## nEX®

# The nEXO Experiment <br> Searching for Neutrinoless Double Beta Decay in ${ }^{136} \mathrm{Xe}$ 

G Adhikari et al. (nEXO Collaboration), 2022 J. Phys. G: Nucl. Part. Phys. 49015104

Soud Al Kharusi, McGill University (on behalf of the nEXO Collaboration)

Lake Louise Winter Institute
Feb. $22^{\text {nd }} 2023$

## Why Search for $0 \nu \beta \beta$ ?

- The discovery of neutrino mass from oscillation experiments provides new pathways to mass generation in the neutrino sector
- Dirac vs Majorana masses
- feeble couplings to Higgs field vs seesaw mechanisms
- Neutrinoless double beta decay $(0 \nu \beta \beta)$ exploits the nucleus as a
 virtual environment to probe high energy physics processes
- Implications for matter-antimatter asymmetry problem


## Why Search for $0 \nu \beta \beta$ ?

- The discovery of neutrino mass from oscillation experiments provides new pathways to mass generation in the neutrino sector
- Dirac vs Majorana masses
- feeble couplings to Higgs field vs seesaw mechanisms
- Neutrinoless double beta decay $(0 \nu \beta \beta)$ exploits the nucleus as a
 virtual environment to probe high energy physics processes
- Implications for matter-antimatter asymmetry problem


## Why Search for $0 \nu \beta \beta$ ?

- The discovery of neutrino mass from oscillation experiments provides new pathways to mass generation in the neutrino sector
- Dirac vs Majorana masses
- feeble couplings to Higgs field vs seesaw mechanisms
- Neutrinoless double beta decay $(0 \nu \beta \beta)$ exploits the nucleus as a
 virtual environment to probe high energy physics processes
- Implications for matter-antimatter asymmetry problem


## Why Search for $0 \nu \beta \beta$ ?

- The discovery of neutrino mass from oscillation experiments provides new pathways to mass generation in the neutrino sector
- Dirac vs Majorana masses
- feeble couplings to Higgs field vs seesaw mechanisms
- Neutrinoless double beta decay $(0 \nu \beta \beta)$ exploits the nucleus as a
 virtual environment to probe high energy physics processes
- Implications for matter-antimatter asymmetry problem

Searches for neutrinoless double beta decay $(0 \nu \beta \beta)$ are searches for Lepton Number Violation \& Physics Beyond the Standard Model

## How would $0 \nu \beta \beta$ even work?



## How would $0 v \beta \beta$ even work?



## Searching for $0 \nu \beta \beta$ : The Real Motivation

Particle physics community searching for physics beyond the standard model


## Searching for $0 \nu \beta \beta$ : The Real Motivation

Particle physics community searching for physics beyond the standard model


## Searching for $0 \nu \beta \beta$ : The Real Motivation

Particle physics community searching for physics beyond the standard model


Regardless of what mechanism $0 \nu \beta \beta$ proceeds by, it always implies new physics
(Schechter, and Valle. Phys. Rev. D 25.11 (1982): 2951. "black box theorem")

## What is nEXO?

$n E X O$ is a proposed experiment searching for $0 \nu \beta \beta$, following successes of EXO-200
currently in the conceptual design stage:
funding for the nEXO project from U.S. DoE has started to flow!

- 5-tonne single-phase liquid xenon Time Projection Chamber (LXe TPC)
- LXe is enriched to $90 \%$ in the target isotope, ${ }^{136} \mathrm{Xe}$
- Extensive radio-assay program
- ultra low backgrounds validated by EXO-200 data


## nEXO: Distinguishing Features

- Homogeneous, dense, liquid detector medium with high-Z nucleus
- online purification
- self-shielding of $\gamma$ radiation
- scalability
- Multiparameter Analysis
- Possibility to tag daughter nucleus
- Possibility for control run in case of discovery



## nEXO: Distinguishing Features

- Homogeneous, dense, liquid detector medium with high-Z nucleus
- online purification
- self-shielding of $\gamma$ radiation
- scalability
- Multiparameter Analysis
- Less sensitive to background fluctuations
- Robust against unknown backgrounds
- Possibility to tag daughter nucleus



## nEXO: Distinguishing Features

- Homogeneous, dense, liquid detector medium with high-Z nucleus
- online purification
- self-shielding of $\gamma$ radiation
- scalability
- Multiparameter Analysis
- Less sensitive to background fluctuations
- Robust against unknown backgrounds
- Possibility to tag daughter nucleus; "Ba-tagging" upgrade
- Nature 569, no. 7755 (2019): 203-207

- Possibility for control run in case of discovery


## nEXO: Distinguishing Features

- Homogeneous, dense, liquid detector medium with high-Z nucleus
- online purification
- self-shielding of $\gamma$ radiation
- scalability
- Multiparameter Analysis
- Less sensitive to background fluctuations
- Robust against unknown backgrounds
- Possibility to tag daughter nucleus; "Ba-tagging" upgrade
- Nature 569, no. 7755 (2019): 203-207

- Possibility for control run in case of discovery
- use unenriched xenon \& repeat the experiment!


## How does nEXO work?

- Energy deposits in the LXe liberate electrons, ionize the surrounding liquid
- excited dimers of Xe release $\sim 175 \mathrm{~nm}$ scintillation light
- ionization clouds drift to segmented anode in applied E-field
- Combination of light + charge readout gives us...



## How does nEXO work?

- Energy deposits in the LXe liberate electrons, ionize the surrounding liquid
- excited dimers of Xe release $\sim 175 \mathrm{~nm}$ scintillation light
- ionization clouds drift to segmented anode in applied E-field
- Combination of light + charge readout gives us:
- Better energy resolution
- Better spatial positioning (localization)
- Topological discriminator between $\alpha, \beta$ and $\gamma$ events



## Hardware?

## An Active R\&D Program

- Basic principles and backgrounds validated and measured by

At the core of the TPC are Light and Charge collection devices


## Multiparameter Analysis

nEXO is not a counting experiment
Three high-level variables:

- $\sim 1 \%$ Energy resolution at $\mathrm{Q}_{\beta \beta}$
- Standoff distance to detector components (precise event localization, depth in xenon)
- Topology score (DNN): single- and multi-site discrimination ( $\beta$-like vs $\gamma$-like event separation)

Energy:


## Standoff:



## Topology:



Multiparameter Analysis
A 3D Parameter Space


## Multiparameter Analysis

## A 3D Parameter Space



## Multiparameter Analysis

## What will nEXO data look like?

- 1 and $2 \sigma$ contours on signal $(0 \nu \beta \beta)$
- Deeper in the LXe, backgrounds are quieter, signal dominates... but we use all the LXe in analysis!
- Below: realizations of nEXO 10 yr dataset at $0.74 \times 10^{28} \mathrm{yr}$ half life for $0 \nu \beta \beta$ in ${ }^{136} \mathrm{Xe}(3 \sigma$ discovery)


2100220023002400250026002700
Energy [keV]

## Multiparameter Analysis

## What will nEXO data look like?

- 1 and $2 \sigma$ contours on signal $(0 \nu \beta \beta)$
- Deeper in the LXe, backgrounds are quieter, signal dominates... but we use all the LXe in analysis!
- Below: realizations of nEXO 10 yr dataset at $0.74 \times 10^{28} \mathrm{yr}$ half life for $0 \nu \beta \beta$ in ${ }^{136} \mathrm{Xe}(3 \sigma$ discovery)


2100220023002400250026002700
Energy [keV]

## Multiparameter Analysis

3D profile likelihood fit: ultimate test of $0 \nu \beta \beta$ hypothesis

- 1 and $2 \sigma$ contours on signal $(0 \nu \beta \beta)$
- Deeper in the LXe, backgrounds are quieter, signal dominates... but we use all the LXe in analysis!
- Below: realizations of nEXO 10 yr dataset at $0.74 \times 10^{28} \mathrm{yr}$ half life for $0 \nu \beta \beta$ in ${ }^{136} \mathrm{Xe}$ ( $3 \sigma$ discovery)



## Multiparameter Analysis

## 3D $\rightarrow$ 1D visualization

- Arranging the 3D bins into 1D, ordered by signal-to-background ratio, helps visualize the signal and background separation in nEXO



## Multiparameter Analysis

3D $\rightarrow$ 1D visualization

- Arranging the 3D bins into 1D, ordered by signal-to-background ratio, helps visualize the signal and background separation in nEXO



## Multiparameter Analysis

## 3D $\rightarrow$ 1D visualization

- Arranging the 3D bins into 1D, ordered by signal-to-background ratio, helps visualize the signal and background separation in nEXO



## Multiparameter Analysis

## 3D $\rightarrow$ 1D visualization

- Arranging the 3D bins into 1D, ordered by signal-to-background ratio, helps visualize the signal and background separation in nEXO


Ultimate Goal of $1.35 \times 10^{28} \mathrm{yr}$ half life

- In 6.5 years of data, nEXO will reach a exclusion sensitivity to $0 \nu \beta \beta$ half life in xenon $>10^{28}$ years (90\% C.L.)
- Age of the universe $x 10^{18}$ !



## A Neutrino Mass Measurement?



## nEXO Sensitivity

## Neutrino Mass Measurement

- Half lives of $0 \nu \beta \beta$ correspond to an effective Majorana mass of the electron neutrino $<\mathrm{m}_{\beta \beta}>$
- combination of 3 neutrino mass states
- Assumes dominant process for $0 \nu \beta \beta$ is light-Majorana neutrino exchange
- $<\mathrm{m}_{\beta \beta}>$ is isotope-independent

$$
\left\langle m_{\beta \beta}\right\rangle=\left|\sum_{i=1}^{3} U_{e i}^{2} m_{i}\right|
$$

## nEXO Sensitivity

## Neutrino Mass Measurement

- Half lives of $0 \nu \beta \beta$ correspond to an effective Majorana mass of the electron neutrino $<\mathrm{m}_{\beta \beta}>$
- combination of 3 neutrino mass states
- Assumes dominant process for $0 \nu \beta \beta$ is light-Majorana neutrino exchange
- $<\mathrm{m}_{\beta \beta}>$ is isotope-independent

$$
\left\langle m_{\beta \beta}\right\rangle=\left|\sum_{i=1}^{3} U_{e i}^{2} m_{i}\right|
$$

- Depends on your choice nuclear matrix element (NME) when converting from a half life measurement to neutrino mass, NME is least constrained theoretical parameter below
- Complex nuclear/particle physics could change $<\mathrm{m}_{\beta \beta}>\rightarrow$ we need to search for $0 \nu \beta \beta$ in multiple isotopes


Phase space factor
J. Kotila and F. Iachello, Phys Rev C 85, 034316 (2012)

## nEXO Sensitivity

## Neutrino Mass Measurement

- In 6.5 years, nEXO will reach a sensitivity to $0 \nu \beta \beta$ half life in xenon $>10^{28}$ years
- Age of the universe $\times 10^{18}$ !
- Effective Majorana mass of the neutrino $\mathbf{~} 8 \mathrm{meV}$; excludes inverted mass ordering parameter space



## nEXO Sensitivity Robustness

- Well studied response to fluctuations in background model, energy resolution, ...





Confidence in the sensitivity estimate arises from a detailed conservative model with measured input parameters

## Summary

- $n E X O$ is searching for Lepton Number Violation via $0 \nu \beta \beta$
- nEXO utilizes a 5 tonne single-phase LXe TPC
- LXe is purifiable in-situ
- LXe is self-shielding against $\boldsymbol{\gamma}$ backgrounds
- Multiparameter analysis provides robustness to unknown backgrounds, and background fluctuations
- Scalable technology \& repeatable experiment
- Possibility for "Ba-tagging" upgrade
- $n E X O$ 's sensitivity to $0 \nu \beta \beta$ half life in ${ }^{136} \mathrm{Xe}$ is $1.35 \times 10^{28} \mathrm{yr}$

- $\quad 8 \mathrm{meV}$ effective Majorana mass of the neutrino


## Thank you!

Ask me about nEXO Diversity Equity \& Inclusion Activities:

- Mentorship program
- Climate surveys
- Outreach


## Follow us!

- @nEXOexperiment

soud.alkharusi@mail.mcgill.ca


## Thank you!

## nEXO Publications:

2022:

- Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO
- Development of a 127 Xe calibration source for nEXO


## 2021:

- nEXO: neutrinoless double beta decay search beyond 1028 year half-life sensitivity
- Reflectivity of VUV-sensitive silicon photomultipliers in liquid Xenon
- Event reconstruction in a liquid xenon Time Projection Chamber with an optically-open field cage


## 2020:

- Reflectance of Silicon Photomultipliers at Vacuum Ultraviolet Wavelengths
- Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode


## 2019:

- Characterization of the Hamamatsu VUV4 MPPCs for nEXO
- Simulation of charge readout with segmented tiles in nEXO 2018
- nEXO pre-conceptual design report



## Unknown external background?

If an unknown decay were strong enough to produce as many SS events in the inner 3000 kg as a $3 \sigma$ discovery at a half-life of $5.7 \times 10^{27} \mathrm{yr}$, this decay would produce 271 counts in the MS outer volume, enough to rule out the expected background model at $p<0.00001$.


Phys. Rev.C 97, 065503 (2018)

## Rotated energy scale

- LXe rotated energy (exploiting anticorrelation in charge and light) allows for optimization of energy resolution
- Conti, E., et al. "Correlated fluctuations between luminescence and ionization in Liquid xenon." Phys. Rev. B 68.5 (2003): 054201.
- 2022: LZ achieved <0.7\% energy resolution in LXe!




## LXe TPC Scalability (1/2)

### 2.5 MeV y ray attenuation length in LXe: 8.5 cm

- LXe is self shielding: larger TPC means better attenuation of gammas, and even better constraints on fluctuations to backgrounds.
- Any potential $0 \nu \beta \beta$ signal would have to not be anomalous in all 3 high level distributions: Energy, Standoff, and Topology.
- Due to gamma attenuation lengths << detector scale, this improves with larger masses



## LXe TPC Scalability (2/2)

2.5 MeV y ray attenuation length in LXe: 8.5 cm

- Going from 5 tonne to 100 tonne would require LXe TPCs of size scale $=$ $1.3 *(100 / 5)^{\wedge}(1 / 3) \sim 3.5 \mathrm{~m}$
- We know how to make liquid noble TPCs even larger (see DUNE)



## Beyond $0 \nu \beta \beta$ discovery?

- If $0 \nu \beta \beta$ is discovered in any isotope, we would want to explore what mechanism is producing the decay
- We would do this by measuring the energy and angular distributions of the two emitted electrons in $0 \nu \beta \beta$ events
- Straightforward in an enriched gaseous xenon TPC
- Design constraints set by half life measurements in an LXe TPC (e.g. nEXO)
- $0 v \beta \beta$ decay mechanisms change the value of $\left\langle m_{\beta \beta}\right\rangle$, and probe couplings to BSM physics
- Discovering $0 \nu \beta \beta$ and exploring it in multiple isotopes is key
- Nuclear physics is hard, and extracting BSM physics couplings without multiple isotopes confirming $0 \nu \beta \beta$, half lives, mechanisms etc... will be difficult


## Multiparameter Analysis

## EXO-200 Validation

EXO-200 data





## Multiparameter Analysis

## nEXO is not a counting experiment

- $\sim 1 \%$ energy resolution at $\mathrm{Q}_{\beta \beta}$
- Topology scoring: single- and multi-site discrimination ( $\beta$-like vs $\gamma$-like event separation)
- standoff distance to detector components (precise event localization, depth in xenon)


