Muon Anomaly and Lattice QCD

Z. Fodor

Penn State, Univ. Wuppertal, FZ Juelich, Univ. Budapest, UCSD
Budapest-Marseille-Wuppertal collaboration (BMW)
Borsanyi, Fodor, Guenther, Hoelbling, Katz, Lellouch, Lippert, Miura, Parato, Szabo, Stokes, Toth, Torok, Varnhorst

Lake Louise Winter Institute, February 21, 2023

Tensions in $(g-2)_{\mu}$: take-home message

[Muon g-2 Theory Initiative, Phys.Rept. 887 (2020) 1-166]
[Budapest-Marseille-Wuppertal-coll., Nature (2021)]

Lattice QCD: examples

Lattice QCD: examples

- Wuppertal-Budapest-collaboration,

The order of the quantum chromodynamics transition predicted by the standard model of particle physics,
Nature 443 (2006) 675-678

Lattice QCD: examples

- Wuppertal-Budapest-collaboration,

The order of the quantum chromodynamics transition predicted by the standard model of particle physics,
Nature 443 (2006) 675-678

- Budapest-Marseille-Wuppertal-collaboration, Ab-initio Determination of Light Hadron Masses, Science 322 (2008) 1224-1227

Lattice QCD: examples

- Wuppertal-Budapest-collaboration,

The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675-678

- Budapest-Marseille-Wuppertal-collaboration, Ab initio calculation of the neutron-proton mass difference, Science 347 (2015) 1452-1455

- Budapest-Marseille-Wuppertal-collaboration, Ab-initio Determination of Light Hadron Masses, Science 322 (2008) 1224-1227

Lattice QCD: examples

- Wuppertal-Budapest-collaboration,

The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675-678

- Budapest-Marseille-Wuppertal-collaboration, Ab-initio Determination of Light Hadron Masses, Science 322 (2008) 1224-1227

- Budapest-Marseille-Wuppertal-collaboration, Ab initio calculation of the neutron-proton mass difference, Science 347 (2015) 1452-1455

- Wuppertal-Budapest-collaboration, Lattice QCD for Cosmology, Nature 539 (2016) 7627, 69-71

Outline

Outline

Outline

2.

Outline

2.

Outline

4. Summary

Outline

Experimental result

- Newly announced result at Fermilab

$$
a_{\mu}(\text { FNAL })=11659204.0(5.4) \cdot 10^{-10} \quad(0.46 \mathrm{ppm})
$$

Experimental result

- Newly announced result at Fermilab

$$
a_{\mu}(\text { FNAL })=11659204.0(5.4) \cdot 10^{-10} \quad(0.46 \mathrm{ppm})
$$

- Equivalent to: bathroom scale sensitive to weight of a single eyelash.

Experimental result

- Newly announced result at Fermilab

$$
a_{\mu}(\text { FNAL })=11659204.0(5.4) \cdot 10^{-10} \quad(0.46 \mathrm{ppm})
$$

- Equivalent to: bathroom scale sensitive to weight of a single eyelash.

- Fully agrees with the BNL E821 measurement

$$
\begin{array}{rlr}
a_{\mu}(\mathrm{BNL}) & =11659209.1(6.3) \cdot 10^{-10} & (0.54 \mathrm{ppm}) \\
a_{\mu}(\text { combined }) & =11659206.1(4.1) \cdot 10^{-10} & (0.35 \mathrm{ppm})
\end{array}
$$

Experimental result

- Newly announced result at Fermilab

$$
a_{\mu}(\text { FNAL })=11659204.0(5.4) \cdot 10^{-10} \quad(0.46 \mathrm{ppm})
$$

- Equivalent to: bathroom scale sensitive to weight of a single eyelash.

- Fully agrees with the BNL E821 measurement

$$
\begin{array}{rlr}
a_{\mu}(\mathrm{BNL}) & =11659209.1(6.3) \cdot 10^{-10} & (0.54 \mathrm{ppm}) \\
a_{\mu}(\text { combined }) & =11659206.1(4.1) \cdot 10^{-10} & (0.35 \mathrm{ppm})
\end{array}
$$

- Target uncertainty: (1.6)

Outline

Theory: Standard Model

Sum over all known physics:

Theory: Standard Model

Sum over all known physics:
(1) electrodynamics (QED): γ, leptons

Theory: Standard Model

Sum over all known physics:
(1) electrodynamics (QED): γ, leptons
(2) electroweak (EW): W, Z, v, Higgs

Theory: Standard Model

Sum over all known physics:
(1) electrodynamics (QED): γ, leptons
(2) electroweak (EW): W, Z, v, Higgs
(3) strong (QCD): quarks and gluons

Theory: Standard Model

Sum over all known physics:
(1) electrodynamics (QED): γ, leptons
(2) electroweak (EW): W, Z, v, Higgs
(3) strong (QCD): quarks and gluons

- [2006.04822] White Paper of Muon g-2: theory initiative; theory consensus, R-ratio, dispersion relation

Theory: Standard Model

Sum over all known physics:
(1) electrodynamics (QED): γ, leptons
(2) electroweak (EW): W, Z, v, Higgs
(3) strong (QCD): quarks and gluons

- [2006.04822] White Paper of Muon g-2:
theory initiative; theory consensus, R-ratio, dispersion relation

	$a_{\mu} \times 10^{-10}$
QED	$11658471.9(0.1)$
electroweak	$15.4(0.1)$
strong	$693.7(4.3)$
total	$11659181.0(4.3)$

Theory: Standard Model

Sum over all known physics:
(1) electrodynamics (QED): γ, leptons
(2) electroweak (EW): W, Z, v, Higgs
(3) strong (QCD): quarks and gluons

- [2006.04822] White Paper of Muon g-2:
theory initiative; theory consensus, R-ratio, dispersion relation

	$a_{\mu} \times 10^{-10}$
QED	$11658471.9(0.1)$
electroweak	$15.4(0.1)$
strong	$693.7(4.3)$
total	$11659181.0(4.3)$

4.0 out of the 4.3 error comes from LO hadron vacuum polarisation

Hadronic contributions

- LO hadron vacuum polarization (LO-HVP, $\left.\left(\frac{\alpha}{\pi}\right)^{2}\right)$

Hadronic contributions

- LO hadron vacuum polarization (LO-HVP, $\left.\left(\frac{\alpha}{\pi}\right)^{2}\right)$

- NLO hadron vacuum polarization (NLO-HVP, $\left.\left(\frac{\alpha}{\pi}\right)^{3}\right)$

Hadronic contributions

- LO hadron vacuum polarization (LO-HVP, $\left.\left(\frac{\alpha}{\pi}\right)^{2}\right)$

- NLO hadron vacuum polarization (NLO-HVP, $\left.\left(\frac{\alpha}{\pi}\right)^{3}\right)$

- Hadronic light-by-light (HLbL, $\left.\left(\frac{\alpha}{\pi}\right)^{3}\right)$

- pheno $a_{\mu}^{\mathrm{HLLLL}}=9.2(1.9)$
[Colangelo, Hoferichter, Kubis, Stoffer et al '15-'20]
- lattice $a_{\mu}^{\mathrm{HLLLL}}=7.9(3.1)(1.8)$ or 10.7(1.5)
[RBC/UKQCD '19 and Mainz '21]

HVP from R-ratio

- Optical theorem

HVP from R-ratio

- Optical theorem

Use $e^{+} e^{-} \rightarrow$ had data of CMD, SND, BES, KLOE, BABAR, ... systematics limited

HVP from R-ratio

- Optical theorem

Use $e^{+} e^{-} \rightarrow$ had data of CMD, SND, BES, KLOE, BABAR, ... systematics limited

$$
\mathrm{a}_{\mu}^{\mathrm{LO}-\mathrm{HVP}}=\left(\frac{\alpha}{\pi}\right)^{2} \int \frac{d s}{s^{2}} K_{\mu}(s) R(s)
$$

HVP from R-ratio

- Optical theorem

Use $e^{+} e^{-} \rightarrow$ had data of CMD, SND, BES, KLOE, BABAR, ... systematics limited

$$
\mathrm{a}_{\mu}^{\mathrm{LO}-\mathrm{HVP}}=\left(\frac{\alpha}{\pi}\right)^{2} \int \frac{d s}{s^{2}} K_{\mu}(s) R(s)
$$

LO	[Jegerlehner '18]	688.1(4.1)	0.60\%
LO	[Davier etal '19]	693.9(4.0)	0.58\%
LO	[Keshavarzi et al' 19$]$	692.78(2.42)	0.35\%
LO	[Hoferichter et al '19]	692.3(3.3)	0.48\%
LO	[White Paper '20]	693.1(4.0)	0.58\%
NLO/NNLO	[Kurz etal '14]	-9.87(0.09)/1.24(0.01)	

HVP from R-ratio

- Optical theorem

Use $e^{+} e^{-} \rightarrow$ had data of CMD, SND, BES, KLOE, BABAR, ... systematics limited

$$
\mathrm{a}_{\mu}^{\mathrm{LO}-\mathrm{HVP}}=\left(\frac{\alpha}{\pi}\right)^{2} \int \frac{d s}{s^{2}} K_{\mu}(s) R(s)
$$

LO	[Jegerlehner ' '18]	$688.1(4.1)$	0.60%
LO	[Davier etal' 19$]$	$693.9(4.0)$	0.58%
LO	[Keshavari etal' 19$]$	$692.78(2.42)$	0.35%
LO	[Hoferichere et al' 19$]$	$692.3(3.3)$	0.48%
LO	[White Paper '20]	$693.14 .0)$	0.58%
NLO/NNLO	[Kurz et al' 14$]$		$-9.87(0.09) / 1.24(0.01)$

Systematic uncertainty: ≈ 4 times larger than the statistical error (e.g. Davier et all.)

Tensions in the R-ratio method

CMD3 [2302.08834] $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$for $\sqrt{s}: 0.60-0.88 \mathrm{GeV}$

Tensions in the R-ratio method

CMD3 [2302.08834] $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$for $\sqrt{s}: 0.60-0.88 \mathrm{GeV}$
More than 50% of the total HVP contribution to a_{μ}

Tensions in the R-ratio method

CMD3 [2302.08834] $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$for $\sqrt{s}: 0.60-0.88 \mathrm{GeV}$
More than 50% of the total HVP contribution to a_{μ}

Tensions in the R-ratio method

CMD3 [2302.08834] $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$for $\sqrt{s}: 0.60-0.88 \mathrm{GeV}$ More than 50% of the total HVP contribution to a_{μ}

tension: already in earlier data
\Rightarrow error inflation

Tensions in the R-ratio method

CMD3 [2302.08834] $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$for $\sqrt{s}: 0.60-0.88 \mathrm{GeV}$
More than 50% of the total HVP contribution to a_{μ}

tension: already in earlier data
\Rightarrow error inflation
KLOE \& BaBar: $\approx 3 \sigma$ (bit different \sqrt{s} range)

Tensions in the R-ratio method

CMD3 [2302.08834] $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$for $\sqrt{s}: 0.60-0.88 \mathrm{GeV}$ More than 50% of the total HVP contribution to a_{μ}

tension: already in earlier data
\Rightarrow error inflation
KLOE \& BaBar: $\approx 3 \sigma$ (bit different \sqrt{s} range)

CMD3 vs. old average:
4.4σ tension

Tensions in the R-ratio method

CMD3 [2302.08834] $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$for $\sqrt{s}: 0.60-0.88 \mathrm{GeV}$ More than 50% of the total HVP contribution to a_{μ}

tension: already in earlier data
\Rightarrow error inflation
KLOE \& BaBar: $\approx 3 \sigma$ (bit different \sqrt{s} range)

CMD3 vs. old average:
4.4σ tension
central value: 15 unit shift (remember)

Tensions in the R-ratio method

CMD3 [2302.08834] $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$for $\sqrt{s}: 0.60-0.88 \mathrm{GeV}$ More than 50% of the total HVP contribution to a_{μ}

tension: already in earlier data
\Rightarrow error inflation
KLOE \& BaBar: $\approx 3 \sigma$ (bit different \sqrt{s} range)

CMD3 vs. old average: 4.4σ tension
central value: 15 unit shift (remember)

White Paper must further inflate errors: less chance for new physics?

Discrepancy

- $\mathrm{a}_{\mu}^{\exp }-\mathrm{a}_{\mu}^{\text {theory }}=25.1(6.0)$ around 4.2 σ significance

Discrepancy

- $\mathrm{a}_{\mu}^{\text {exp }}-\mathrm{a}_{\mu}^{\text {theory }}=25.1(6.0)$ around 4.2 σ significance

Discrepancy

- $\mathrm{a}_{\mu}^{\exp }-\mathrm{a}_{\mu}^{\text {theory }}=25.1(6.0)$ around 4.2σ significance

error budget dominatet by experiment and HVP:

$(4.1)_{\exp }(0.1)_{\text {QED }}(0.1)_{\text {weak }}(4.0)_{\mathrm{HVP}}(1.8)_{\mathrm{HLbL}}$

Discrepancy

- $a_{\mu}^{\text {exp }}-a_{\mu}^{\text {theory }}=25.1(6.0)$ around 4.2σ significance

error budget dominatet by experiment and HVP:
$(4.1)_{\exp }(0.1)_{\text {QED }}(0.1)_{\text {weak }}(4.0)_{\mathrm{HVP}}(1.8)_{\mathrm{HLbL}}$
- HUGE: is about $2 \times$ electroweak contribution

Discrepancy

- $a_{\mu}^{\text {exp }}-a_{\mu}^{\text {theory }}=25.1(6.0)$ around 4.2 σ significance

error budget dominatet by experiment and HVP:
$(4.1)_{\exp }(0.1)_{\text {QED }}(0.1)_{\text {weak }}(4.0)_{\mathrm{HVP}}(1.8)_{\mathrm{HLbL}}$
- HUGE: is about $2 \times$ electroweak contribution

For new physics:

- FNAL(plan) + same theory errors 6σ
- FNAL(plan) + HLbL 10\% + HVP 0.2\% 11 σ

Discrepancy

- $\mathrm{a}_{\mu}^{\exp }-\mathrm{a}_{\mu}^{\text {theory }}=25.1(6.0)$ around 4.2 σ significance

error budget dominatet by experiment and HVP:
$(4.1)_{\exp }(0.1)_{\text {QED }}(0.1)_{\text {weak }}(4.0)_{\text {HVP }}(1.8)_{\text {HLbL }}$
- HUGE: is about $2 \times$ electroweak contribution

For new physics:

For no new physics:

- FNAL(plan) + same theory errors 6σ
- FNAL(plan) + HLbL 10\% + HVP 0.2\% 11 σ
- 4\% larger HVP, $a_{\mu}^{\text {LO-HVP }}=720.0(6.8)$
- 360\% larger HLbL, $a_{\mu}^{\mathrm{HLbL}}=37.9(7.1)$

Outline

3.

Lattice QCD

- Quantum field theory: integrate over all classical field configurations

$$
\int[\mathrm{d} U][\mathrm{d} \bar{\psi}][\mathrm{d} \psi] O e^{-\mathrm{S}_{g}(U)-\bar{\psi} M(U) \psi}
$$

Lattice QCD

- Quantum field theory: integrate over all classical field configurations

$$
\int[\mathrm{d} U][\mathrm{d} \bar{\psi}][\mathrm{d} \psi] O e^{-\mathrm{S}_{g}(U)-\bar{\psi} M(U) \psi}
$$

- E.g. $96^{3} \times 144$ lattice $\longrightarrow \quad \approx 4 \cdot 10^{9}$ dimensional integral
- Stochastic integration

Lattice QCD

- Quantum field theory: integrate over all classical field configurations

$$
\int[\mathrm{d} U][\mathrm{d} \bar{\psi}][\mathrm{d} \psi] O e^{-S_{g}(U)-\bar{\psi} M(U) \psi}
$$

- E.g. $96^{3} \times 144$ lattice $\longrightarrow \approx 4 \cdot 10^{9}$ dimensional integral
- Stochastic integration

- 100000 years for a laptop $\longrightarrow 1$ year for supercomputer

Lattice QCD

- Lattice gauge theory: systematically improvable, non-perturbative, 1st principles method

Lattice QCD

- Lattice gauge theory: systematically improvable, non-perturbative, 1st principles method
- Discretize space-time with lattice spacing: a

Lattice QCD

- Lattice gauge theory: systematically improvable, non-perturbative, 1st principles method
- Discretize space-time with lattice spacing: a

- quarks on sites, gluons on links

Lattice QCD

- Lattice gauge theory: systematically improvable, non-perturbative, 1st principles method
- Discretize space-time with lattice spacing: a

- quarks on sites, gluons on links
- discretize action + operators

$$
\begin{aligned}
\int \mathrm{d}^{4} x & \longrightarrow a^{4} \sum_{x} \\
\partial_{\mu} & \longrightarrow \text { finite differences }
\end{aligned}
$$

Lattice QCD

- Lattice gauge theory: systematically improvable, non-perturbative, 1st principles method
- Discretize space-time with lattice spacing: a

- quarks on sites, gluons on links
- discretize action + operators

$$
\begin{aligned}
& \int \mathrm{d}^{4} x \longrightarrow a^{4} \sum_{x} \\
& \partial_{\mu} \longrightarrow \\
& \text { finite differences }
\end{aligned}
$$

- To get physical results, need to perform:
(1) Chiral limit ($m_{u / d} \rightarrow m_{\text {phys }}$ or use $m_{\text {phys }}$)
(2) Infinite volume limit $(V \rightarrow \infty) \longrightarrow$ numerically or analytically
(3) Continuum limit $(a \rightarrow 0) \longrightarrow \min .3$ different a

$a_{\mu}^{\text {LO-HVP }}$ from lattice QCD ${ }_{\text {Nature } 593 \text { (2021) 7857, } 51}$

- Compute electromagnetic current-current correlator

$a_{\mu}^{\mathrm{LO}-\mathrm{HVP}}$ from lattice $\mathrm{QCD}_{\text {Nature } 593 \text { (2021) 7857, } 51}$

- Compute electromagnetic current-current correlator

$$
C(t)=\left\langle J_{\mu}(t) J_{v}(0)\right\rangle
$$

$a_{\mu}^{\mathrm{LO}-\mathrm{HVP}}$ from lattice QCD ${ }_{\text {Nature } 593 \text { (2021) 7857, } 51}$

- Compute electromagnetic current-current correlator

$$
\begin{gathered}
C(t)=\left\langle J_{\mu}(t) J_{v}(0)\right\rangle \\
\mathrm{a}_{\mu}^{\mathrm{LO}-\mathrm{HVP}}=\alpha^{2} \int_{0}^{\infty} d t K(t) C(t)
\end{gathered}
$$

BMW simulation setup

BMW simulation setup

- 6 lattice spacings: $0.13 \mathrm{fm}-0.064 \mathrm{fm} \longrightarrow$ controlled continuum limit

BMW simulation setup

- 6 lattice spacings: $0.13 \mathrm{fm}-0.064 \mathrm{fm} \longrightarrow$ controlled continuum limit
- Box size: $L \sim 6 \mathrm{fm}$

BMW simulation setup

- 6 lattice spacings: $0.13 \mathrm{fm}-0.064 \mathrm{fm} \longrightarrow$ controlled continuum limit
- Box size: $L \sim 6 \mathrm{fm}$
$L \sim 11 \mathrm{fm}$ at one lattice spacing \longrightarrow FV effects

BMW simulation setup

- 6 lattice spacings: $0.13 \mathrm{fm}-0.064 \mathrm{fm} \longrightarrow$ controlled continuum limit
- Box size: $L \sim 6 \mathrm{fm}$
$L \sim 11 \mathrm{fm}$ at one lattice spacing \longrightarrow FV effects
- Quark masses bracketing their physical values

BMW simulation setup

- 6 lattice spacings: $0.13 \mathrm{fm}-0.064 \mathrm{fm} \longrightarrow$ controlled continuum limit
- Box size: $L \sim 6 \mathrm{fm}$
$L \sim 11 \mathrm{fm}$ at one lattice spacing \longrightarrow FV effects
- Quark masses bracketing their physical values

β	$a[f \mathrm{fm}]$	$L \times T$	\#conf
3.7000	0.1315	48×64	904
3.7500	0.1191	56×96	2072
3.7753	0.1116	56×84	1907
3.8400	0.0952	64×96	3139
3.9200	0.0787	80×128	4296
4.0126	0.0640	96×144	6980

CPU demand scales as $\approx \mathrm{a}^{-8}$: very careful planning needed

Topology: did we hit the brick-wall?

Depending on the action: topology is frozen for $\mathrm{a}<0.05 \mathrm{fm}$

Topology: did we hit the brick-wall?

Depending on the action: topology is frozen for $\mathrm{a}<0.05 \mathrm{fm}$ \Longrightarrow open boundary condition (CLS lattice group)

Topology: did we hit the brick-wall?

Depending on the action: topology is frozen for $\mathrm{a}<0.05 \mathrm{fm}$ \Longrightarrow open boundary condition (CLS lattice group)
Take the smallest lattice spacing of us of 0.064 fm

Topology: did we hit the brick-wall?

Depending on the action: topology is frozen for $\mathrm{a}<0.05 \mathrm{fm}$ \Longrightarrow open boundary condition (CLS lattice group)
Take the smallest lattice spacing of us of 0.064 fm

Topology: did we hit the brick-wall?

Depending on the action: topology is frozen for $\mathrm{a}<0.05 \mathrm{fm}$ \Longrightarrow open boundary condition (CLS lattice group)
Take the smallest lattice spacing of us of 0.064 fm

The integrated autocorrelation time of Q is 19(2) trajectories.

New challenges

Scale determination

Lattice spacing 'a' is not an input, α_{s} is, must be determined 'a' enters into a_{μ} calculation:

Scale determination

Lattice spacing 'a' is not an input, α_{s} is, must be determined 'a' enters into a_{μ} calculation:

- physical value of m_{μ}
- physical values of m_{π}, m_{K}

Scale determination

Lattice spacing 'a' is not an input, α_{s} is, must be determined 'a' enters into a_{μ} calculation:

- physical value of m_{μ}
- physical values of m_{π}, m_{K}
$\longrightarrow \Delta_{\text {scale }} a_{\mu} \sim 2 \cdot \Delta$ (scale)

Scale determination

Lattice spacing 'a' is not an input, α_{s} is, must be determined 'a' enters into a_{μ} calculation:

- physical value of m_{μ}
- physical values of m_{π}, m_{K}
$\longrightarrow \Delta_{\text {scale }} a_{\mu} \sim 2 \cdot \Delta$ (scale)
(1) For final results: M_{Ω} scale setting $\longrightarrow a=\left(a M_{\Omega}\right)^{\text {lat }} / M_{\Omega}^{\text {exp }}$
- Experimentally well known: $1672.45(29) \mathrm{MeV}$ [PDG 2018]
- Moderate m_{q} dependence
- Can be precisely determined on the lattice

Scale determination

Lattice spacing 'a' is not an input, α_{s} is, must be determined 'a' enters into a_{μ} calculation:

- physical value of m_{μ}
- physical values of m_{π}, m_{K}
$\longrightarrow \Delta_{\text {scale }} a_{\mu} \sim 2 \cdot \Delta$ (scale)
(1) For final results: M_{Ω} scale setting $\longrightarrow a=\left(a M_{\Omega}\right)^{\text {lat }} / M_{\Omega}^{\text {exp }}$
- Experimentally well known: $1672.45(29) \mathrm{MeV}$ [PDG 2018]
- Moderate m_{q} dependence
- Can be precisely determined on the lattice
(2) For separation of isospin breaking effects: w_{0} scale setting
- Moderate m_{q} dependence
- Can be precisely determined on the lattice
- No experimental value
\longrightarrow Determine value of w_{0} from $M_{\Omega} \cdot w_{0}$

$$
w_{0}=0.17236(29)(63)[70] \mathrm{fm}
$$

Noise reduction

- noise/signal in $C(t)=\langle J(t) J(0)\rangle$ grows for large distances

Noise reduction

- noise/signal in $C(t)=\langle J(t) J(0)\rangle$ grows for large distances

- Low Mode Averaging: use exact (all2all) quark propagator in IR and stochastic in UV
- decrease noise by replacing $C(t)$ by upper/lower bounds above t_{c}

$$
0 \leq C(t) \leq C\left(t_{c}\right) e^{-E_{2 \pi}\left(t-t_{c}\right)}
$$

Noise reduction

- noise/signal in $C(t)=\langle J(t) J(0)\rangle$ grows for large distances

- Low Mode Averaging: use exact (all2all) quark propagator in IR and stochastic in UV
- decrease noise by replacing $C(t)$ by upper/lower bounds above t_{c}

$$
0 \leq C(t) \leq C\left(t_{c}\right) e^{-E_{2 \pi}\left(t-t_{c}\right)}
$$

\longrightarrow few permil level accuracy on each ensemble

Finite-size effects

- Typical lattice runs use $L<6 \mathrm{fm}$, earlier model estimates gave $O(2) \%$ FV effect.

Finite-size effects

- Typical lattice runs use $L<6 \mathrm{fm}$, earlier model estimates gave $O(2) \%$ FV effect.
$L_{\text {ref }}=6.272 \mathrm{fm}$

$$
L_{\text {big }}=10.752 \mathrm{fm}
$$

Finite-size effects

- Typical lattice runs use $L<6 \mathrm{fm}$, earlier model estimates gave $O(2) \%$ FV effect.
$L_{\text {ref }}=6.272 \mathrm{fm}$

$$
L_{\text {big }}=10.752 \mathrm{fm}
$$

1. $a_{\mu}($ big $)-a_{\mu}($ ref $)$

- perform numerical simulations in $L_{\text {big }}=10.752 \mathrm{fm}$
- perform analytical computations to check models

Finite-size effects

- Typical lattice runs use $L<6 \mathrm{fm}$, earlier model estimates gave $O(2) \%$ FV effect.
$L_{\text {ref }}=6.272 \mathrm{fm}$

$$
L_{\text {big }}=10.752 \mathrm{fm}
$$

1. $a_{\mu}($ big $)-a_{\mu}($ ref $)$

- perform numerical simulations in $L_{\text {big }}=10.752 \mathrm{fm}$
- perform analytical computations to check models

lattice	NLO XPT	NNLO XPT	MLLGS	HP	RHO
$18.1(2.0)_{\text {stat }}(1.4)_{\text {cont }}$	11.6	15.7	17.8	16.7	15.2

Finite-size effects

- Typical lattice runs use $L<6 \mathrm{fm}$, earlier model estimates gave $O(2) \%$ FV effect.
$L_{\text {ref }}=6.272 \mathrm{fm}$

$$
L_{\text {big }}=10.752 \mathrm{fm}
$$

1. $a_{\mu}($ big $)-a_{\mu}($ ref $)$

- perform numerical simulations in $L_{\text {big }}=10.752 \mathrm{fm}$
- perform analytical computations to check models

lattice	NLO XPT	NNLO XPT	MLLGS	HP	RHO
$18.1(2.0)_{\text {stat }}(1.4)_{\text {cont }}$	11.6	15.7	17.8	16.7	15.2

2. $a_{\mu}(\infty)-a_{\mu}$ (big)

- use models for remnant finite-size effect of "big" ~ 0.1\%

Isospin breaking effects

- Include leading order IB effects: $O\left(e^{2}\right), \quad O(\delta m)$

Final result for LO-HVP (hadronic vacuum polarization)

Final result for LO-HVP (hadronic vacuum polarization)

- $\mathrm{a}_{\mu}^{\mathrm{LO}-\mathrm{HVP}}=707.5(2.3)(5.0)[5.5]$ with 0.8% accuracy:
- Lattice: systematic uncertainty: ≈ 2 times as large as the statistical error

Final result for LO-HVP (hadronic vacuum polarization)

- $a_{\mu}^{\text {LO-HVP }}=707.5(2.3)(5.0)[5.5]$ with 0.8% accuracy:
- Lattice: systematic uncertainty: ≈ 2 times as large as the statistical error
- consistent with new FNAL experiment

Final result for LO-HVP (hadronic vacuum polarization)

- $a_{\mu}^{\text {LO-HVP }}=707.5(2.3)(5.0)[5.5]$ with 0.8% accuracy:
- Lattice: systematic uncertainty: ≈ 2 times as large as the statistical error
- consistent with new FNAL experiment
- BMW is by 15 units larger than the White Paper: 2.1σ tension

Final result for LO-HVP (hadronic vacuum polarization)

- $a_{\mu}^{\text {LO-HVP }}=707.5(2.3)(5.0)[5.5]$ with 0.8% accuracy:
- Lattice: systematic uncertainty: ≈ 2 times as large as the statistical error
- consistent with new FNAL experiment
- BMW is by 15 units larger than the White Paper: 2.1σ tension
- CMD3 is also 15 units larger than the White Paper: spot on

Improvements on the errors from 2017-2020

Improvements on the errors from 2017-2020

2017: (blue columns) the dominant error was finite size error

Improvements on the errors from 2017-2020

2017: (blue columns) the dominant error was finite size error
\Rightarrow reduced it by a factor of five
still the second largest error

Improvements on the errors from 2017-2020

2017: (blue columns) the dominant error was finite size error
\Rightarrow reduced it by a factor of five
still the second largest error
Today: largest uncertainty is the continuum extrapolation best way to reduce: get closer to the continuum limit, reduce "a" presently running $\mathrm{a}=0.046 \mathrm{fm}$ lattice (CPU grows as a^{-8})

Continuum limit

Continuum limit

Continuum limit

Continuum limit

Continuum limit

\downarrow

Window observable

- Restrict correlator to window between $t_{1}=0.4 \mathrm{fm}$ and $t_{2}=1.0 \mathrm{fm}$

Window observable

- Restrict correlator to window between $t_{1}=0.4 \mathrm{fm}$ and $t_{2}=1.0 \mathrm{fm}$

- Less challenging than full a_{μ}

Window observable

- Restrict correlator to window between $t_{1}=0.4 \mathrm{fm}$ and $t_{2}=1.0 \mathrm{fm}$

- Less challenging than full a_{μ}
- signal/noise
- finite size effects
- lattice artefacts (short \& long)

Window observable

- Restrict correlator to window between $t_{1}=0.4 \mathrm{fm}$ and $t_{2}=1.0 \mathrm{fm}$

- Less challenging than full a_{μ}
- signal/noise
- finite size effects
- lattice artefacts (short \& long)
about two orders of magnitude easier (CPU and manpower)

Window observable

- Restrict correlator to window between $t_{1}=0.4 \mathrm{fm}$ and $t_{2}=1.0 \mathrm{fm}$

- Less challenging than full a_{μ}
- signal/noise
- finite size effects
- lattice artefacts (short \& long)
about two orders of magnitude easier (CPU and manpower)
histogram of 250,000 fits with and without improvements

Window observable

- Restrict correlator to window between $t_{1}=0.4 \mathrm{fm}$ and $t_{2}=1.0 \mathrm{fm}$

- Less challenging than full a_{μ}
- signal/noise
- finite size effects
- lattice artefacts (short \& long)
about two orders of magnitude easier (CPU and manpower)
histogram of 250,000 fits with and without improvements

Crosscheck - overlap

Crosscheck - overlap

- compute $a_{\mu, \text { win }}$ with overlap valence
- local current instead of conserved \longrightarrow had to compute Z_{V}
- cont. limit in $L=3 \mathrm{fm}$ box consistent with staggered valence

Tension in the window observables

Tension in the window observables

5 fully independent results most of them: blinded(*) all agree with each other

Tension in the window observables

5 fully independent results most of them: blinded(*) all agree with each other average: small $\chi^{2} /$ dof (very conservative errors) no error inflation as for the R-ratio

Tension in the window observables

Tension in the window observables

Tension in the window observables

FHM'23 [2301.08274]
RBC/UKQCD'23 [2301.08696]
ETMC'22 [2206.15084]
Mainz'22 [2206.06582]
BMW'20 [2002.12347]
R-ratio'22 [Colangelo/lat]

Outline

5. Summary

Final result

QED
isospin-breaking: mixed

disconnected $\quad 0.011(24)(14)$

Finite-size effects
isospin-symmetric 18.7(2.5)
isospin-breaking 0.0(0.1)

$$
10^{10} \times a_{\mu}{ }^{\text {LO-HVP }}=707.5(2.3)_{\text {stat }}(5.0)_{\text {sys }}[5.5]_{\text {tot }}
$$

Tension: take-home message \#1 full g-2

Systematic/statistical error ratios: lattice ≈ 2; R-ratio ≈ 4

Tension: take-home message \#2 lattice/ $\mathrm{e}^{+} \mathrm{e}^{-}$window

about 4.4-4.9-5.1 σ tensions for distance \& energy regions

Tension: take-home message \#2 lattice/ $\mathrm{e}^{+} \mathrm{e}^{-}$window

about 4.4-4.9-5.1 σ tensions for distance \& energy regions
Lattice window: 0.4-1.0 fm $\quad \mathrm{e}^{+} \mathrm{e}^{-}$window $0.60-0.88 \mathrm{GeV}$ approx. 30% of the total more than 50% of the total

Tension: take-home message \#2 lattice/ $\mathrm{e}^{+} \mathrm{e}^{-}$window

about 4.4-4.9-5.1 σ tensions for distance \& energy regions

Lattice window: 0.4-1.0 fm approx. 30% of the total
$\mathrm{e}^{+} \mathrm{e}^{-}$window $0.60-0.88 \mathrm{GeV}$ more than 50% of the total

Tension: take-home message \#2 lattice/ $\mathrm{e}^{+} \mathrm{e}^{-}$window

about 4.4-4.9-5.1 σ tensions for distance \& energy regions

Lattice window: 0.4-1.0 fm approx. 30% of the total

$\mathrm{e}^{+} \mathrm{e}^{-}$window $0.60-0.88 \mathrm{GeV}$ more than 50% of the total

