Differentiable Programming

ÖAW AI Winter School

Lukas Heinrich

Why Derivatives are important

Derivatives at a point encode non-local information about functions

- valuable if we do not have global knowledge but can only evalulate the function (and now maybe its derivatives) locally
- From Taylor Expansion: higher order derivatives \leftrightarrow longer reach

Derivatives in ML \& Physics

In optimization tasks (training Neural Nets, finding best-fit parmeters) having a cheap way to compute gadients is crucial

Gives you a sense of direction in high-dimensional space
\rightarrow walk towards a minimum by just following the gradient
\rightarrow crucial ingredient ot make e.g. Deep Learning work

Example: Neural Networks

Training neural networks: Gradient of loss function w.r.t. neural network parameters

$$
\begin{gathered}
y=\operatorname{Loss}(x ; \phi) \\
\phi \leftarrow \phi-\nabla_{\phi} \operatorname{Loss}
\end{gathered}
$$

Example: Statistical Analysis

Maximum likelihood fit: Gradient of likelihood function w.r.t. model parameters useful to find best-fit point (MIGRAD)

$$
p(x \mid \alpha)
$$

$$
\hat{\alpha}=\operatorname{argmax}_{\alpha} p(x \mid \alpha)
$$

Standard Ways to get Derivatives

For an arbitrary function, the easiest way to get a derivative is through "numeric differentiation" (also called "finite differences")

$$
\left.\frac{\partial f}{\partial x}\right|_{x=x_{0}} \approx \frac{\Delta y}{\Delta x} \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Standard Ways to get Derivatives

Pro: very easy to code up, works in any programming language.
Con: to be precise you need a small Δx - does not work in high-D (completely infeasible for neural nets w/ millions of params) will always stay an approximation, never exact

Standard Ways to get Derivatives

Computer Algebra Systems allow you to get exact gradients!

 (Mathematica, SymPy) through "symbolic diffferentiation"```
import sympy
symbolic_x = sympy.symbols('x')
symbolic_func = symbolic_x**3
symbolic_func
x
symbolic_deriv = symbolic_func.diff(symbolic_x)
symbolic_deriv
3x
```


## Standard Ways to get Derivatives

## Pro: Gradients are exact independent of where you evaluate



## Standard Ways to get Derivatives

Pro: Gradients are exact independent of where you evaluate
Con: Symbolic frameworks can be inefficient/memory-intensive (repeated subexprs, etc...) \& hard to integrate into larger systems

$$
\begin{aligned}
& \text { quad_6_times.diff(symbolic_x }) \\
& 486 x+81(4 x+6)\left(x^{2}+3 x+4\right)+27\left(12 x+2(4 x+6)\left(x^{2}+3 x+4\right)+18\right)\left(3 x^{2}+9 x+\left(x^{2}+3 x+4\right)^{2}+16\right) \\
& +9\left(36 x+6(4 x+6)\left(x^{2}+3 x+4\right)+2\left(12 x+2(4 x+6)\left(x^{2}+3 x+4\right)+18\right)\left(3 x^{2}+9 x+\left(x^{2}+3 x+4\right)^{2}+16\right)+54\right)\left(9 x^{2}+27 x\right. \\
& \left.+3\left(x^{2}+3 x+4\right)^{2}+\left(3 x^{2}+9 x+\left(x^{2}+3 x+4\right)^{2}+16\right)^{2}+52\right) \\
& +3\left(108 x+18(4 x+6)\left(x^{2}+3 x+4\right)+6\left(12 x+2(4 x+6)\left(x^{2}+3 x+4\right)+18\right)\left(3 x^{2}+9 x+\left(x^{2}+3 x+4\right)^{2}+16\right)\right. \\
& +2\left(36 x+6(4 x+6)\left(x^{2}+3 x+4\right)+2\left(12 x+2(4 x+6)\left(x^{2}+3 x+4\right)+18\right)\left(3 x^{2}+9 x+\left(x^{2}+3 x+4\right)^{2}+16\right)+54\right)\left(9 x^{2}+27 x+3\left(x^{2}+\right.\right.
\end{aligned}
$$

## Standard Ways to get Derivatives

Automatic Differentiation is a third method that

- produces exact gradients like symbolic differentiation
- is more efficient than symbolic differentiation
- more easily integratable into standard programming languages

Numeric
Differrentiation

Symbolic
Differrentiation

Automatic
Differrentiation

## Smooth Functions

In general we're interested in derivatives functions that map between spaces with different dimensionality

- how do gradients look like in this case?



## Smooth Functions

In general we're interested in derivatives functions that map between spaces with different dimensionality

- how do gradients look like in this case?
- Jacobian Matrix captures full first-order derivatives


$$
\begin{aligned}
y & =f(x) \\
d y & =J_{f} d x
\end{aligned} \quad J_{f}=\frac{\partial\left(y_{1}, \ldots, y_{m}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right.}
$$

## Composition

We also often chain functions together

- how are gradients of ingredients related to gradients of total?



## Composition

We also often chain functions together

- how are gradients of ingredients related to gradients of total?
- just the matrix product of individual Jacobians


$$
\begin{aligned}
z & =(g \circ f)(x)=g(f(x))=g(y) \\
d z & =J_{g \circ f}=J_{g} J_{f} d x=J_{g} d y
\end{aligned}
$$

## Upshot: Jacobians are all we need

Jacobian Matrices fully capture the gradient information - we'll look at efffective ways to calculate them


$$
d z=J_{g \circ f}=J_{g} J_{f} d x=J_{g} d y
$$

## Inspecting Linear Maps via Appplication

Linear Maps (i.e. Matrices) can be fully characterized by how they act on vectors

Q: can we extract values of this matrix by a good choice of vector?


## Inspecting Linear Maps via Appplication

Linear Maps (i.e. Matrices) can be fully characterized by how they act on vectors

Q: can we extract values of this matrix by a good choice of vector?


## Inspecting Linear Maps via Appplication

Linear Maps (i.e. Matrices) can be fully characterized by how they act on vectors

Q: can we extract values of this matrix by a good choice of vector?


## Inspecting Linear Maps via Appplication

Linear Maps (i.e. Matrices) can be fully characterized by how they act on vectors

Q: can we extract values of this matrix by a good choice of vector?


## Inspecting Linear Maps via Appplication

Linear Maps (i.e. Matrices) can be fully characterized by how they act on vectors

Q: can we extract values of this matrix by a good choice of vector?


## Inspecting Linear Maps via Appplication

Linear Maps (i.e. Matrices) can be fully characterized by how they act on vectors

Q: can we extract values of this matrix by a good choice of vector?


## Inspecting Linear Maps via Appplication

Take-Away: by computing Matrix-Vector Products (MVP) with basis vectors we can extact columns unknown linear map / matrix

- do not need the explicit matrix, just ability to compute MVPs
- to get full Jacobian we need to compute N matrix-vector products



## Inspecting Linear Maps via Appplication

Gives us a new way to "store"/express matrics via computer programs instead of arrays of numbers in memory

- useful if matrix is sparse or regular (coding logic << enumeration)
- recover the array-picture by running program multiple times on all basis vectors


```
def mvp(inp):
 x,y,z = inp
 returfn np.array([
 2 * x + 3 * y,
 5*z
])
```

```
mvp([[2.,3.,1.])
```

mvp([[2.,3.,1.])
array([13., 5.])

```
array([13., 5.])
```

```
def explicit(inp):
 matrix = np.array([
 [2,3,0],
 [0,0,5]
])
```

    return np.matmul(matrix,inp)
    explicit([2.,3.,1.])
array([13., 5.])

## Inspecting Linear Maps via Appplication

If we change the order we can extract rows!
Vector-Matrix Products instead of Matrix-Vector Products

- do not need the explicit matrix, just ability to compute VMPs



## Inspecting Linear Maps via Appplication

If we change the order to extract rows!
Vector-Matrix Products instead of Matrix-Vector Products

- do not need the explicit matrix, just ability to compute VMPs


## Inspecting Linear Maps via Appplication

If we change the order to extract rows!
Vector-Matrix Products instead of Matrix-Vector Products

- do not need the explicit matrix, just ability to compute VMPs


## Inspecting Linear Maps via Appplication

If we change the order to extract rows!
Vector-Matrix Products instead of Matrix-Vector Products

- do not need the explicit matrix, just ability to compute VMPs



## Inspecting Linear Maps via Appplication

If we change the order to extract rows!
Vector-Matrix Products instead of Matrix-Vector Products

- do not need the explicit matrix, just ability to compute VMPs



## Again as Programs

Again, savings if elements are easier/compactly expressed by logic than enumeration


```
def vmp(out):
 a,b = out
 return np.array([
 2*a,
 3*a + 5*b,
 4*b
])
```

```
vmp([2,3])
array([4, 21, 12])
```

def explicit(out):
matrix = np.array([
$[2,3,0]$,
$[0,5,4]$
])
return np.matmul(np.array(out).T,matrix)

```
explicit([2,3])
```

array([ 4, 21, 12])

## Upshot: Row- or Columnwise Extraction

We can fully characterize a Matrix through its products with vectors

- Matrix-vector products extract columns (N times for full Matrix)
- vector-Matrix products extract rows (M times for full Matrix)

Gives us a new way to "store" a matrix: as a computer program (e.g. source code) mapping vectors to vectors vs as array of numbers.


## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication - just successive MVP/VMP until exhausted


## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication

- just successive MVP/VMP until exhausted



## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication

- just successive MVP/VMP until exhausted



## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication

- just successive MVP/VMP until exhausted



## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication - just successive MVP/VMP until exhausted


## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication - just successive MVP/VMP until exhausted


## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication - just successive MVP/VMP until exhausted


## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication - just successive MVP/VMP until exhausted


## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication - just successive MVP/VMP until exhausted


$$
c_{i}=M e_{i}
$$

$$
c_{i}=M e_{i}=\vartheta_{3}
$$

## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication - just successive MVP/VMP until exhausted


$$
M=M_{1} M_{2} M_{3}
$$

## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication

- just successive MVP/VMP until exhausted


$$
r_{i}=e_{i}^{T} M
$$

$$
r_{i}=e_{i}^{T} M=e_{i}^{T} M_{3} M_{2} M_{1}
$$

## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication

- just successive MVP/VMP until exhausted


$$
r_{i}=e_{i}^{T} M
$$

$$
r_{i}=e_{i}^{T} M=e_{i}^{T} M_{3} M_{2} M_{1}
$$

## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication

- just successive MVP/VMP until exhausted


$$
r_{i}=e_{i}^{T} M
$$

$$
r_{i}=e_{i}^{T} M=\overline{\bar{v}}_{1} M_{2} M_{1}
$$

## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication - just successive MVP/VMP until exhausted


$$
r_{i}=e_{i}^{T} M
$$

$$
r_{i}=e_{i}^{T} M={\overline{v_{1}}}_{1} M_{2} M_{1}
$$

## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication

- just successive MVP/VMP until exhausted


$$
r_{i}=e_{i}^{T} M
$$

$$
r_{i}=e_{i}^{T} M=\overline{\bar{v}}_{2} M_{1}
$$

## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication

- just successive MVP/VMP until exhausted


$$
r_{i}=e_{i}^{T} M
$$

$$
r_{i}=e_{i}^{T} M=\overline{\bar{v}_{2} M_{1}}
$$

## Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize Matrix Composition without expensive Matrix multiplication

- just successive MVP/VMP until exhausted


$$
r_{i}=e_{i}^{T} M
$$

$$
r_{i}=e_{i}^{T} M=\bar{v}_{3}
$$

## Upshot: Forward and Backward

MVPs/VMPs can characterize a Products of Marices efficiently Depending on the type of product either go forwards or backwards

- to get a row/column we never need explicit representations of $M_{i}$. Ability to compute MVP/VMPs is all we need ("matrix-free approach)

$$
\begin{aligned}
& c_{i}=M e_{i}=M_{3} M_{2} M_{1} e_{i} \\
& c_{i}=M e_{i}=M_{3} M_{2} v_{1} \\
& c_{i}=M e_{i}=M_{3} v_{2} \\
& c_{i}=M e_{i}=v_{3}
\end{aligned}
$$

$$
r_{i}=e_{i}^{T} M=e_{i}^{T} M_{3} M_{2} M_{1}
$$

$$
r_{i}=e_{i}^{T} M=\bar{v}_{1} M_{2} M_{1}
$$

$$
r_{i}=e_{i}^{T} M=\bar{v}_{2} M_{1}
$$

$$
r_{i}=e_{i}^{T} M=\bar{v}_{3}
$$

## Back to Derivatives

From our discussion we now have a tool to efficiently compute Jacobian matrices of deep compositions of functions

- need only ability to compute Jacobian-vector products (JVP) or vector-Jacobian products (VJP)
- as in the Matrix-case: we can represent Jacobians as computer programs that map vectors to vectors



## Forward and Backward Propagation

As in the Matrix-case, we can compute Jacobians in - forward-mode (with Jacobian-Vector Products)

- reverse-mode (with Vector-Jacobian Products)

$$
\begin{aligned}
& c_{i}=J_{k \circ h \circ g \circ f} e_{i}=J_{k} J_{h} J_{g} J_{f} e_{i} \\
& r_{i}=e_{i}^{T} J_{k \circ h \circ g \circ f}=e_{i}^{T} J_{k} J_{h} J_{g} J_{f}
\end{aligned}
$$

## Forward and Backward Propagation

As in the Matrix-case, we can compute Jacobians in - forward-mode (with Jacobian-Vector Products)

$$
c_{i}=J_{k o h o g o f} e_{i}=J_{k} J_{h} J_{g} J_{f} e_{i} \quad\left(J_{f} v\right)_{i}=\sum_{k} J_{f_{i k}} v_{k}=\sum_{k} \frac{\partial y_{i}}{\partial x_{k}} v_{k}
$$

- reverse-mode (with Vector-Jacobian Products)
- also known as "Backpropagation" in ML

$$
r_{i}=e_{i}^{T} J_{\text {kohogof }}=e_{i}^{T} J_{k} J_{h} J_{g} J_{f} \quad\left(\bar{v} J_{f}\right)_{j}=\sum_{k} \bar{v}_{k} J_{f k j}=\sum_{k} \bar{v}_{k} \frac{\partial y_{k}}{\partial x_{j}}
$$

## Why Backpropagation for ML?

Neural Net Loss functions map network parameters to losses

$$
L: \mathbb{R}^{N} \rightarrow \mathbb{R}
$$

Shape of the Jacobian: a single row! (i.e. the gradient $\nabla_{\phi} L$ )


## Example

$$
f:\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{l}
x y \\
y^{3}
\end{array}\right] \quad J_{f}=\left[\begin{array}{ll}
\partial_{x}(x y) & \partial_{y}(x y) \\
\partial_{x}\left(y^{3}\right) & \partial_{y}\left(y^{3}\right)
\end{array}\right]_{x=x_{0}, y=y_{0}}=\left[\begin{array}{cc}
y & x \\
0 & 3 y^{2}
\end{array}\right]_{x=x_{0}, y=y_{0}}
$$

import numpy as np def func(inp):
$x, y=\operatorname{inp}$
return np.array([
x*y,
$y^{* * 3}$
])

```
def explicit(v, at_point):
 x,y = at_point
 jacobian = np.array([
 [y, x],
 [0, 3*Y**2]
])
```

    return np.matmul(jacobian,v)
    explicit([1.2,3.4], at_point $=[2,3])$
$\operatorname{array}([10.4,91.8])$
jvp([1.2, 3.4],at_point $=[2,3])$
array ([10.4, 91.8])

```
def jvp(v, at_point):
```

def jvp(v, at_point):
v1,v2 = v
x,y = at_point
return np.array([
y*v1 + x*v2,
3*y**2 * v2
])

```


\section*{Composition}

The JVP/VJP programs must be generated as you step through the composition (b/c of position dependence of Jacobian at each step)
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]
\(x_{0}\)

\section*{Composition}

The JVP/VJP programs must be generated as you step through the composition (b/c of position dependence of Jacobian at each step)
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\[
J_{1}
\]

\section*{Composition}

The JVP/VJP programs must be generated as you step through the composition (b/c of position dependence of Jacobian at each step)
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\section*{Composition}

The JVP/VJP programs must be generated as you step through the composition (b/c of position dependence of Jacobian at each step)
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\section*{Composition}

The JVP/VJP programs must be generated as you step through the composition (b/c of position dependence of Jacobian at each step)
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs Forward is in the same order as original composition
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs Forward is in the same order as original composition
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs Forward is in the same order as original composition
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs Forward is in the same order as original composition
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs Forward is in the same order as original composition
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs
Forward can be done "on-the-fly". The \(J_{i}\) become available as-you-go
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]
\(x_{0}\)
\[
c=J v_{0}=J_{4} J_{3} J_{2} J_{1} v_{0}
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs
Forward can be done "on-the-fly". The \(J_{i}\) become available as-you-go
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\[
c=J v_{0}=J_{4} J_{3} J_{2} J_{1} v_{0}
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs
Forward can be done "on-the-fly". The \(J_{i}\) become available as-you-go
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\[
c=J v_{0}=J_{4} J_{3} J_{2} J_{1} v_{0}
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs
Forward can be done "on-the-fly". The \(J_{i}\) become available as-you-go
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\[
c=J v_{0}=J_{4} J_{3} J_{2} J_{1} v_{0}
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs
Forward can be done "on-the-fly". The \(J_{i}\) become available as-you-go
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\[
c=J v_{0}=J_{4} J_{3} J_{2} J_{1} v_{0}
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs Backward is in the rerverse order from original composition
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs Backward is in the rerverse order from original composition
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs Backward is in the rerverse order from original composition
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs Backward is in the rerverse order from original composition
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs Backward is in the rerverse order from original composition
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\section*{Composition}

Once you have the JVP programs you can evaluate the JVP/VJPs Backward cannot be done "on-the-fly", needs all \(J_{i}\) before starting
\[
\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)(x)
\]

\section*{The Graph Picture}

Computation are naturally expressed as graphs.

- edges represent a data dependence
- correspond to Jacobian matrix element

- Matrix Multiplication: summation over edges.
\[
\begin{aligned}
& \quad\left(J_{f} v\right)_{i}=\sum_{k} J_{f_{i k} v_{k}} \quad\left(\bar{v} J_{f}\right)_{j}=\sum_{k} \bar{v}_{k} J_{f_{k j}} \\
& \text { (generalizes beyond "feed-forward" graphs) }
\end{aligned}
\]
\((g \circ f)(x)\)

\section*{Upshot: Jacobians as Programs}
- Since Jacobians are Matrices we can use our tools to express rows \& columns of them as programs (JVP, VJP)
- Jacobians of deep compositions are easy to compute without ever explicitly calculating all matrix elements once we have these Jacobian Programs for the individual functions being composed
- Corollary: based on a small set building blocks (where we manually code JVP, VJP) we can compute Jacobians (i.e. derivatives) automatically for an almost unlimited set of functions (all the ways the building blocks can be built

\section*{Upshot: Jacobians as Programs}
- Since Jacobians are Matrices we can use our tools to express rows \& columns of them as programs (JVP, VJP)
- Jacobia ever ex Automatic Differentiation have these Jacobiann Frogramis tor me inaiviaual iunctions oeng composed
- Corollary: based on a small set building blocks (where we manually code JVP, VJP) we can compute Jacobians (i.e. derivatives) automatically for an almost unlimited set of functions (all the ways the building blocks can be built

\section*{Automatic Differentiation Systems}

Systems that allow you to write numerical programs: \(\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\) (i.e. complex compositios of basic building blocks), that are efficietly differentiable

They do it by:
- implementing (+,-,*,/, \(\sqrt{, \wedge, e x p, l o g, s i n, \cos , \tan , \ldots)}\)
- JVP/VJP for basic operations
- automating for you the composition for running either forward or backward propagation

\section*{Automatic Differentiation Systems}

Most Deep Learning Framework are at their core Autodiff systems - I'll focus on Jax, since it's more elegeant from a AD perspective

\section*{1F TensorFlow \\ PYTÖRCH}

\section*{Beyond Deep Learning}

But there is a long list of non-DL focused AD frameworks as well
- idea exist in many language (C++, Julia, Fortran, ...)

Enzyme.jl (Julia)

\section*{Example: Autodiff with Jax}
```

import numpy as np
def func(inp):
x,y = inp
return np.array([
x*y,
y**3

```
])
def jvp(inp, at_point):
 v1,v2 = inp
 \(\mathrm{x}, \mathrm{y}=\) at_point
 return np.array([
 y*v1 + x*v2,
 \(3 * y^{* * 2}\) * v2
])
func(np.array([2.,3.]))
array([6., 27.])
jvp(np.array([0.,1.]),np.array([2.,3.]))
array([2., 27.])
```

import jax.numpy as jnp
def func(inp):
x,y = inp
return jnp.array([
x*y,
y**3
])

```
import jax
jax.jvp(func,
 (jnp.array([2.,3.]),),
 (jnp.array([0.,1.]),),
)
(DeviceArray([6., 27.], dtype=float32),
 DeviceArray([2., 27.], dtype=float32))

\section*{Example: Autodiff with Jax}
```

import numpy as np
def func(inp):
x,y = inp
return np.array([
x*y,
y**3
])
def vjp(out, at_point):
v1,v2 = out
x,y = at_point
return np.array([
v1*y,
v1*x + v2*3*y**2,
])
func([2.,3.])
array([ 6., 27.])
vjp([4.,5.],[2.,3.])
array([ 12., 143.])
Manual

```
```

import jax.numpy as jnp
def func(inp):
x,y = inp
return jnp.array([
x*y,
y**3
])

```
```

import jax
value, backward = jax.vjp(func,jnp.array([2.,3.]))

```
value
DeviceArray([6., 27.], dtype=float32)
backward(jnp.array([4.,5.]))
(DeviceArray([12., 143.], dtype=float32),)

Automatic

\section*{Higher-level APIs}

As a standard user you care about the derivatives/Jacobians.

Autodiff frameworks give you nice wrappers.

Thinking in terms of JVP/VJP is not necessary for day-to-day use (but useful to understand once)
```

import jax
import jax.numpy as jnp

```
def func(x):
```

def func(x):
return jnp.sin(x)
return jnp.sin(x)
derivative = jax.grad(func)

```
derivative = jax.grad(func)
```

```
xspan = np.linspace(-5,5,101)
```

$y=j n p . a r r a y([f u n c(x)$ for $x$ in $x s p a n])$
$d=j n p . a r r a y([d e r i v a t i v e(x)$ for $x$ in $x s p a n])$

```
plt.plot(xspan,y)
plt.plot(xspan,d)
```

[<matplotlib.lines.Line2D at 0x7f7874acab10>]


## Higher-level APIs

## With autodiff you can not only get first-order derivatives

```
g1i = jax.vmap(jax.grad(f))(xi)
g2i = jax.vmap(jax.grad(jax.grad(f)))(xi)
g3i = jax.vmap(jax.grad(jax.grad(jax.grad(f))))(xi)
plt.plot(xi,yi, label = "f")
plt.plot(xi,gli, label = "f'")
plt.plot(xi,g2i, label = "f''")
plt.plot(xi,g3i, label = "f'''")
plt.xlim(-2,2)
plt.ylim(-20,20)
plt.legend()
print(jax.grad(f)(4.0)) #boom!
```

print(jax.grad(jax.grad(f))(4.0)) \#boom!
print(jax.grad(jax.grad(jax.grad(f)))(4.0)) \#boom!
print(jax.grad(jax.grad(jax.grad(jax.grad(f))))(4.0)) \#boom!
64.0
48.0
24.0
6.0
0.0
<matplotlib.legend.Legend at 0x7f0aecabd910>


## Higher-level APIs

## With autodiff you can not only get first-order derivatives

```
g1i = jax.vmap(jax.grad(f))(xi)
g2i = jax.vmap(jax.grad(jax.grad(f)))(xi)
g3i = jax.vmap(jax.grad(jax.grad(jax.grad(f))))(xi)
plt.plot(xi,yi, label = "f")
plt.plot(xi,gli, label = "f'")
plt.plot(xi,g2i, label = "f''")
plt.plot(xi,g3i, label = "f'''")
plt.xlim(-2,2)
plt.ylim(-20,20)
plt.legend()
print(jax.grad(f)(4.0)) #boom!
```

print(jax.grad(jax.grad(f))(4.0)) \#boom!
print(jax.grad(jax.grad(jax.grad(f)))(4.0)) \#boom!
print(jax.grad(jax.grad(jax.grad(jax.grad(f))))(4.0)) \#boom!
64.0
48.0
24.0
6.0
0.0
<matplotlib.legend.Legend at 0x7f0aecabd910>


## Applications

## ML Opportunities in Fundamental Physics



## Acceleration of Computation

(e.g. sometimes by searching for a good approximation)

simulation side: the physics is fixed:
nothing to search for $\rightarrow$ speed up simulation

Search for new (better) Algorithms
(e.g. targeted search based on samples)

up to us to find best observables
$\rightarrow$ search for best reconstruction

## Lightning Summary of ML

Learning: data-driven search for a function with optimal performance in a huge
Space of Algorithms


## Lightning Summary of ML

search space should be large enough $\rightarrow$ trillions of parameters! How could this work?
$\rightarrow$ gradient-based optimization ("good sense of direction")


To deal with hyper-planes in a 14-dimensional space, visualize a 3D space and say 'fourteen' to yourself very loudly. -Hinton (DL pioneer)

$\rightarrow$ requires algorithms and evaluation to be differentiable

## Finding the right Search Space

At first
fixed but generic, large and easily differentiable function class:


[M. Bronstein]
domain-specific, arbitrary computation encoding e.g. symmetries, dynamics, ...

$$
R_{g} y=f\left(R_{g} x\right) \quad \dot{x}=f(x)
$$

manual derivation of efficient gradient computation

## Differentiable Programming in ML

Immediate Gains from DiffProg: allows us to add physics into ML models

- bias towards good solutions by constraining solution space
- hard-coded knowledge does not need to be learned from data (efficiency)





## Differentiable Programming in ML




Hamiltonian Neural Nets arXiv:1906.01563


SU(N)-Equivariant Normalizing Flows


Gauge-Equivariant Convolutional Neural Networks


## Lorentz-Invariance

arXiv:2006.04780

## Differentiable Programming in ML

Complementary Approach: add physics-driven evaluation


## Differentiable Programming in ML

## Training Fast Simulators: produce events at correct relative proportions

At parton level, events should follow Matrix Element proportions

$$
\sigma(x, \theta)=\sum_{i}\left|\mathscr{M}_{i}(x, \theta)\right|^{2}
$$



If we have differentiable Matrix Elements $|\mathscr{M}|^{2}\left(\left\{\overrightarrow{p_{i}}\right\}, \theta\right)$ we can check directly


## Differentiable Programming in ML

MadJax: MadGraph calculations (originally FORTRAN) transpiled into differentiable programming language $(J A X) \rightarrow$ usable as evaluation function during training


[^0]
## Differentiable Programming in ML

## Same approach in Lattice QCD:

Learn proposal distribution for sampling of fields on a lattice (for MCMC / IS)

- encode symmetries in ML sampler
- evaluate on LQCD action in DiffProg language (pytorch)

$g_{1}$



## Differentiable Programming in ML

Parton Density Functions: DP can train NNPDF as it was meant to be trained One of the early use-cases of NNs in HEP: PDF parametrizations


Curiosity:
traditionally not(!) trained via gradient-descent
$\rightarrow$ too difficult to get gradients
$\rightarrow$ use genetic algorithms (mutation + select)
$\rightarrow$ works but is slow


## Differentiable Programming in ML

## More recently: PDF evolution kernels implemented in DiffProg (Tensorflow)

- allows finally for a gradient-based training of NN

For all fits shown in this paper we utilize gradient descent (GD) methods to substitute the previously used netic algorithm. This change can be shown to greatly duce the computing cost of a fit while maintaining a very similar (and in occasions improved) $\chi^{2}$-goodness. The less stochastic nature of GD methods also produces more stable fits than its GA counterparts. The main reason why the GD methods had not been tested before were due to the difficulty of computing the gradient of the loss function (mainly due to the convolution with the fastkernel tables) in a efficient way. This is one example on how the usage of new technologies can facilitate new studies thanks to differentiable programming and distributed computing.

$$
f_{i}=A_{i} x^{\alpha_{i}}(1-x)^{\beta_{i}} N N(x)
$$



## Differentiable Programming Beyond ML

Gradients useful far beyond ML: e.g. complex fits via differentiable programming

Binned Likelihoods (LHC, EIC, Belle-II, ...)


Partial Wave Analysis


Com
PWA


[^0]:    mg5_aMC -mode=madjax_me_gen -f ee_to_mumu.mg5

