters

physics-driven evaluation
arxiv: 1904.12072
arxiv:2101.08176

Albergo et al.
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Parton Density Functions: DP can train NNPDF as it was meant to be trained 
One of the early use-cases of NNs in HEP: PDF parametrizations 
 

Differentiable Programming in ML

physics-driven evaluation

Curiosity:  
traditionally not(!) trained via gradient-descent 
→ too difficult to get gradients

→ use genetic algorithms (mutation + select) 
→ works but is slow

genetic algorithms

χ2
3

DGLAP

χ2
1

PDF at Q0NN @ Q1

χ2
2

@ Q2DGLAP @ Q3DGLAP

pars ϕ

χ2
global

[Source] 98

https://www.cs.ubc.ca/~van/papers/2013-TOG-MuscleBasedBipeds/index.html


More recently: PDF evolution kernels implemented in DiffProg (Tensorflow)

• allows finally for a gradient-based training of NN 

Differentiable Programming in ML

arxiv: 1907.05075 
99[Carrazza et al]



Gradients useful far beyond ML: e.g. complex fits via differentiable programming 

Differentiable Programming Beyond ML

ComPWA [R. deBoer, M. Mikhasenko]
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Binned Likelihoods (LHC, EIC, Belle-II, …)
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