Dark Sector Physics at BABAR

Steven Robertson

Institute of Particle Physics & University of Alberta

On behalf of the **BABAR** Collaboration

Lake Louise Winter Institute Chateau Lake Louise, Alberta Feb 19 – 25, 2023

Dark matter may carry charges for non-SM gauge interactions, possibly acquiring mass via dark sector Higgs etc.

• Effective Field Theory (EFT) provides a number of "portals" to access this dark sector:

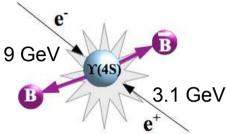
→ Dark sector can be probed via mixing of the portal mediators with SM particles

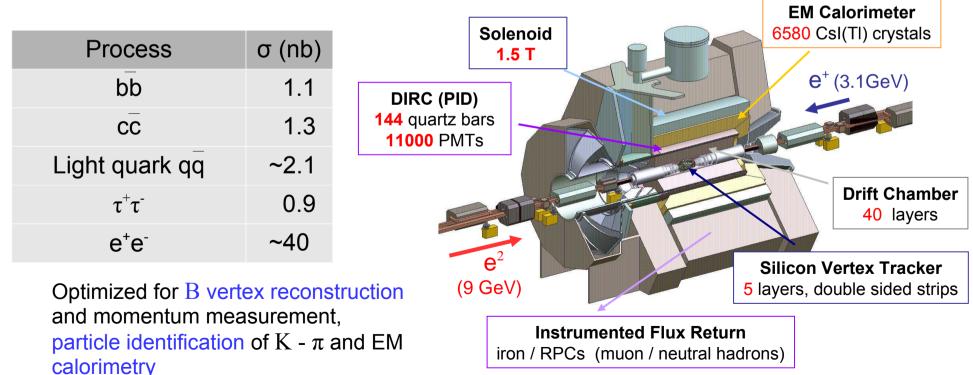
11)

- Search for an Axion-Like Particle
- Search for B Mesogenesis
- Search for Darkonium

Phys. Rev. Lett. 128, 131802 (2022).

arXiv:2302.00208 [hep-ex]


Phys. Rev. Lett. 128 021802 (2022)


BABAR experiment

Asymmetric B Factory experiment at the SLAC National Accelerator Laboratory

- BABAR collected data from 1999 until 2008:
 - 432 fb⁻¹ Υ (4S) "on peak" (~470 x 10⁶ BB pairs)
 - 53 fb⁻¹ non-resonant "off peak"
 - Smaller samples at the $\Upsilon(2S)$ and $\Upsilon(3S)$ energies

B factories are extremely well suited to dark sector studies:

- Clean e⁺e⁻ environment with relatively hermetic detector coverage; good missing energy reconstruction
- Potential to reconstruct displaced vertices from long-lived particles in $\sim 1 \text{mm} < c\tau < \sim 10 \text{cm} (\sim 100 \text{cm})$, with $c\tau > \sim 3 \text{m}$ being "missing energy"
- Inclusive trigger for (N_{tracks} > 3) hadronic events, but low-multiplicity searches require dedicated triggers
- High statistics "precision frontier" data samples

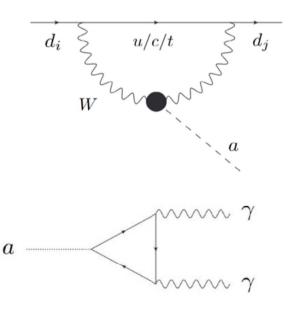
Dark sector production mechanisms:

- Production of on-shell dark bosons via $e^+e^- \rightarrow \gamma Z'$ "radiative" and $e^+e^- \rightarrow f f Z'$ "-strahlung" processes
- Light dark sector particles can be produced in decays of B and D mesons

Axion-Like Particles

Many extensions of SM include spontaneously-broken global symmetries, resulting in pseudo-Goldstone bosons known as **Axion-Like Particles (ALPs)** $\mathcal{L} =$

- Can potentially help resolve issues of naturalness of SM parameters but may also serve as mediators to dark sectors
- ALPs (a) couple primarily to pairs of SM gauge bosons.

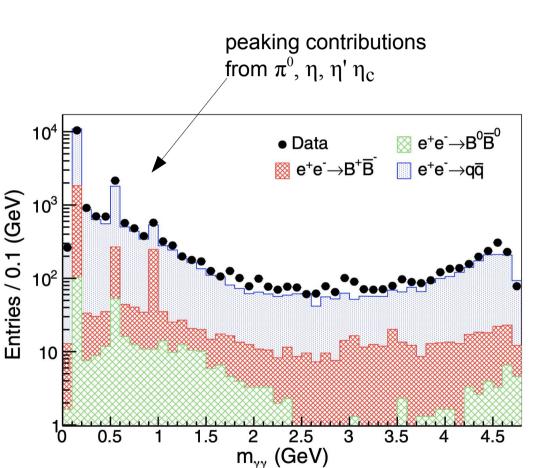

Can be produced in FCNC B decay processes, specifically $B \rightarrow Ka$

- $a \rightarrow \gamma \gamma$ with nearly 100% BF for $m(a) \le m(W)$
- For low axion mass and small coupling, the axion lifetime can become "long", i.e. non-prompt.

$$\tau \sim 1 \ / \ m_a{}^3 \ g_{aW}{}^2$$

 $\mathcal{L} = -\frac{g_{aW}}{4} a W^b_{\mu\nu} \tilde{W}^{b\mu\nu}$ fors SU(2)_W field strength tensor

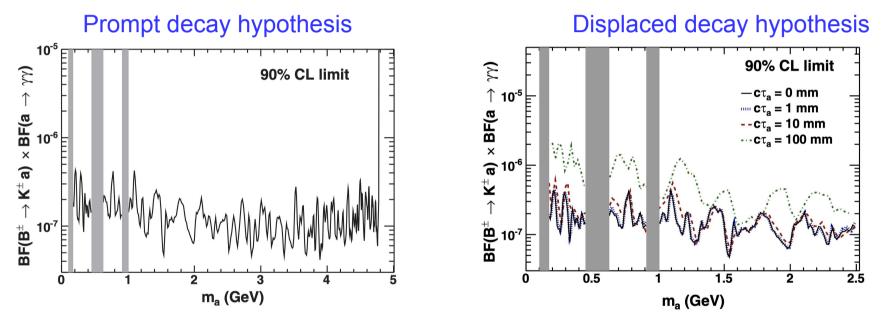
E. Izaguirre et al., PRL 118 (2017) 111802


Phys. Rev. Lett. 128, 131802 (2022)

BABAR searches for ALPs in $B^+ \to K^+a$ ($a \to \gamma\gamma$) in 4.72 x 10⁸ $B\overline{B}$ pairs (424 fb⁻¹) collected at the $\Upsilon(4S)$ energy.

Axion-Like Particles

- Exclusively reconstruct B meson via well-identified K and photons, then "bump hunt" in the reconstructed γγ mass
- Kinematic fit to improve resolution
- Boosted decision trees using kinematic variables from "rest of event" to suppress continuum e⁺e⁻ → qq (q = u,d,s,c) and BB backgrounds
- Analysis optimized and validated on 8% of data set (subsequently discarded), then search performed on remainder of (blinded) dataset

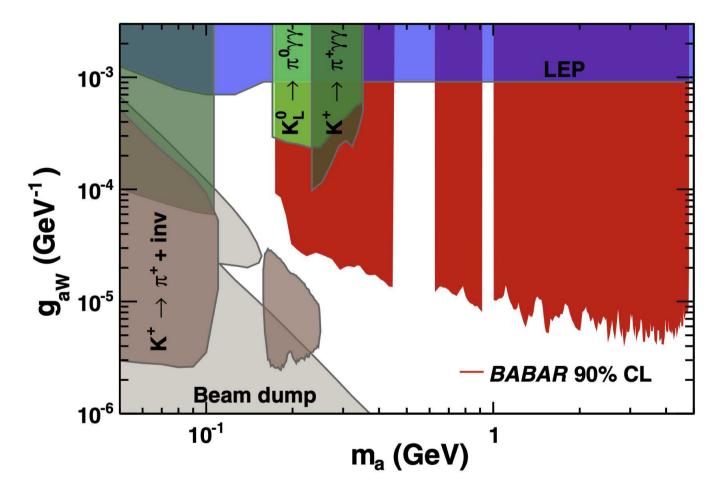

Axion-Like Particles

Phys. Rev. Lett. 128, 131802 (2022)

Scan $m_{\gamma\gamma}$ with steps equal to the signal mass resolution (~ 8 – 14 MeV)

• 461 signal mass hypotheses fit with unbinned ML fits to a hypothetical signal peak + smooth background over range of \sim 24 – 60 σ around each hypothesis

In low mass region ($m_{\gamma\gamma}$ < 2.5 GeV) the signal sensitivity is also assessed for non-prompt signal hypotheses: $c\tau = 1, 10, 100$ mm


- displaced vertex not reconstructed, but ALP resolution degraded
- No significant excess observed

Axion-Like Particles

Phys. Rev. Lett. 128, 131802 (2022)

Set 90% CL exclusion bounds on the ALP coupling $g_{aW} \label{eq:gaw}$

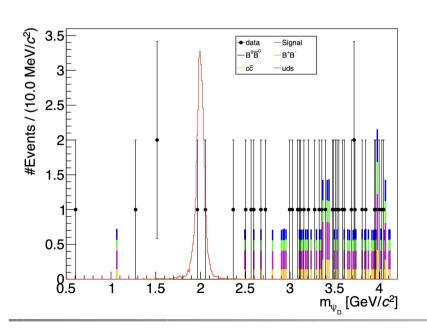
• Improvements of up to two orders of magnitude over previous limits

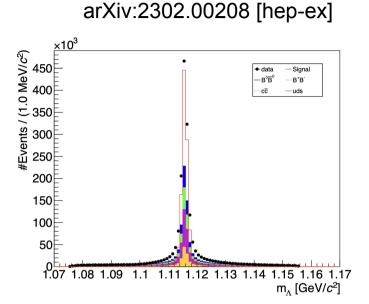
Search for B Mesogenesis

Mechanism proposed to explain dark matter abundance and Baryon Asymmetry of the Universe (BAU)

- Light dark-sector anti-baryon and a TeV-scale color-triplet bosonic mediator
- BAU results from B meson decays into a a baryon and a dark sector anti-baryon $\psi_D\,$ (+ light mesons)
- Visible and dark sectors have equal but opposite matterantimatter asymmetries, but total baryon number is conserved

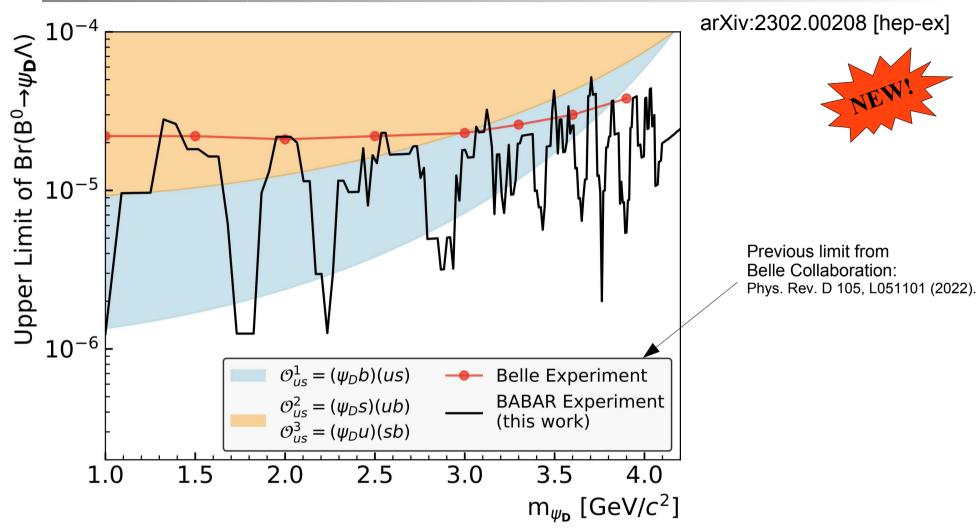
G. Elor, M. Escudero and A. E. Nelson, Phys. Rev. D 99, 035031 (2019). G. Alonso-Alvarez, G. Elorand, and M. Escudero, Phys.Rev. D 104, 035028 (2021).




Search for B Mesogenesis

BABAR search for $B{\rightarrow}\Lambda\;\psi_D$

- Invisibly decaying dark sector $\psi_D\,$ escapes detection
- Reconstruct accompanying B meson from $\Upsilon(4S) \to B\bar{B}$ and look for signal signature in the remainder of the event
- Kinematic fit of $\Lambda \to p \ \pi,$ including displaced vertex significance requirement



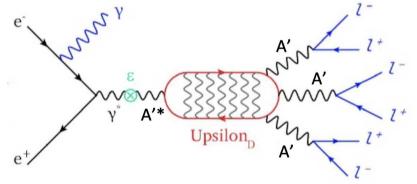
- Reconstruct ψ_D from the missing energy 4-vector
- BDT used to suppress residual combinatorial backgrounds from $q\bar{q}$ and BB decays
- Background estimated directly from $m\psi_D$ sideband data
- 193 mass hypotheses tested

Search for B Mesogenesis

Branching fraction 90% confidence limits obtained at level of 10⁻⁶ – 10⁻⁵

• Exclude large fraction of parameter space for B mesogenesis

Search for Darkonium

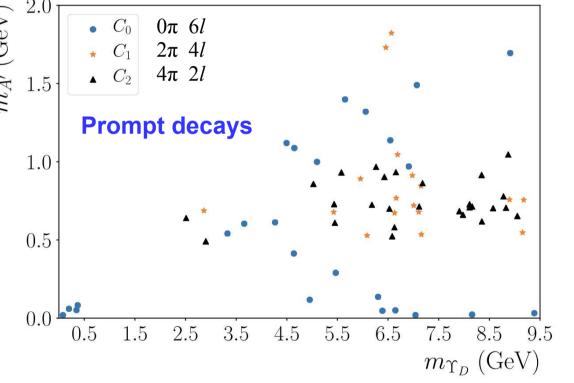

Self-interacting dark matter, i.e. dark matter bound states can arise in simple dark photon models in which the A' couples strongly to the dark matter fermion (χ) via coupling α_D

- Two lowest bound states are $\eta_D (J^{PC} = 0^{-+})$ and $\Upsilon_D (J^{PC} = 1^{--})$
- Dark photon A' mixes with SM photon via kinetic mixing with strength **E**

Produced via $e^{\scriptscriptstyle +}e^{\scriptscriptstyle -} \to \gamma \; \Upsilon_D$, with

 $\Upsilon_D \rightarrow A'A'A'$ and $A' \rightarrow ff (f = e, \mu, \pi)$

- Dark photon lifetime can be long for small masses and small kinetic mixing ε hence prompt and displaced vertex signatures
- BABAR search in six-track final state in 514 fb⁻¹



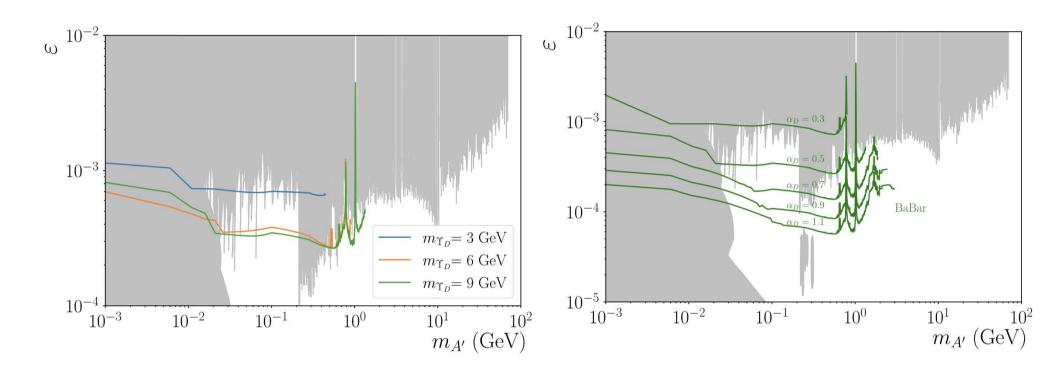
PRL 128, 021802 (2022)

 $e^+e^- \rightarrow \gamma \Upsilon_D$

3 pairs of opposite-sign tracks (at least one lepton pair) which should all have same invariant mass

- Reconstruct Υ_{D} mass
- Reconstruct Υ_D mass (APD) mass (APD) is a large of the second • mass against Υ_D should be consistent with zero
- MVA used to suppress • backgrounds
- Scan $m(\Upsilon_D)$ m(A') for • evidence of peaks

Steven Robertson


No significant signals observed in either prompt or displaced decay searches

Dark Sector Physics at BABAR

Search for Darkonium

PRL 128, 021802 (2022)

90% C.L. Upper limits placed on the kinetic mixing parameter $\boldsymbol{\epsilon}$

- As a function of m(A')
- For different values of $m(\Upsilon_D)$ and α_D

Conclusion

BABAR data remains an interesting and important resource for searching for physics beyond the Standard Model

- Clean B factory environment is extremely well suited to searches for light dark sector new physics
- B mesogenesis, darkonium and ALPs searches are the most recent in a long history of dark sector and exotic searches

BABAR papers

Extensive program of searches for physics beyond the Standard Model, and dark sector in particular:

- Search for heavy neutral leptons in τ decays arXiv 2207.09575 [hep-ex] (accepted to PRD)
- Lepton universality in Y(3S) decays Phys. Rev. Lett .125, 241801 (2020)
- Search for LFV in Y(3S) →e µ Phys. Rev. Lett. 128, 091804 (2022)
- Rare and forbidden D decays Phys. Rev. Lett. 124, 071802 (2020)
- Search for LFV in $D^0 \rightarrow X^0 \; e \; \mu$ Phys. Rev. D 101, 112003 (2020)

- B mesogenesis arXiv:2302.00208 [hep-ex]
- Search for Darkonium Phys. Rev. Lett. 128 021802 (2022)
- Axion like particle Phys. Rev. Lett. 128, 131802 (2022).
- Dark Leptophilic scalar Phys. Rev. Lett. 125,181801 (2020).
- Six quark dark matter Phys. Rev. Lett. 122, 072002 (2019).
- Dark photon
 Phys. Rev. Lett. 113, 201801 (2014);
 Phys. Rev. Lett. 119, 131804 (2017).
- Muonic dark force Phys. Rev. D 94, 011102 (2016).
- Dark Higgs bosons Phys. Rev. Lett. 108, 211801 (2012)

Feb 21, 2023

Dark Sector Physics at BABAR

18

Extended Higgs sector with additional light singlets that mix with the Higgs boson (e.g. NMSSM, but more generally singlet-extended scalar sectors)

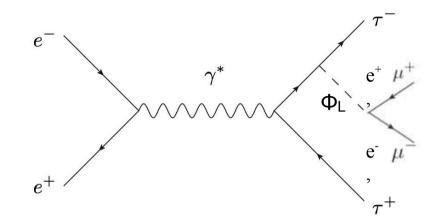
Dark Leptophilic Scalar

- scalar could mediate interactions between the SM and dark matter
- generic scenarios strongly constrained by heavy flavour FCNC decays (e.g. $B \rightarrow K\phi, K \rightarrow \phi\pi$)

If this new scalar interacts predominantly with leptons rather than quarks, then experimental bounds can be evaded

- couplings proportional to mass, hence interact preferentially with heavy-flavour leptons
- such a scalar could explain the g-2 anomaly

Previous BABAR search for muonic dark force provides model-independent constraints


Phys. Rev. D94 011102 (2016)

Dark Leptophilic Scalar

Search for a dark scalar Φ_L which is radiated from a tau lepton

$${\cal L}=-\xi\sum_{\ell=e,\mu, au}rac{m_\ell}{v}ar{\ell}\,\phi_L\ell$$

- Φ_L preferentially decays to kinematically accessible final states (depends on mass)
- For low Φ_L mass and coupling, Φ_L can be non-prompt

Experimental signature is a narrow resonant peak in $m(l^+ l^-)$ $(l = e, \mu)$ with width limited by detector resolution

$$\begin{array}{l} e^{+}e^{-} \rightarrow \tau^{+}\tau^{-} \ \Phi_{L} \ , \\ \Phi_{L} \rightarrow l^{+} \ l^{-} \ (l=e, \ \mu) \end{array}$$

- Consider 1-prong tau final states, i.e. two charged tracks (e, μ, π) accompanied by two oppositely charged leptons
- 4-track topologies (plus additional neutrals)
- For $2m_e < m_{\Phi} < 2m_{\mu}$ permit Φ_L to be non-prompt
- Analysis is optimized and validated using a small sample (~5%) of data, which is subsequently discarded

Dark Leptophilic Scalar

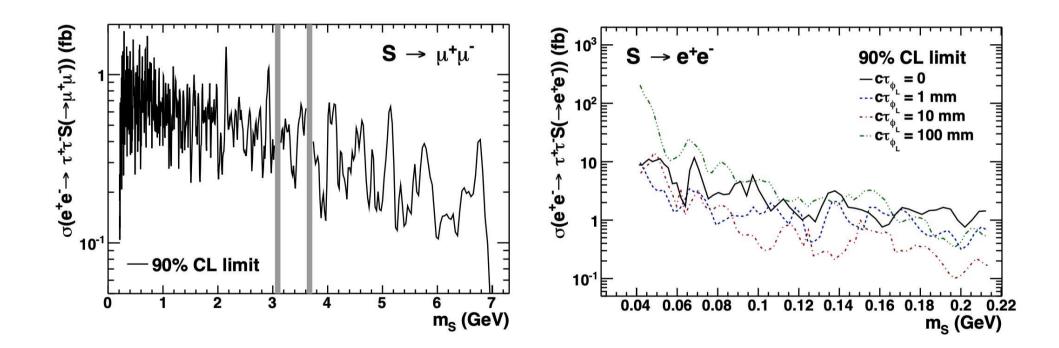
Phys. Rev. Lett. 125, 181801 514 fb⁻¹

 ${m_\ell \over v} ar \ell \, \phi_L \ell$

1

iterative procedure, to account for impact of Φ_L lifetime: 10^{2} כ(**e⁺e⁻→** τ⁺τ^ϕ (fb) m BABAR Z 10 10 (g-2) excl. (g-2) ± Orsay 10⁻¹ 90% CL limit 10 E137 з m_e (GeV) 10-2 BABAR **\$ 00% CL σ(e⁺e⁻→** τ⁺τ⁻ϕ [(fb) 10 90% CL limit 10⁻³ 10⁻² -CT = 010⁻¹ = 1 mm 10² = 10 mm $c\tau = 100 \text{ mm}$ Limits on ξ for the di-electron channel at the level of ~[0.5 – 1], corresponding to $c\tau_{\Phi L}$ ~ 10mm, and $c\tau_{\Phi L}$ ~ 2mm for di-muon channel 10 $(g-2)_{\mu}$ region mostly excluded below di-tau threshold 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 m_e (GeV)

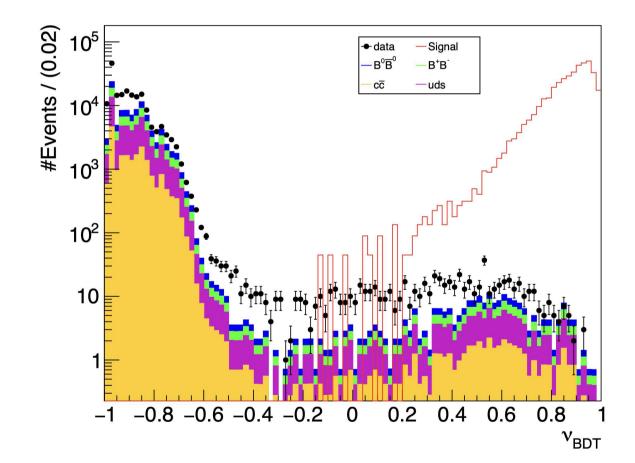
Limits on the scalar coupling are derived using an


10

Dark Leptophilic Scalar

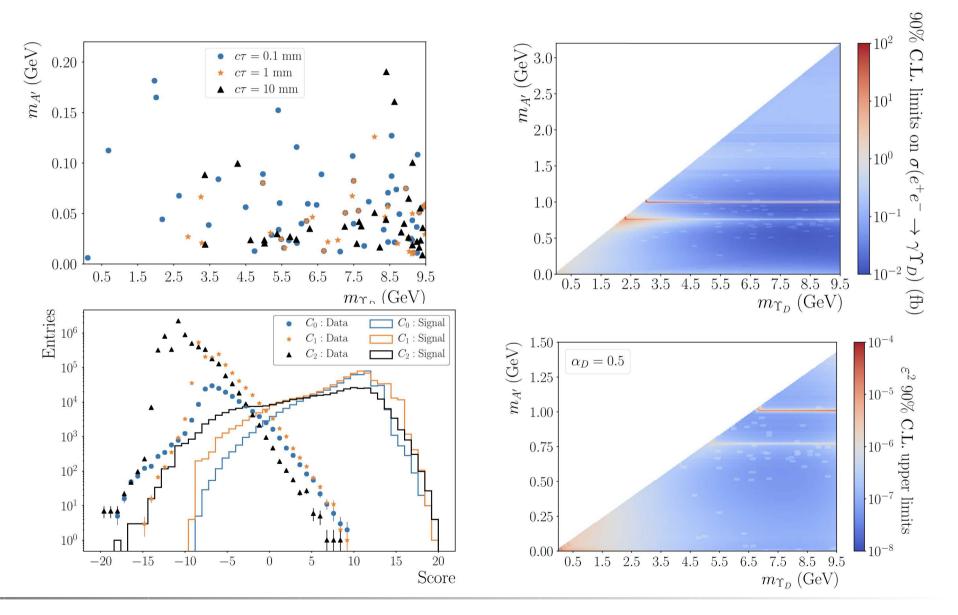
Phys. Rev. Lett. 125, 181801 514 fb⁻¹

Alternatively, limits can be derived on the production cross section of a scalar S, without model assumptions on other decay modes:


Muonic dark force

Phys. Rev. D94 011102 (2016) Dark boson Z' which couples only to second Entries / 0.1 (GeV) Data and third generation leptons (i.e. SM fields 5000 $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^$ are directly charged under dark force) $e^+e^- \rightarrow \tau^+ \tau^-$ 4000 e⁺e → qq q=u,d,s,c 3000 He. Joshi. Lew. Volkas. $e^+e^- \rightarrow \pi^+\pi^- J/\psi (\rightarrow \mu^+\mu^-)$ Phys. Rev. D 43, R22 (1991). B. Batell, D. McKeen and 2000 M. Pospelov, Phys. Rev. Lett. B.107, 011803 (2011). 1000 Data/MC 1.2 m_R (GeV) Di-muon reduced mass: $m_R = (m_{uu}^2 - 4m_u^2)^{1/2}$ "Z'-strahlung" production of Z': 10⁻¹ $e^+e^- \rightarrow \mu^+\mu^- Z', Z' \rightarrow \mu^+\mu^-$ 5 **Borexino** Trident Ы Search for a di-muon mass peak in $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ 10⁻² No signal observed; cross section limits obtained at 90% C.L. at level of ~0.2 fb below $m_{Z'}$ of 10 GeV Limits (90% C.L.) 10⁻³ However, no model-specific assumptions in on Z' coupling analysis; results are more generally applicable 10-1 10 m_{z'} (GeV)

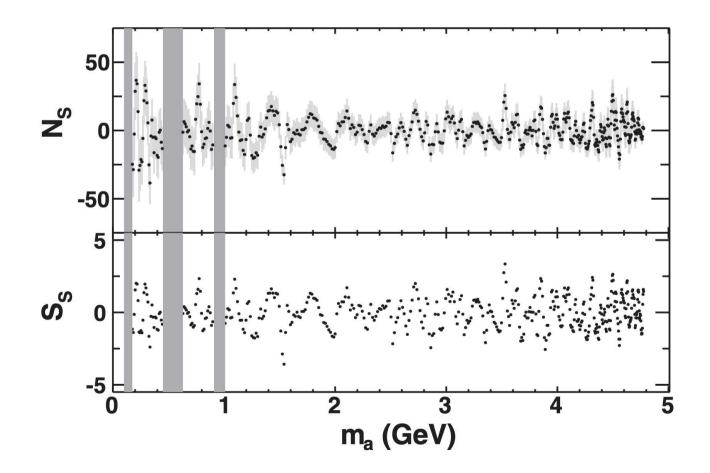
B mesogenisis



Feb 21, 2023

PRL 128, 021802 (2022)

Feb 21, 2023



Yield and local significance

Grey bands are π⁰, η, η' regions excluded from the search

