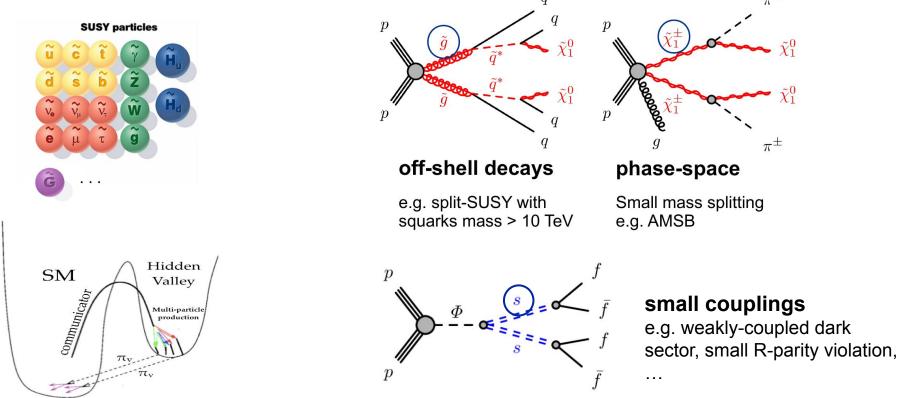
Searches for BSM physics using challenging and long-lived signatures with the ATLAS detector

Simone Pagan Griso (LBNL) on behalf of the ATLAS Collaboration

Lake Louise Winter Institute Feb 23rd, 2023

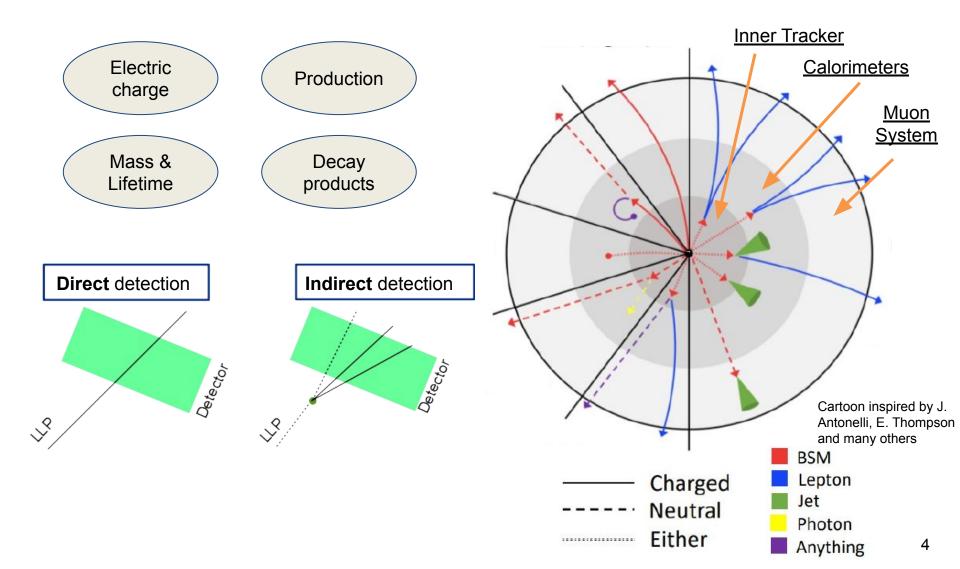

Searches for BSM physics using challenging and long-lived signatures with the ATLAS detector

Challenging Signatures: Does not use "standard" objects/ data-flow/... and/or defy in some sense our theoretical prejudice of how new physics would appear.

Long-Lived Particles: Beyond-Standard-Model particles that travel macroscopic distances (compared to our detector resolution)

Theory Motivation: lifetime is everywhere!

Mechanisms that induce macroscopic lifetime are far from rare, both in the SM and beyond. π^{\pm}

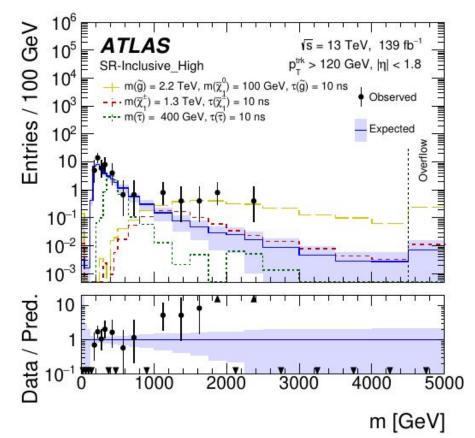


Strong interplay between theory and experiments:

- Specific theories can suggest new signatures to explore
- Results presented for representative benchmark scenarios
 - ability to re-interpret results in a different model to ensure full exploration

Experimental approach: signature-based

Best experimental strategy depends on the properties of the particle



Inner-Tracker charged particles

High- p_{τ} , high-quality reconstructed track with large ionization energy loss (dE/dx)

SUSY-2018-42

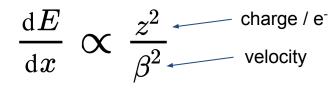
- Triggering on missing transverse-momentum
- Entirely data-driven background estimation

$$m = p/(\beta \gamma)$$

from Inner Detector

from Pixel Detector

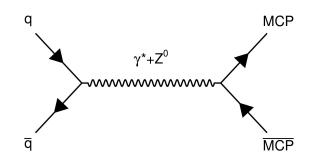
Excess found.

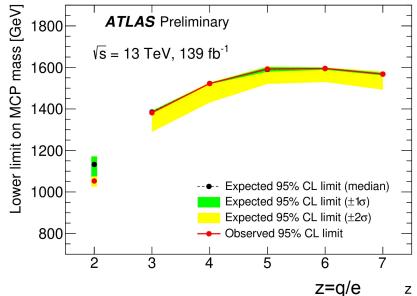

- Local: 3.6σ
- Global: 3.3σ

Many cross-checks performed.

No obvious instrumental / analysis problem found.

Inner-Tracker charged particles

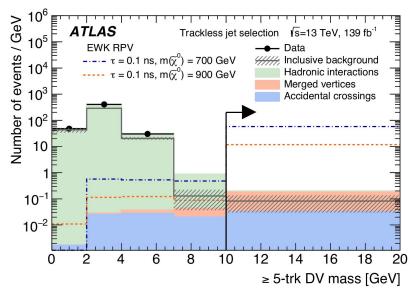

What can cause an excess with high dE/dx?



- 1) Slow particles (momentum << mass). Checked time-of-flight of excess candidates using muon spectrometer. Consistent with β ~1
- 2) Multi-charged. Recent new results, but not sensitive enough to probe relevant cross-sections.

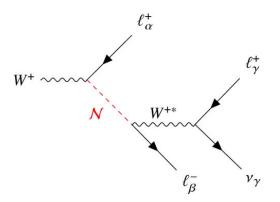
ATLAS-CONF-2022-034

 Measuring high-energy loss in Transition-Radiation Tracker


Displaced Vertices

Identify SM decay products of LLP decay <u>inside the Inner Tracker</u>. Dedicated track reconstruction to be sensitive to non-prompt particles.

• ran only on a pre-selected O(10%) of collected data


SUSY-2018-13

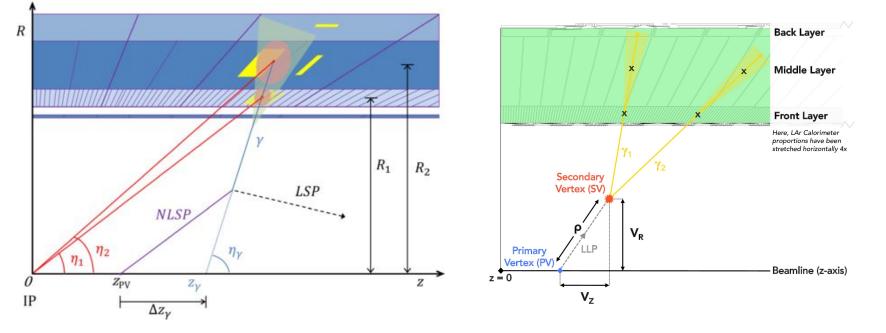
- >= 1 Displaced Vertex
 - mass > 10 GeV, n_{tracks} >=5
- High- p_T jets (2 to >=7, vary p_T)
- Dedicated signal region for displaced lower-p_T jets
- Strong and ewk SUSY models

EXOT-2019-29

- Trigger: prompt lepton
- Di-lepton displaced vertex
- Interpreted in Heavy-Neutral Lepton scenarios
 - 3*<N*<15 GeV
 - Single-flavor and multi-flavor mixing
- No excess observed, limits set

Displaced Photons

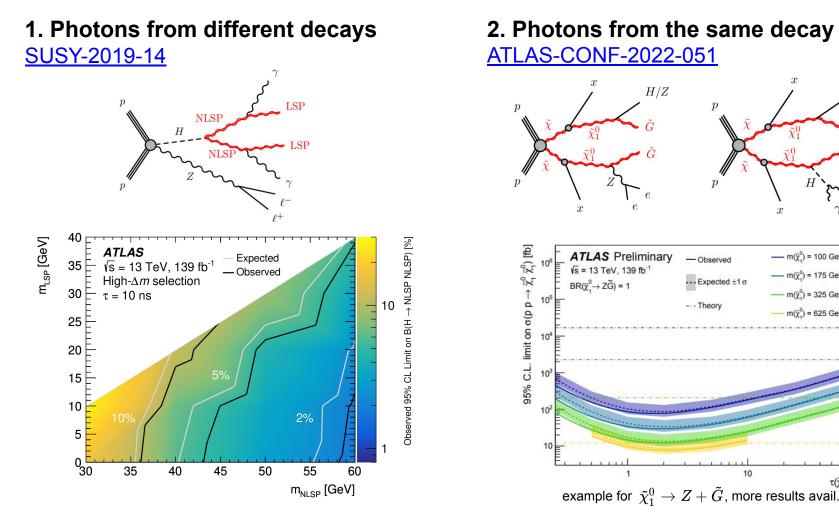
Non-prompt photons from BSM decays before EM calo:


- Delayed in time: EM calo timing up to ~0.2 ns resolution
- Longitudinally displaced: EM pointing information up to O(10 mm) resolution

1. Photons from different decays <u>SUSY-2019-14</u>

Signal region for 1 and >=2 photons.

2. Photons from the same decay <u>ATLAS-CONF-2022-051</u>


Dedicated vertexing from photon pointing with resolution as good as 10mm. Also sensitive to displaced electrons.

Displaced Photons

Non-prompt photons from BSM decays before EM calo:

- Delayed in time: EM calo timing up to ~0.2 ns resolution
- Longitudinally displaced: EM pointing information up to O(10 mm) resolution

9

 $t(\tilde{\chi}_{1}^{0})$ [ns]

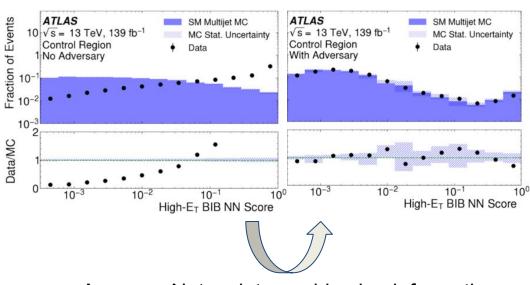
H/Z

 $m(\tilde{\chi}^0) = 100 \text{ GeV}$

= 175 GeV

= 325 GeV

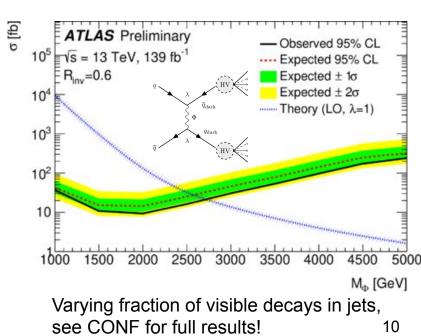
= 625 Ge


10

Displaced "Hadronic" Jets

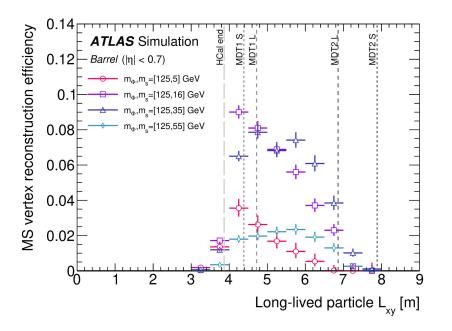
Chosen benchmarks: hidden sector models

EXOT-2019-23


- Isolated calorimeter activity
- Dedicated trigger
- Sophisticated NN-based rejection of beam-induced and multijet backgrounds
- Data compatible with expected backgrounds

Aversary Network to avoid using information of variables not well modelled in simulation

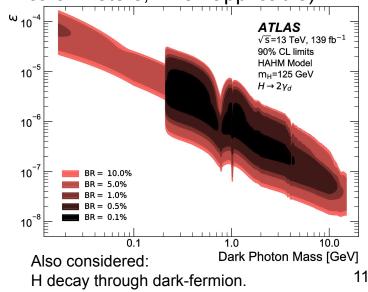
ATLAS-CONF-2022-038


- Semi-visible jets from partial decays back to SM
- Two main observables:
 - back-to-back jets balance
 - Missing momentum aligned with high- p_T jet

Decays in the Muon System

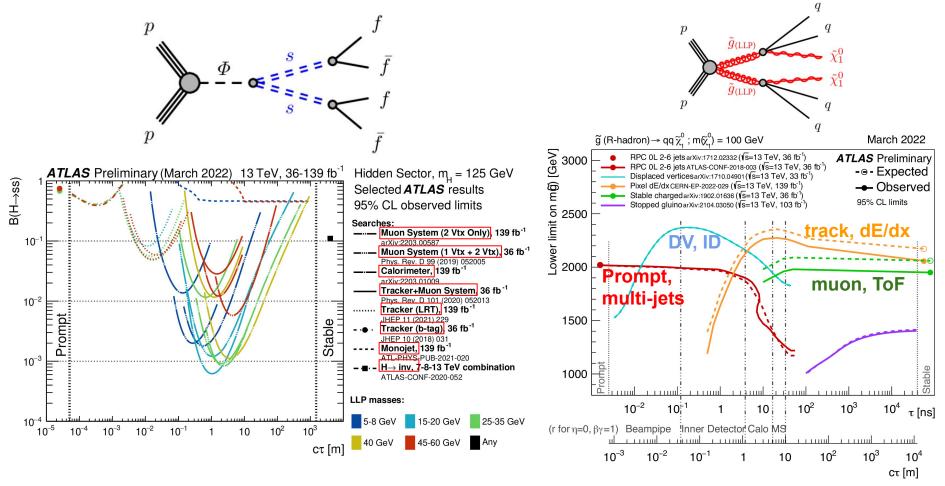
EXOT-2019-24

- Two displaced decays in the muon system
 - large volume: 3-14m decay length
- Veto activity in inner tracker and calorimeters
- Dedicated trigger
- Data compatible with expected backgrounds



EXOT-2019-05

- Or nor da
- Two displaced decays:


Requirement / Region	$\mathrm{SR}^{\mathrm{ggF}}_{2\mu}$	SR _{2c} ^{ggF}	$SR_{c+\mu}^{ggF}$
Number of µDPJs	2	0	1
Number of caloDPJs	0	2	1
Tri-muon MS-only trigger	yes	-	-
Muon narrow-scan trigger	yes	-	yes
CalRatio trigger	-	yes	S

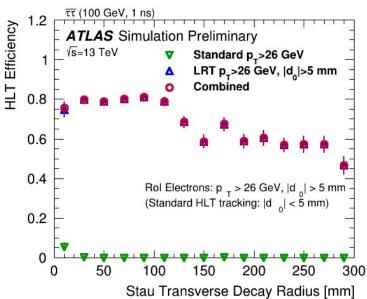
Veto activity in inner tracker (and calorimeters, when applicable)

Complementarity and Gaps

Standardized benchmarks help ensuring coverage across signatures.

With more analyses using the full run 2 datasets, expect more updates soon!

Conclusions and Outlook


In this presentation: a snapshot of the most recent results

- one intriguing excess that will be followed up; lots of new and updated searches gave null results but strong new bounds
- many more analyses in progress using the full Run 2 dataset

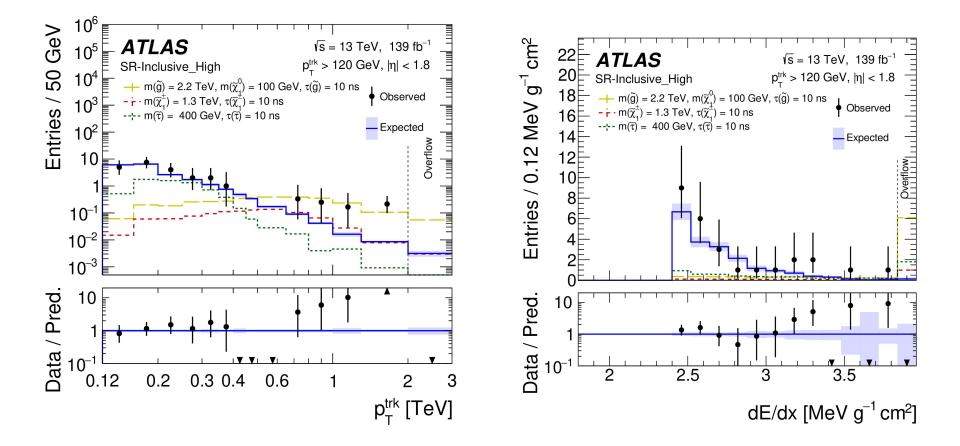
In the meantime, an exciting Run 3 dataset is being collected since 2022!

Lots of exciting developments that will enhance the discovery potential of the Run 3 dataset, especially for long-lived signatures:

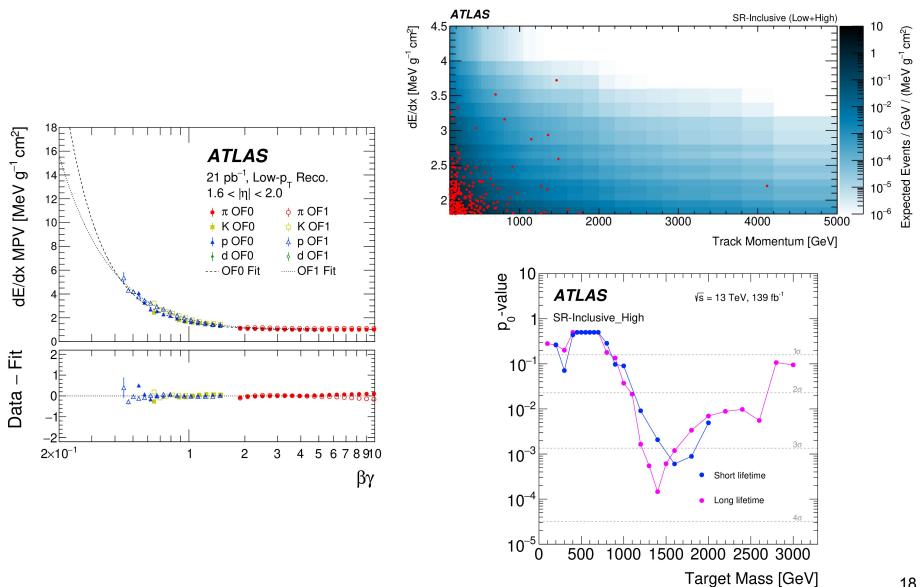
- Many new dedicated triggers
 - increase acceptance in difficult regimes, e.g. compressed scenarios
- Ability to reconstruct displaced tracks for all the events recorded
 - increase number of signatures accessible with non-prompt activity

BACKUP and References

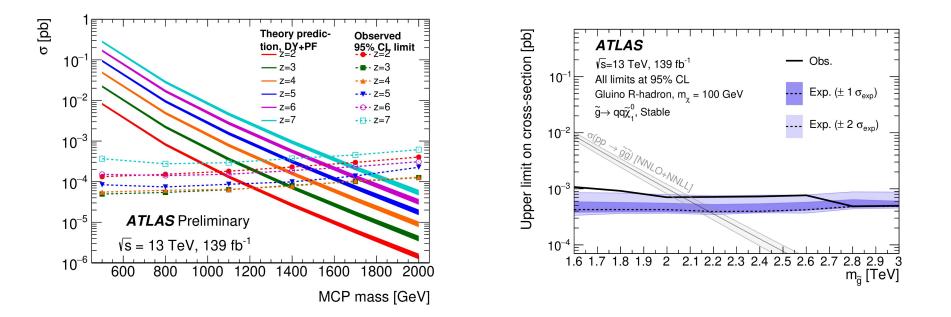
- <u>SUSY-2018-42</u> Pixel dE/dx (SUSY)
- <u>ATLAS-CONF-2022-034</u> Multi-charged particles (w/ TRT, DY-like)
- <u>SUSY-2018-13</u> DV+Jets (SUSY)
- <u>EXOT-2019-29</u> Displaced Vertex ID with prompt lepton (HNL)
- <u>SUSY-2019-14</u> Displaced Photons (different vertices, Higgs+SUSY)
- <u>ATLAS-CONF-2022-051</u> Displaced photons (vertexed approach, SUSY)
- <u>ATLAS-CONF-2022-038</u> Semi-visible jets (dark sector, jets aligned w/ MET)
- <u>EXOT-2019-23</u> Displaced hadronic jets in calo (Higgs, Heavy-scalar)
- EXOT-2019-24 Two DVs in muon spectrometer (Higgs, Heavy-scalar)
- EXOT-2019-05 Displaced activity in Calo and MS (Higgs, Dark Photons)
- <u>ATL-PHYS-PUB-2021-012</u> Displaced Tracking in Run 3 (CPU timing performance only)
- Public Plots on Trigger Menu Run 3


ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

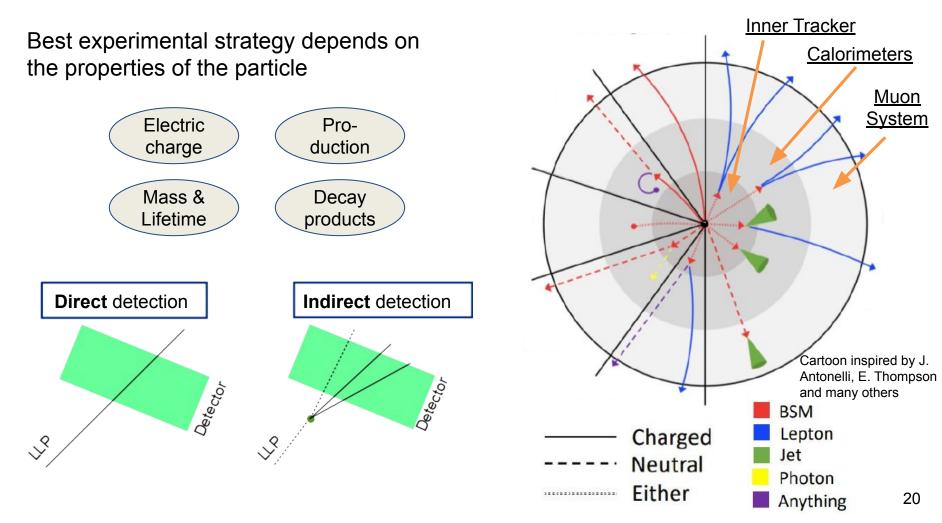
ATLAS SUSY Searches* - 95% CL Lower Limits


March 2022

Model	Signature	∫ <i>L dt</i> [fb ⁻	Mass limit	Reference
$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & 2-6 \ { m jets} & E_7^{ m T} \\ { m mono-jet} & 1-3 \ { m jets} & E_7^{ m T} \end{array}$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2010.14293 2102.10874
$ar{g}ar{g}, ar{g} ightarrow qar{q}ar{\chi}_1^0$ $ar{g}ar{g}, ar{g} ightarrow qar{q}War{\chi}_1^0$ $ar{g}ar{g}, ar{g} ightarrow qar{q}(\ell)ar{\chi}_1^0$ $ar{g}ar{g}, ar{g} ightarrow qar{q}WZar{\chi}_1^0$ $ar{g}ar{g}, ar{g} ightarrow qWZar{\chi}_1^0$	0 e, μ 2-6 jets E_T^{m}	niss 139	ž 2.3 m(𝔅 ⁰)=0 GeV ž Forbidden 1.15-1.95 m(𝔅 ⁰)=1000 GeV	2010.14293 2010.14293
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 <i>e</i> , <i>µ</i> 2-6 jets	139	\tilde{g} 2.2 m($\tilde{\chi}_1^0$)<600 GeV	2101.01629
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	$ee, \mu\mu$ 2 jets $E_7^{\rm m}$		ğ 2.2 m(λ ⁰ ₁)<700 GeV	CERN-EP-2022-014
$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & \ 7 - 11 \ { m jets} & \ E_T^{\ mathackarrow} \\ { m SS} \ e, \mu & \ 6 \ { m jets} \end{array}$	139	š 1.97 m(k̃ ₁) < 600 GeV š 1.15 m(ĝ) − m(k̃ ₁) = 200 GeV	2008.06032 1909.08457
$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_1^0$	$\begin{array}{ccc} \text{0-1} \ e,\mu & \text{3} \ b & E_T^n\\ \text{SS} \ e,\mu & \text{6 jets} \end{array}$	^{niss} 79.8 139	ž 2.25 m($\tilde{\chi}_1^0$)<200 GeV \tilde{g} 1.25 m($\tilde{\chi}_1$)=300 GeV	ATLAS-CONF-2018-041 1909.08457
$ ilde{b}_1 ilde{b}_1$	$0 e, \mu$ $2 b E_T^{\mathrm{T}}$	niss 139	δ₁ 1.255 m(𝔅¹₁) < 400 GeV 𝑘 0.68 10 GeV < Δm(𝑘₁,𝔅¹₁) < 20 GeV	2101.12527 2101.12527
$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$ $\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow \tilde{\chi}_1^0$ $\tilde{i}_2 \tilde{i}_1 \tilde{i}_1 \rightarrow \tilde{\chi}_1^0$	$\begin{array}{cccc} 0 \ e, \mu & 6 \ b & E_{7}^{\pi} \\ 2 \ \tau & 2 \ b & E_{7}^{\pi} \end{array}$	niss 139 niss 139	b_1 0.23-1.35 $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ b_1 0.13-0.85 $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_1^0) = 0 \text{ GeV}$	1908.03122 2103.08189
$\tilde{\iota}_1 \tilde{\iota}_1, \tilde{\iota}_1 \rightarrow \iota \tilde{\chi}_1^0$	0-1 $e, \mu \ge 1$ jet E_T^n		\tilde{t}_1 1.25 $m(\tilde{t}_1^0)=1 \text{ GeV}$	2004.14060,2012.03799
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	$1 e, \mu$ $3 jets/1 b E_T^n$	niss 139	\tilde{t}_1 Forbidden 0.65 $m(\tilde{x}_1^0)=500 \text{ GeV}$	2012.03799
$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 bv, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	$1-2\tau$ 2 jets/1 b E_T^n	niss 139	<i>ĩ</i> 1.4 m(<i>ĩ</i>)=800 GeV	2108.07665
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \to c \tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & 2 \ c & E_{T}^{n} \\ 0 \ e, \mu & \text{mono-jet} & E_{T}^{n} \end{array}$	niss 36.1 niss 139	č 0.85 m(𝔅 ⁰) =0 GeV 𝑔₁ 0.55 m(𝔅 ¹) =5 GeV	1805.01649 2102.10874
$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$	$1-2 e, \mu$ $1-4 b E_7^n$	niss 139	\tilde{t}_1 0.067-1.18 m(\tilde{t}_2^0)=500 GeV	2006.05880
$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	$3 e, \mu$ 1 b E_7^{n}	2 320372 S. CS	<i>ī</i> _2 <i>Forbidden</i> 0.86 m(<i>x</i> _1^0)=360 GeV, m(<i>ī</i> _1)-m(<i>X̃_1^0</i>)= 40 GeV	2006.05880
$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	$\begin{array}{llllllllllllllllllllllllllllllllllll$	niss 139 niss 139	$\vec{\chi}_{1}^{\pm}/\vec{\chi}_{2}^{0}$ 0.96 $m(\vec{\chi}_{1}^{0})=0$, wino-bino $\vec{\chi}_{1}^{\pm}/\vec{\chi}_{2}^{0}$ 0.205 $m(\vec{\chi}_{1}^{+})=6$ GeV, wino-bino	2106.01676, 2108.07586 1911.12606
$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	$2 e, \mu$ E_7^{m}	niss 139	$\tilde{\chi}^{\pm}_{\pm}$ 0.42 m($\tilde{\chi}^{0}_{\pm}$)=0, wing-bing	1908.08215
$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	Multiple ℓ /jets E_T^n	niss 139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Forbidden 1.06 m($\tilde{\chi}_1^0$)=70 GeV, wino-bino	2004.10894, 2108.07586
$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp}$ via $\tilde{\ell}_{L}/\tilde{\nu}$	$2 e, \mu$ E_T	niss 139	\tilde{x}_1^{\pm} 1.0 $m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{x}_1^{\pm}) + m(\tilde{x}_1^{0}))$	1908.08215
$ \begin{array}{c} \overleftarrow{\boldsymbol{\Sigma}} & \widetilde{\boldsymbol{X}}_{1}^{\dagger} \widetilde{\boldsymbol{X}}_{1}^{\dagger} \text{ via } \widetilde{\boldsymbol{\ell}}_{L} / \widetilde{\boldsymbol{\nu}} \\ \overleftarrow{\boldsymbol{\tau}} & \widetilde{\boldsymbol{\tau}}, \ \widetilde{\boldsymbol{\tau}} \to \tau \widetilde{\boldsymbol{X}}_{1}^{0} \\ \overrightarrow{\boldsymbol{\tau}} & \widetilde{\boldsymbol{\tau}} & \widetilde{\boldsymbol{\tau}} & \widetilde{\boldsymbol{\tau}} \\ \end{array} $	2τ E_T^{\dagger}	niss 139	$\tilde{\tau}$ [$\tilde{\tau}_L, \tilde{\tau}_{R,L}$] 0.16-0.3 0.12-0.39 m($\tilde{\chi}_1^0$)=0	1911.06660
$\vec{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \to \ell \tilde{\chi}_1^0$	$2 e, \mu$ 0 jets E_T $ee, \mu\mu$ ≥ 1 jet E_T		ℓ 0.7 m(ℓ ₁ ⁰)=0 ℓ 0.256 m(ℓ)-m(ℓ ₁ ⁰)=10 GeV	1908.08215 1911.12606
$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	$0 e, \mu \geq 3 b E_{T}^{\text{III}}$	niss 36.1	\tilde{t} 0.13-0.23 0.29-0.88 BR($\xi_0^0 \to h \tilde{G}$)=1	1806.04030
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	niss 139 niss 139	\tilde{H} 0.55 BR($\tilde{C}^0_1 \to Z\tilde{O}_1 = 1$ \tilde{H} 0.45-0.93 BR($\tilde{X}^0_1 \to Z\tilde{O}_1 = 1$	2103.11684 2108.07586
Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived	${ ilde \chi}_1^\pm$ Disapp. trk 1 jet $E_7^{ m m}$	niss 139	\$\tilde{k}_{1}^{+}\$ 0.66 Pure Wino \$\tilde{k}_{1}^{+}\$ 0.21 Pure higgsino	2201.02472 2201.02472
Stable g R-hadron	pixel dE/dx E_T^n	niss 139	ğ 2.05	CERN-EP-2022-029
Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow a$		niss 139	\tilde{g} [r(\tilde{g}) =10 ns] 2.2 m($\tilde{\chi}^0_1$)=100 GeV	CERN-EP-2022-029
$\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G}$	Displ. lep E	^{niss} 139	$\tilde{e}, \tilde{\mu}$ 0.7 $\tau(\tilde{\ell}) = 0.1 \text{ ns}$	2011.07812
	pixel dE/dx E ₇	niss 139	$\tilde{\tau}$ 0.34 $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ $\tilde{\tau}$ 0.36 $\tau(\tilde{\ell}) = 10 \text{ ns}$	2011.07812 CERN-EP-2022-029
$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 <i>e</i> , µ	139	$\hat{\chi}_{1}^{+}/\tilde{\chi}_{1}^{0}$ [BR(Z _T)=1, BR(Z _E)=1] 0.625 1.05 Pure Wino	2011.10543
$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \to WW/Z\ell\ell\ell\ell\nu\nu$	4 e, μ 0 jets E_T^n		$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ [$\lambda_{133} \neq 0, \lambda_{12k} \neq 0$] 0.95 1.55 m($\tilde{\chi}_{1}^{0}$)=200 GeV	2103.11684
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$	4-5 large jets Multiple	36.1 36.1	\tilde{g} [m(\tilde{\chi}_1^0)=200 \text{ GeV}, 1100 \text{ GeV}] 1.3 1.9 Large χ''_{112} \tilde{t} $(\chi'_{12}_{23}=2e-4, 1e-2)$ 0.55 1.05 m(\tilde{\chi}_1^0)=200 \text{ GeV}, bino-like	1804.03568 ATLAS-CONF-2018-003
$\begin{array}{c} tt, t \rightarrow t \mathcal{X}_1, \mathcal{X}_1 \rightarrow t bs\\ \tilde{t}\tilde{t}, \tilde{t} \rightarrow b \tilde{\mathcal{X}}_1^{\pm}, \tilde{\mathcal{X}}_1^{\pm} \rightarrow b bs \end{array}$	$\geq 4b$	139	\tilde{i} Forbidden 0.95 $m(\tilde{x}_1)=200 \text{ GeV, bino-like}$ \tilde{i} Forbidden 0.95 $m(\tilde{x}_1)=200 \text{ GeV, bino-like}$	2010.01015
$\tilde{i}_1, \tilde{i}_1 \rightarrow b \tilde{i}_1, \tilde{i}_1 \rightarrow b b s$ $\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow b s$	2 jets + 2 b	36.7	<i>i</i> [<i>qq, bs</i>] 0.42 0.61	1710.07171
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e, µ 2 b	36.1	<i>i</i> ₁ 0.4-1.45 BR(<i>i</i> ₁ → <i>be</i> / <i>bμ</i>)>20%	1710.05544
$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^{+} \rightarrow bb$	1 µ DV	136 139	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2003.11956 2106.09609
v a selection of the availab	le mass limits on new states of	r 1	0 ⁻¹ Mass scale [TeV]	


*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Pixel dE/dx



Multi-charged particles and Pixel dE/dx sensitivity

Experimental approach: signature-based

Long-Lived Particles: non-SM particles that travel macroscopic distances **Challenging Signatures**: Does not use "standard" objects/data-flow/... and/or defy in some sense our theoretical prejudice of how new physics would appear.

