Differentiable Programming
OAW Al Winter School

Lukas Heinrich

Why Derivatives are important

Derivatives at a point encode non-local information about functions

e valuable if we do not have global knowledge but can only
evalulate the function (and now maybe its derivatives) locally

e From Taylor Expansion: higher order derivatives < longer reach

Derivatives in ML & Physics

In optimization tasks (training Neural Nets, finding best-fit parmeters)
having a cheap way to compute gadients is crucial

Gives you a sense of direction

In high-dimensional space

— walk towards a minimum asiy
by just following the gradient

— crucial ingredient ot make o | TEeSst 1
e.g. Deep Learning work

Example: Neural Networks

Training neural networks:
Gradient of loss function w.r.t.
neural network parameters

Layer 1
Intermediate
y = Loss(x; ¢) -

O — ¢ — V 4, Loss

pred label
loss

Input

Example: Statistical Analysis

~1 35 IIIIIIIIIIIIIIIIIIIIIIIIIII
J | | | | |]

Maximum likelihood fit:

Gradient of likelihood function w.r.t. F ATLAS Proiminary * s -
model parameters useful to find P o et
best-fit point (MIGRAD) o "=

1.15}
1.1
1.05}

px|a)

0.9-

085 0.9 095 1 105 11 115

VN

a = argmax, p(x|a)

Standard Ways to get Derivatives

For an arbitrary function, the easiest way to get a derivative is
through "numeric differentiation” (also called "finite differences"”)

of Ay fle+ AD) —f)

N/
N/

ox "0 Ax Ax

Standard Ways to get Derivatives

Pro: very easy to code up, works in any programming language.

Con: to be precise you need a small Ax - does not work in high-D

(completely infeasible for neural nets w/ millions of params)
will always stay an approximation, never exact

It Is pretty bad if Ax is too large it gets better at the cost of many evaluations
100 100
50 A 50 -
0 1 0 -
-50 - -50 -
— black-box func — black-box func
.00 1 finite diff grad -100 - finite diff grad
=== true grad === true grad

-4 o’ - 0 2 - -4 -2 0 2 -

Standard Ways to get Derivatives

Computer Algebra Systems allow you to get exact gradients!
(Mathematica, SymPy) through "symbolic diffferentiation”

: import sympy

symbolic x = sympy.symbols('x')
symbolic func = symbolic x**3
symbolic func

' x3

: symbolic deriv = symbolic func.diff(symbolic x)
symbolic deriv

: 3x2

Standard Ways to get Derivatives

Pro: Gradients are exact independent of where you evaluate

the symbolid derivative is always exact It does not matter where/how often you evaluate it
100
50 \
O R
-50 -
= function = function
-100 - true deriv -100 - true denv

® symbolic deriv ® symbolic deriv

-4 -2 0 2 4 -4 -2 0 2 4

Standard Ways to get Derivatives

Pro: Gradients are exact independent of where you evaluate
Con: Symbolic frameworks can be inefficient/memory-intensive
(repeated subexprs, etc...) & hard to integrate into larger systems

i quad 6 times.diff (symbolic x)

" 486x +81(4x +6) (X 4+ 3x+4) +27 (12x +2(4x +6) (¥ +3x +4) + 18) (3x* + 9x + (P +3x +4)" + 16

+9(36x +6(dx+6) (@ +3x+4) +2 (12x+2(4x+6) (& +3x+4) +18) (3x* + 9x + (¥ +3x +4)" + 16) + 54) <9x2+27x
2
+3(2+3x+4)" + (3x2+9x+ (2 +3x+4)° + 16) +52)

+3 (108x+18(4x+6) (x* +3x+4) +6 (12x +2(4x +6) (x* + 3x + 4) + 18) (3x2+9x+ (x2 +3x + 4)° +16)

+2(36x+6(dx+6) (P +3x+4) +2 (12x+2(4x+6) (¥ +3x +4) +18) (3x* + 9x + (¥ +3x +4)" + 16) + 54) <9x2+27x+3(x2+

Standard Ways to get Derivatives

Automatic Differentiation is a third method that

e produces exact gradients like symbolic differentiation

e |s more efficient than symbolic differentiation

e more easily integratable into standard programming languages

Numeric Symbolic
Differrentiation Differrentiation

Automatic
Differrentiation

Smooth Functions

In general we're interested In derivatives functions that map between
spaces with different dimensionality
e how do gradients look like in this case?

Smooth Functions

In general we're interested In derivatives functions that map between
spaces with different dimensionality

e how do gradients look like in this case?

e Jacobian Matrix captures full first-order derivatives

y = f(x) _ OV1s +-os V)

Composition

We also often chain functions together
e how are gradients of ingredients related to gradients of total?

fiR" > R” g:R" > R
/\ /\
— R

z2=1(g°f)x)=g(f(x) = g(y)

Composition

We also often chain functions together
e how are gradients of ingredients related to gradients of total?
e just the matrix product of individual Jacobians

fiR" > R” g:R" > R
/\ /\
— D

z2=1(g°f)x)=g(f(x) = g(y)
dz = J,p = JJp dx = J,dy

Upshot: Jacobians are all we need

Jacobian Matrices fully capture the gradient information
o we'll look at efffective ways to calculate them

fiR" > R” g:R" > R
T .
— (8

dz = J,p = JJp dx = J,dy

Inspecting Linear Maps via Appplication

Linear Maps (i.e. Matrices) can be fully characterized by how they
act on vectors

Q: can we extract values of this matrix by a good choice of vector ?

=

Inspecting Linear Maps via Appplication

Linear Maps (i.e. Matrices) can be fully characterized by how they
act on vectors

Q: can we extract values of this matrix by a good choice of vector ?

Inspecting Linear Maps via Appplication

Linear Maps (i.e. Matrices) can be fully characterized by how they
act on vectors

Q: can we extract values of this matrix by a good choice of vector ?

m smon S

Inspecting Linear Maps via Appplication

Linear Maps (i.e. Matrices) can be fully characterized by how they
act on vectors

Q: can we extract values of this matrix by a good choice of vector ?

g-gmo 9

Inspecting Linear Maps via Appplication

Linear Maps (i.e. Matrices) can be fully characterized by how they
act on vectors

Q: can we extract values of this matrix by a good choice of vector ?

-an

Inspecting Linear Maps via Appplication

Linear Maps (i.e. Matrices) can be fully characterized by how they
act on vectors

Q: can we extract values of this matrix by a good choice of vector ?

B

Inspecting Linear Maps via Appplication

Take-Away: by computing Matrix-Vector Products (MVP) with basis
vectors we can extact columns unknown linear map / matrix

* do not need the explicit matrix, just ability to compute MVPs

* to get full Jacobian we need to compute N matrix-vector products

Inspecting Linear Maps via Appplication

Gives us a new way to "store'"/express matrics via computer
programs instead of arrays of numbers in memory

o useful iIf matrix is sparse or regular (coding logic << enumeration)

e recover the array-picture by running program multiple times on
all basis vectors

def mvp(inp): def explicit(inp):
X,¥,2 = inp matrix = np.array(|
return np.array(| [2,3,01,

23 2 * x + 3 * vy, [0,0,5]
3 U !
1) return np.matmul (matrix,inp)

mvpd[Z.,B.,l.]) explicit([2.,3.,1.])

array([13., 5.]) array([1l3., 5.])

Inspecting Linear Maps via Appplication

If we change the order we can extract rows!
Vector-Matrix Products instead of Matrix-Vector Products
* do not need the explicit matrix, just ability to compute VMPs

Inspecting Linear Maps via Appplication

If we change the order to extract rows!
Vector-Matrix Products instead of Matrix-Vector Products
* do not need the explicit matrix, just ability to compute VMPs

Inspecting Linear Maps via Appplication

If we change the order to extract rows!
Vector-Matrix Products instead of Matrix-Vector Products
* do not need the explicit matrix, just ability to compute VMPs

BEEE -]

Inspecting Linear Maps via Appplication

If we change the order to extract rows!
Vector-Matrix Products instead of Matrix-Vector Products
* do not need the explicit matrix, just ability to compute VMPs

]

Inspecting Linear Maps via Appplication

If we change the order to extract rows!
Vector-Matrix Products instead of Matrix-Vector Products
* do not need the explicit matrix, just ability to compute VMPs

Again as Programs

- def vmp(out):

a,b = out
- - - t _
Again, savings if elements are e e arrax (]
easier/compactly expressed by srat sthy
logic than enumeration 1)
o vmp([2,3])

array([4, 21, 12])

2 - def explicit(out):
matrix = np.array([

[213I0]I

[0,5,4]
0 5 4)

return np.matmul (np.array(out).T,matrix)

- explicit([2,3])

array([4, 21, 12])

Upshot: Row- or Columnwise Extraction

We can fully characterize a Matrix through its products with vectors
e Matrix-vector products extract columns (N times for full Matrix)
e vector-Matrix products extract rows (M times for full Matrix)

Gives us a new way to "store" a matrix: as a computer program (e.g.
source code) mapping vectors to vectors vs as array of numbers.

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

M MMM,

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

smun S &

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

smun S &

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

c; = Me, c; = Me, = M3M

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

c;: = Me. c; = Me; = M;v,

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

r=e M r,=e M= e M;M,M,

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

T T | . T ,
r=e!'M rl-—el.M— M,

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

— o1 _ Tasr =1
ro=elM ri—el.M—le

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

L]

T T 1=
ro=elM rl-—el.M—l

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

Compositions

Matrix-Vector/Vector Matrix Products allow us to characterize
Matrix Composition without expensive Matrix multiplication
e just successive MVP/VMP until exhausted

Upshot: Forward and Backward

MVPs/VMPs can characterize a Products of Marices efficiently
Depending on the type of product either go forwards or backwards

e to get a row/column we never need explicit representations of M..
Ability to compute MVP/VMPs is all we need ("matrix-free approach)

¢; = Me; = M;M,M, e, r,=e M= e MMM,
¢; = Me; = M3M,v, r,=e M=7v MM,

C; = Mel' — M3V2 r; = €iTM — _/2M1

c; = Me; = v, I = eiTM = V5

forward backward (or reverse)

Back to Derivatives

From our discussion we now have a tool to efficiently compute

Jacobian matrices of deep compositions of functions

e need only ability to compute Jacobian-vector products (JVP) or
vector-dacobian products (VJP)

e as In the Matrix-case: we can represent Jacobians as
computer programs that map vectors to vectors

fiR"—> R™ g:R" > R
/\ /\
— e

Joof = Joly

Forward and Backward Propagation

As In the Matrix-case, we can compute Jacobians In
e forward-mode (with Jacobian-Vector Products)
e reverse-mode (with Vector-dacobian Products)

Cl - JkOhOgOf €l - Jth]ng el

A 1
]/'l- — el- JkOhogOf — el- JthJng

Forward and Backward Propagation

As In the Matrix-case, we can compute Jacobians In
e forward-mode (with Jacobian-Vector Products)

Ci = Jiohoger € = Tl olr € (J50)s Z Jf iV = Z
e reverse-mode (with Vector-dacobian Products)
e also known as "Backpropagation” in ML
ri = €] apoger = € SiIpd Iy (0Jf); =D Opdgy; =)

k k

8£Ek

Why Backpropagation for ML?

Neural Net Loss functions map network parameters to losses
L:RY>S R

Shape of the Jacobian: a single row! (i.e. the gradient V ¢L)

LY _ _ _ - L=X0,Y=Yo - - L=X0,Y=Yo
import numpy as np def explicit(v, at point): def jvp(v, at_point):
def func(inp): X,y = at point TLgVE = ,
X,y = 1inp jacobian = np.array(| X,y = at_point
return np.array(| X
X*y, [g’ 31’**2 return np.array(|
y**3 1) L0 b] vy*vl + x*v2,
3*¥y**2 * v2
1) return np.matmul (jacobian,v) 1)
Note: JVP program explicit([1.2,3.4], at_point = [2,3]) jvp([1.2, 3.4],at_point = [2,3])
depends on the point where array([10.4, 91.8]) array([10.4, 91.8])

the derivative is taken

Composition

The JVP/VJP programs must be generated as you step through the
composition (b/c of position dependence of Jacobian at each step)

(Jaefz°f2 /1))

Composition

The JVP/VJP programs must be generated as you step through the
composition (b/c of position dependence of Jacobian at each step)

(Jaefz°f2 /1))

evaluate func
—
A0 X1

make I
JVP/VJP
program

Composition

The JVP/VJP programs must be generated as you step through the
composition (b/c of position dependence of Jacobian at each step)

(Jaefz°f2 /1))

x() evaluate func xl X2

1 b
make
JVP/VVJP
program
J 1 J 2

Composition

The JVP/VJP programs must be generated as you step through the
composition (b/c of position dependence of Jacobian at each step)

(Jaefz°f2 /1))

x() evaluate func xl X2 x3

make I]CZ fé
JVP/VVJP \ \ \
program
J 1 J. 2 J 3

Composition

The JVP/VJP programs must be generated as you step through the
composition (b/c of position dependence of Jacobian at each step)

(Jaefz°f2 /1))

XOM»X1—> X2—>XB—>X4

. 1 b f3 Ja
JVP/VJP \ \ \ \
program
J, 7, A J,

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Forward is in the same order as original composition

(Jaefz°f2 /1))

XOM»X1—> X2—>.X3—>X4

1 b /3 Ja
JVP/VVJP \ \ \ \
program
Yo
J J J J

| 2 3 4
Cc = JVO — J4J3J2J1VO

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Forward is in the same order as original composition

(Jaefz°f2 /1))

XOM»X1—> X2—>XB—>X4

1 b /3 Ja
JVP/VVJP
program \ \ \
V() evaluate JVP Vl
J J

Ji > 3 Jy
C = JVO — J4J3J2J1VO

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Forward is in the same order as original composition

(Jaefz°f2 /1))

XOM»X1—> X2—>XB—>X4

\1 \fz \ /3 \ Ja
make
JVP/VJP
program

V() evaluate JVP Vl Vz

J, J, J, I,
C = JVO — J4J3J2J1VO

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Forward is in the same order as original composition

(Jaefz°f2 /1))

XOM»X1—> X2—>XB—>X4

\1 \fz \ /3 \ Ja
make
JVP/VJP
program

evaluate JVP
Vi — V) —— V) —— V3

J, J, J, I,
C = JVO — J4J3J2J1VO

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Forward is in the same order as original composition

(Jaefz°f2 /1))

XOM»X1—> X2—>XB—>X4

1 /> 3 J4
JVP/VJP
program
V() evaluate JVP Vl Vz V3 V4

Jl 2 3 4
Cc = JVO — J4J3J2J1VO

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Forward can be done "on-the-fly". The /. become available as-you-go

(Jaefz°f2 /1))

Cc = JVO — J4J3J2J1VO

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Forward can be done "on-the-fly". The /. become available as-you-go

(Jaefz°f2 /1))

Cc = JVO — J4J3J2J1VO

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Forward can be done "on-the-fly". The /. become available as-you-go

(Jaefz°f2 /1))

. “
. .
. .
.
. .
.
- .
. .
. .
.
. .
.
.
.
. .
.

\ | |
. .
;
.
.
.
. .
. .
. .
.
.
.
.
.
.
. .
. .
.

J2
Cc = JVO — J4J3J2J1VO

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Forward can be done "on-the-fly". The /. become available as-you-go

(Jaefz°f2 /1))

. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
- .
.

. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
[l

J3
Cc = JVO — J4J3J2J1VO

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Forward can be done "on-the-fly". The /. become available as-you-go

(Jaefz°f2 /1))

. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.

\ 4
V3 ——— Vg

J4
Cc = JVO — J4J3J2J1VO

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Backward is In the rerverse order from original composition

(Jaefz°f2 /1))

XOM»X1—> X2—>XB—>X4

I /> 3 J4
JVP/VJP \ \ \ \
program
J J, Jx Js
— Iy _ ., T

T
Yo

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Backward is In the rerverse order from original composition

(Jaefz°f2 /1))

XOM»X1—> X2—>XB—>X4

. 1 J2 /3 Ja
JVP/N/JP \ \ \ \
program

J J

evaluate VJP
| e—m—— T

V V
1 0
1) J3 Jy

¢ =vyJ = vy JaloJ,

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Backward is In the rerverse order from original composition

(Jaefz°f2 /1))

XOM»X1—> X2—>XB—>X4

\1 \ Vg \ E Ja
make
JVP/VVJP
program
J

. T T evaluate VJP T
2

\ % %
|
1 J2 J3 J4 0

¢ =vyJ = vy JaloJ,

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Backward is In the rerverse order from original composition

(Jaefz°f2 /1))

XOM»X1—> X2—>XB—>X4

. 1 /> 13 J4
JVP/VJP
program
evaluate VJP
] e—m48M— |, —— T — T
V3 V)

/) % J3 Jy
c =V, J = v Yoo,

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Backward is In the rerverse order from original composition

(Jaefz°f2 /1))

XOM»X1—> X2—>XB—>X4

. 1 /> 13 J4
JVP/VJP
program
evaluate VJP
] e—m48M— |, —— T — T
D V)

Ji % J3 J4
C = VOJ — VO J4J3J2J1

Composition

Once you have the JVP programs you can evaluate the JVP/VJPs
Backward cannot be done "on-the-fly", needs all J; before starting

(Jaefz°f2 /1))

XOM»X1—> X2—>XB—>X4

. 1 /> 13 J4
JVP/VJP
program
evaluate VJP
] e—m48M— |, —— T — T
D V)

/) % J3 Jy
c =V, J = v Yoo,

The Graph Picture

Computation are naturally expressed as graphs.

e edges represent a data dependence
e correspond to Jacobian matrix element

u dy; n

J. =
/ ax]

) S e Matrix Multiplication: summation over edges.

(Jpv)i =) Ty (0J¢); = Z@k‘]fkj
k k

(g o f)(x) (generalizes beyond "feed-forward" graphs)

y = f(x)

2 N8%Y% .
f‘%"""l\
. \yéwyr;/ ;

z=81)

Upshot: Jacobians as Programs

® Since Jacobians are Matrices we can use our tools to express
rows & columns of them as programs (JVP, VJP)

® Jacobians of deep compositions are easy to compute without
ever explicitly calculating all matrix elements once we have these
Jacobian Programs for the individual functions being composed

® Corollary: based on a small set building blocks (where we
manually code JVP, VJP) we can compute Jacobians (i.e.
derivatives) automatically for an almost unlimited set of functions
(all the ways the building blocks can be built

Upshot: Jacobians as Programs

® Since Jacobians are Matrices we can use our tools to express
rows & columns of them as programs (JVP, VJP)

¢ Jacobighsspistntittiins L e mvithout
ever ex Automatic Differentiation ave these

Jacobic omposed

= TOUI C JI AIVIUUC U o

® Corollary: based on a small set building blocks (where we
manually code JVP, VJP) we can compute Jacobians (i.e.
derivatives) automatically for an almost unlimited set of functions
(all the ways the building blocks can be built

Automatic Differentiation Systems

Systems that allow you to write numerical programs: R" — R"™

(i.e. complex compositios of basic building blocks),
that are efficietly differentiable

They do It by:

e Implementing (+,-,*,/,J,A,exp,log,sin,cos,tan,...)

e JVP/VJP for basic operations

e automating for you the composition for running either
forward or backward propagation

Automatic Differentiation Systems

Most Deep Learning Framework are at their core Autodiff systems
® |'ll focus on Jax, since it's more elegeant from a AD perspective

1" TensorFlow

% PYTHRCH

NN

Beyond Deep Learning

But there is a long list of nhon-DL focused AD frameworks as well
® |dea exist in many language (C++, Julia, Fortran, ...)

0

automatic differentiation in C++ couldn 't be simpler E nzym e _j | (J u I ia)

autodiff (C++)

Example: Autodiff with Jax

import numpy as np

def func(inp): import jax.numpy as jnp
X,y = inp def func(inp):
return np.array([x = in
X*y, rY 1P
y**3 return jJnp.array(|
1) X*Y,
y**3
def jvp(inp, at point): 1)
vl,v2 = inp
X,y = at point . .
return np.array(| import jax
y*vl + x*v2, jax.jvp(func,
Srytra e (jnp.array([2.,3.1),),

) (jnp.array([0.,1.]1),),

)
func(np.array([2.,3.]))

(DeviceArray([6., 27.], dtype=float32),

array([6., 27.1])
DeviceArray([2., 27.], dtype=float32))

jvp(np.array([0.,1.]),np.array([2.,3.]1))

array([2., 27.])

Manual Automatic

Example: Autodiff with Jax

import numpy as np
def func(inp):
X,y = inp
return np.array(|
X*Yy

import jax.numpy as Jjnp
def func(inp):

y**3 X, Y = inp
1) return jnp.array([
X*y,
def vjp(out, at point): y**s3
vl,v2 = out 1)
X,y = at_point
return*np.array([. | import jax
zi*§'+ 25 3rye2, vaiue, backward = jax.vjp(func,jnp.array([2.,3.]))
value

1)
DeviceArray([6., 27.], dtype=float32)

func([2.,3.])

array([6., 27.]) backward(jnp.array([4.,5.1))

(DeviceArray([12., 143.], dtype=float32),)
vip([4.,5.1,[2.,3.])

array([12., 143.])

Manual Automatic

Higher-level APIs

As a standard user you care about
the derivatives/Jacobians.

Autodiff frameworks give you
nice wrappers.

Thinking in terms of JVP/VJP
IS not necessary for day-to-day use
(but useful to understand once)

- import numpy as np

import matplotlib.pyplot as plt

Ampoxtiyjax | Getting the derivative for
import jax.numpy as Jnp an arbitrary python function

with a single line

- def func(x):
return jnp.sin(x) /

derivative = jax.grad(func)

- Xspan = np.linspace(-5,5,101)

y = jnp.array([func(x) for x in xXspan])
d = jnp.array([derivative(x) for x in xspan])

- plt.plot(xspan,y)

plt.plot(xspan,d)

[<matplotlib.lines.Line2D at 0x7f7874acabl(0>]

100 -
0.75 1
0.50 -
0.25 1
0.00 -
-0.25 1
-0.50 -

-0.75 - \/

-1.00 A

Higher-level APIs

With autodiff you can not only get first-order derivatives

def f(x):
return x**3

print(£(4.0))
print(jax.grad(£f)(4.0)) #boom!

print(jax.grad(jax.grad(f))(4.0)) #boom!
print(jax.grad(jax.grad(jax.grad(f)))(4.0)) #boom!
print(jax.grad(jax.grad(jax.grad(jax.grad(f))))(4.0)) #boom!

O DN & O

e o+ B 0O B

O O - . .
o O O

gli
g2i
g3i
plt

= jax.vmap(jax.grad(f))(xi)
= jax.vmap(jax.grad(jax.grad(f))) (x1i)

= jax.vmap(jax.grad

(J

ax.grad(jax.grad(f)))) (x1i)

.plot(xi,yi, label = "f")
.plot(xi,gli, label = "f'")
.plot(xi,g2i, label = "f''")
.plot(xi,g3i, label = "f£'"'"'")
.X1lim(-2,2)

.ylim(-20,20)

.legend()

<matplotlib.legend.Legend at 0x7f0aecabd910>

20

15 A

10 -

_lo .

-15 -

-20

n- e B B

Higher-level APIs

With autodiff you can not only get first-order derivatives

def f(x):
return x**3

print(£(4.0))
print(jax.grad(£f)(4.0)) #boom!

print(jax.grad(jax.grad(f))(4.0)) #boom!
print(jax.grad(jax.grad(jax.grad(f)))(4.0)) #boom!
print(jax.grad(jax.grad(jax.grad(jax.grad(f))))(4.0)) #boom!

O DN & O

e o+ B 0O B

O O - . .
o O O

gli
g2i
g3i
plt

= jax.vmap(jax.grad(f))(xi)
= jax.vmap(jax.grad(jax.grad(f))) (x1i)

= jax.vmap(jax.grad

(J

ax.grad(jax.grad(f)))) (x1i)

.plot(xi,yi, label = "f")
.plot(xi,gli, label = "f'")
.plot(xi,g2i, label = "f''")
.plot(xi,g3i, label = "f£'"'"'")
.X1lim(-2,2)

.ylim(-20,20)

.legend()

<matplotlib.legend.Legend at 0x7f0aecabd910>

20

15 A

10 -

_lo .

-15 -

-20

n- e B B

Applications

ML Opportunities in Fundamental Physics

Acceleration of Computation S . Search for new (better) Algorithms
(e.g. sometimes by searching for a good approximation) (e.g. targeted search based on samples)

42 Years of Microprocessor Trend Data

, - turing lecture

T o e _
10 | ‘ | 3 “ Transistors
108 § i : 4 a4 (thousands)
L Y & AT _ Sottossearenanaon

A AR éAA Sinale-Th d Innovations like domain-specific hardware,

105 o e ’ aafa o cwt 60 Ingle- 1 nréa enhanced security, open instruction sets, and
A‘ﬂ e .~ Performance agile chip development will lead the way.

104 n : ‘.. ' . _ (SpeCINT x 10) BY JOHN L. HENNESSY AND DAVID A. PATTERSON

5 MA“‘ Fad “‘ Frequency (MHz)
T Aw,.c’-' g o | e A New Golden

Typical Power

02 | o s © g rerer® 1 War Age for

‘ vy *
ok - " v Yy v!3' ,,,,,,,,,,,,, YT eaw?t | Number of C t
A S Uy s AV T4 Logical Cores Ompu er
A . v 'va vv 3 e
of &2 ™ v ‘ ‘ L R aaadlif [
10 —-‘---9 ------------ D S S T A L T . rc Itecture
! ! ! !
1970 1980 1990 2000 2010 2020
Year WE BEGAN OUR Turing Lecture June 4, 2018 with a review
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten ofcomput.er archltecture. . the 1960s. In addition
New plot and data collected for 2010-2017 by K. Rupp to that review, here, we highlight current challenges

and identify future opportunities, projecting another
golden age for the field of computer architecture in
the next decade, much like the 1980s when we did the

research that led to our award, delivering gainsin cost, | epgineers, including ACM AM. Tur-

energy, and security, as well as performance. ing Award laureate Fred Brooks, Jr.,
thought they could create a single ISA

. that would efficiently unify all four of
L ho cannot remember the past are condemned | these IsA bases.

———

it.” —George Santayana, 1905 | They needed a technical solution
for how computer: inexpensive as

are talks to hardware through a vocabulary key insights

i an instruction set architecture (ISA). By the early | a sontware advances caninspire

J/s, IBM had four incompatible lines of computers, E"’" "““:: ':"‘r';”""“ ot

/' with its own ISA, software stack, I/O system, ¥ nterfane oreases apporumities fer

yd market nlche—targetmg small business, large arehitecture innovation.

. ® The marketplace ultimately sef

Jusiness, scientific, and real time, respectively. IBM architecture debates.

space of possible algorithms

simulation side: the physics is fixed: up to us to find best observables
nothing to search for —speed up simulation —>search for best reconstruction 88

Lightning Summary of ML

Learning: data-driven search for a function with optimal performance in a huge

Space of Algorithms

parameters

Algorithm f Evaluation

algorithm Feedback

training data

| /
Performance: 4:(a3,y)‘%(f¢ (CC), y)

performance
evaluation

How do we learn practically?

39

Lightning Summary of ML

search space should be large enough — trillions of parameters! How could this work?

— gradient-based optimization (“good sense of direction”)

oL
op

[parameters)

inputs Algorithm f¢ l output |-> Evaluation objective

Feedback

To deal with hyper-planes in a 14-dimensional space, visualize a 3D — requires aIQOritth and evaluation tO

space and say fourteen'to yourself very loudly. -Hinton (DL pioneer)

fixed but generic, large and easily

Finding the right Search Space

At first

differentiable function class:

input layer

/“
\
;';//4
6‘ ‘
{ Q\
i\
{/(
\
\

hidden layer 1 hidden layer 2 hidden layer 3

3 s
: '1”"»‘ﬂ: Sy pre N oy
AR QNNSC STZA QNS 4
SN 7 A NN T NN N,
RN, ST S YRR R 2 T R
T s‘\’{;i s ':t\ > ‘\‘-T' ‘*‘r '/"/%:‘ '&t\\}' S ".'.!r 57 N
O AR AL AINNEE, ST
. JA\.‘:\.} A el %,.‘:ﬁ\.ﬁ:: AT P \ . \\“-
N O SN Ny T T NN Sy e e SN, S
3 NS A N A AT 4 TV s e g SN DORoRY
M A e BTAPIH I AT A SR
"/“‘-':‘ o SR ot o ’“‘\-{0‘ ol ST A0 2P e
:-A\\ g‘g’.‘; "..: ’ o -':'_,, o .f/'\x;.:. ..-.; ’ o ’_-'0_,;5 N DA ’.',1..«
.gi.:}.; S, S :.;::-.-‘::;’;' T P - e
7 e ‘ O s S A ‘ Wt
P S N '-.-‘o:o?-:,o:{'
o~ RO~ BRSNS
-~.é,.010.,',;‘;\‘ IR .’:"::&Z.';,n; PO, B
'J \~ ') \~ vy g v

IAA
sy

\\5:\ \
/

7

PN A A ST R BN
e 0',5,":'\ "'::‘1“g“ "'7"0”5“’:“ P:““\’\
& - 4 F k" - " A4 5 s © o 3 :.
AR IAAT ,\\‘;\-\% AR T T AN .

SN NN
: 7 P? e, B ey AT B7 S Ao
P - . .“\\ o o £ ¥ 75 525 A- “._\ X
A /" _v“‘s -\\V//y, /" -“\ \\\
LA oA A7 SN

7S SRS 7K RSN

v @) e
\ W ZaS=Q\

N,

57772
L

|
-

manual derivation of efficient

gradient computation

Increasingly

domain-specific, arbitrary computation
encoding e.g. symmetries, dynamics, ...

y=fRx) X =f(x)

[M. Bronstein]

"N

91

Differentiable Programming in ML

Immediate Gains from DiffProg: allows us to add physics into ML models

* bias towards good solutions by constraining solution space
 hard-coded knowledge does not need to be learned from data (efficiency)

no structure

Errors

differentiable
structure

put physics here

Data

92

Differentiable Programming in ML

) Ideal mass-spring system Baseline NN Prediction
/ \ 6asehne NN i \ / o \
Double Pendulum Energy a | »
+m2l11291 0.2 cos(01 o 02) \
+(my + mg)gly cos 0, X > m | p=mq Ce 2]
+magly cos b
. . . 7

Hamiltonian NN

o
f
-
S

L ian NN &
/ Observe State \ /agranglan 9904 0

over Time L7 TokeGradients: &% / Cons};arvation of\ :: ,;J: ;:533:3 \§ Sadenig e (\;U :: ;/ “ .
X nergy o - P ool! ,‘
// . pS \5\?',} (i ma !
\ NN R NN T EEEE e NN
Generalized Sal \ e ———
\ / Coordinates P . i 2 K e / q q
(No need for canonical . j= (aa—f) (g—c—q%)
coordinates) \ . . . U Py _]
o5 Hamiltonian Neural Nets
e arXiv:1906.01563
Lagrangian Neural Nets Vol
. L X
arXiv: 2003.04630 3ty
o Haar SU(4) 3D projection
® ,
e
Neural Nets with AL A
: .)
QCD-like Structure yadully Sy
arXiv:1702.00748] P
el ‘." N §
SU(N)-Equivariant Normalizing Flows

<AS
,//AVA\\\\
7 AVAVANYS
77/ ANVAVAVA

mwAVAVAVAVA'“ﬂ

N

y

U VAVAVATA
N NNV

ANAVAVAY AVAVAYA

S
"

N

.
|2
|
|2

27'

21‘+1
Gauge-Equivariant
Convolutional Neural Networks
L N M N R =
Wi - EFP
Wi~ PN
-y I e PFN

ound rejection &
[
o
w

- .- ParticleNet -

A W R T e ResNeXt50 -
| R TR RL--- TopoDNN

,,,,,,,,,,,,,,,,,,,,,,

,,

,,,

Architecture Accuracy AUC 3
ParticleNet 0.938 0985 1298446 498k s AR -
P-CNN 0.930 0980 732+24 348k N R
ResNeXt 0.936 0984 1122447 146M N R
EFP 0.932 0.980 384 k Ny
EFN 0.927 0979 633 +31 82k &%
PFN 0.932 0.982 891 + 18 82k
TopoDNN 0.916 0972 295+5 5% 2 05 06 07 08 09
LGN 0.929 0964 435+95 4.5k al efficiency &s

+.001 =+0.018

Lorentz-Invariance

arxiv:2006.04780

93

Differentiable Programming in ML

Complementary Approach: add physics-driven evaluation

put physics here

Evaluation I

Differentiable Programming in ML

Training Fast Simulators: produce events at correct relative proportions

At parton level, events should follow Matrix Element proportions

o(x,0) =) | Mx,0)

l

e/ d

v | q

f we have differentiable Matrix Elements | .// | ({p:},0) we can check directly
[parameters j

l - sample diversity \
Matrix Elements -

physics-driven evaluation

95

=91 GeV

IM|~2 at E

20 1.00
0.75
1.5+ 0.50
0.25 o
=
1.0 ~ 0.00 P
~0.25)
0-5- L _0.50 |
- —0.75
0.0 ~
% % s V.ox,0) Vyo(x,0) -
M Z [GeV] X
phase-space theory Parameter
derivatives derivatives

Differentiable Programming in ML

MadJax: MadGraph calculations (originally FORTRAN) transpiled into differentiable
programming language (JAX) — usable as evaluation function during training

ete- -> U+p-

mg5_aMC

1 FKL flow

. 05
10! 10" 4
10° 10° 4
107! 1072 4
1072 T T 1072

05
10° 10° 4
107! 107!
1072 = T 102
0.0 05 10 0.

= = = =
— (=] o [— — (=] o [— —
g 7 9 = =8 58 T 9 =2 &8 g
= < =3 (=
o o J o (=]
e e 2 2 22
wn wn wn wn “aERE
Qo2
f 52
J o,
f 2
- — - - =
ol o o gl
= = = =
= = = = o o = I~ = =) =} = = =
< £ < b " & ? b
=
o
(

' 10 0.0 05 10 0.0 05 101 - | FKL-RKL flow
17 10 : [test data
10! 10" |]
O — 10° 4
10° -
1071 4 .
f 0 05 To 700 05 : ——
1071 5

10°
107!
1072 T
0.0 05 10

F
|

0.0 0.5 10

10

better description of density than

—mode=madjax_me_gen -f ee_to_mumu.mg5

pure ML training

[LH, M. Kagan]
arxiv:2203.00057 96

Differentiable Programming in ML

Same approach in Lattice QCD:

Learn proposal distribution for sampling
of fields on a lattice (for MCMC / |S)

* encode symmetries in ML sampler

...

» evaluate on LQCD action in DiffProg nimas
language (pytorch) HH
)

[parameters j

l sample diversity
[noise]—» ML model —»[fields result]
LQCD Action
Albergo et al.

arxiv: 1904.12072
physics-driven evaluation arxiv:2101.08176 9/

Differentiable Programming in ML

Parton Density Functions: DP can train NNPDF as it was meant to be trained
One of the early use-cases of NNs in HEP: PDF parametrizations

@ physics-driven evaluation
-—>l PDF at Qo ' DGLAP ' @ Q1 ' DGLAP ' @ Q2 ' DGLAP l @ Q3 '

» “ @
Curiosity:

traditionally not(!) trained via gradient-descent
— too difficult to get gradients

— use genetic algorithms (mutation + select)
— works but is slow

genetic algorithms [Source] 98

https://www.cs.ubc.ca/~van/papers/2013-TOG-MuscleBasedBipeds/index.html

Differentiable Programming in ML

More recently: PDF evolution kernels implemented in DiffProg (Tensorflow)
» allows finally for a gradient-based training of NN

" For all fits shown in this paper we utilize gradient de-

scent (GD) methods to substitute the previously used |ge- dat 1.7 GeV

netic aﬁ.gorithm. This change can be shown to greatly re- 0.60 - e
duce the computing cost of a fit while maintaining a very DIS n3fit NGA (68 c.I.+10)
similar (and in occasions improved) x2-goodness. The less 0.55 -

stochastic nature of GD methods also produces more sta-

C
ble fits than its GA counterparts. T'he main reason why N Qi ? P D F

0.50 S
the GD methods had not been tested before were due to Machine Learning + PDFs + QCD
the difficulty of computing the gradient of the loss function

(mainly due to the convolution with the fastkernel tables)
in a efficient way. This is one example on how the usage
of new technologies can facilitate new studies thanks to 0.40 -
differentiable programming and distributed computing.

0.35
(£ = Aixi(1 — x)# NN(x))
Convolution 10~53 10'—4 16—3 10'—2 10'—1 1'00
xgrid; >~ e X
R \
xgrid,> \ o | pdfi »61~> O Xer
It
- a 4 Tr/VI
; fitbasis o = :
t - : : split
N\ - 2 arxiv: 1907.05075
n > Un = n Vv
‘r: pilowdd 4 X [Carrazza et all

xgrid >
7 Preproc

m(x) [GeV]

Differentiable Programming Beyond ML

Gradients useful far beyond ML: e.g. complex fits via differentiable programming

Binned Likelihoods (LHC, EIC, Belle-Il, ...) Partial Wave Analysis

Const_1 Const_7 Const_S constts) (comis) Ceonstn

onst_10 Const_9
ox1 13x8x23. 735 \Ix1 /35 13x8x2 [135 b3 10x1
Gatherv2 Cast_s Gatherv2_1 Castd Const_12 concat Cast_T Gatherv2_3 Const_8.
.
Soxt \goxt a3 _Aaxl i3x1 N3 f3snas 1 136 baas ox1 10x8x1x23 .
Grea cinsum_s Greater_1 cinsum 4 Const_16 Cast 8 ones_§ GatherV2.2 Reshape_| Cast_6
Ab 13x1 3kl s 3 Toxixixl [10x8x1 10x8x1x23

é 0_0 . f(0)(500)
J/ ¢ e 8 . 0)(980)
generated data:sample ' f(0)(1370)

: f(0)(1500)
........ f(O)(l?lO)

data
1 fit model

1.50 1

.25

add 3 ones_5

1

O

1600

||||||

1400

N—

+

1200

1000

800

600

4.
%

400

I|III|III|III|III|III|III|I

. b, production ; b, — b 7(2 —bh z; : m(z?) =60 GeV ; ATLAS-CONF-2019-11 " 1.00 - ! *
Vs=13 TeV, 139.0 b T o N, o
_ - —. Expected Limit (ROOT P
m m°n®
(""a(,(osmo)

I I
All limits at 95% CL g e
D imi g (2105 Z :)ﬂ
------ Expected Limit (pyhf) (=1 o Zg - : :
""" Observed Limit rgurz rip) &P o) 0.25 - :
Observed Limit (ROOT) : :
Observed Limit (pyhf) 0.00 L 2
’
some_amplitude = model.components]|
R"A_{D"{0} {0} \to K~{0} {0} a {0}(980)"{06} {0}; a {0}(980)"{06} {0} \to K*{+} {0} K~{-} {0}}"
]
CDUHKguo(QSO)gzao(QSO)O%K;KO_ rao(QSO)O'm'ao(QSO)” \/Bg ((dao(QSO)O)Q q%QQ (777’%2)) D80 (_(Dl +2, 0]-{-23 0) D(())O (_@’]J-}-?: 01.1—}-2-, O)
—m%g + (mao(98())0)2 = imao(gso)ﬂF (m%z)
i CD0—>K8(10(980)8;00(980)°—>K(}LK(,_Fa()(980)0m00(980)0
pyhf [LH, G. Start, M. Feickert] ComPWA [R. deBoer, M. Mikhasenko] | M100

- - —. Expected Limit (roundtrip) (1o
0.5 1.0 1.5 2.0 2.5 3.0
_u YR SR YO N T WO TR T SR WO o o 2 ’| T B R 1 - irao(gsmo(mao(gsmo)2\/("’32‘('"1—'712>f,3?(;"'%2‘(""1+’"‘2)2) 2
2007200 600 800 1000 1200 1400 160 differentiable e —miy + (Mag(os0)0)
m(b) [G Yikelihoods J

https://app.slack.com/team/U0353VC9XNX

