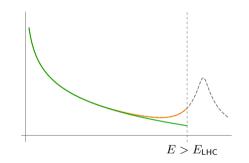
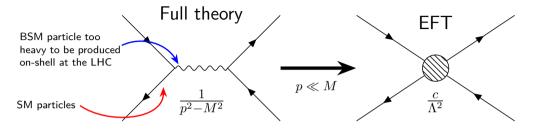


Search for new physics in top quark production with additional leptons using effective field theory

Andrew Wightman


On behalf of the CMS collaboration

February 23, 2023


- Search for new fundamental particles is motivated by the strong evidence for phenomena not described by the SM
- New particles may not be light enough to be produced on-shell at the LHC
- Indirect searches are needed if we want to probe these regimes (or wait until someone builds a larger collider)
- Effective field theory provides a framework for probing these higher energy scales

Introduction to Effective Field Theory

Since we can't produce heavy particle on-shell at the LHC, it would be hard to find it via a direct search, but EFT can provide discovery potential The interaction can be described by an EFT operator, with the strength of the interaction determined by a WC c

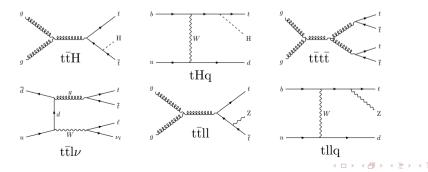
Important notes:

- $\bullet\,$ EFT validity is only good for energy scales below the cutoff scale Λ
- Underlying low energy theory needs to be complete
- Provides systematic and mostly model independent search for BSM effects

CMS

• SM is treated as the lowest order term in an expansion of higher dimensional (d>4) operators, that describe physics above some cutoff scale Λ

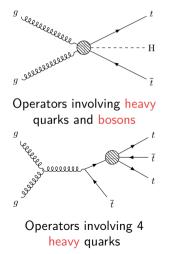
$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{d,i} \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

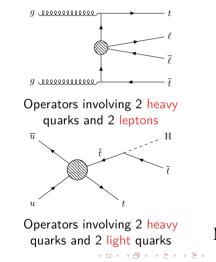

- The strength of the interactions introduced by the EFT operators is controlled by a dimensionless parameter called a Wilson coefficient (WC)
- If all WCs are 0, the EFT Lagrangian reduces naturally to the SM
- Only one dimension 5 operator \rightarrow Violates lepton number and is excluded
- Focus only on dimension 6 operators as the lowest order contributions

Analysis Overview

CMS

- Analysis focuses on operators that couple the top quark to leptons, bosons, and other heavy quarks
- Focus on associated top processes and model how EFT operators affect expected yields
 - Signal processes: $t\bar{t}H$, tHq, $t\bar{t}t\bar{t}$, $t\bar{t}l\nu$, $t\bar{t}ll$, tllq
 - Processes are relatively rare and provide for a clean well isolated signal region


Analysis Overview



incoln

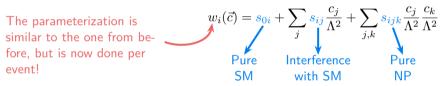
э

• Focus on 26 operators, which can be grouped together into 4 different categories

EFT Parameterization

- Need some way to model EFT contributions
- Matrix element can be written as the sum of SM and new physics components

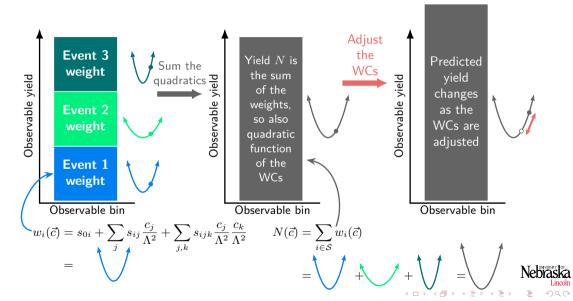
$$\mathcal{M} = \mathcal{M}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{M}_i \longrightarrow \begin{array}{c} c_i \text{ are the Wilson coefficients} \end{array}$$


- Since $\sigma\propto \mathcal{M}^2 \to$ the cross section will have a quadratic dependence on the WCs

$$d\sigma(\vec{c}) \propto \left| \mathcal{M}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{M}_i \right|^2 \propto s_0 + \sum_{j} s_j \frac{c_j}{\Lambda^2} + \sum_{j,k} s_{jk} \frac{c_j}{\Lambda^2} \frac{c_k}{\Lambda^2}$$
Pure Interference Pure SM with SM NP

- Could solve for s_0 , s_j , s_{jk} by generating samples at distinct points in the WC phase space
- Far too computationally intensive. Would need $\mathcal{O}(100)$ MC samples per signal process! Nebraska

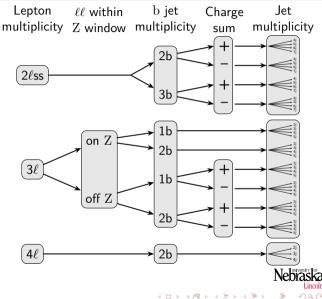
- Instead can calculate the dependence on a per event basis
- Parameterization extends to the event level where each event will then have a **weight function**:


• Can sum individual weight functions for events passing a given selection (\mathcal{S}):

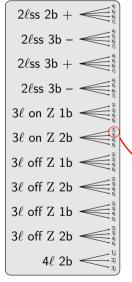
 $N \text{ is a function of the WCs,} \qquad N(\vec{c}) = \sum_{i \in S} w_i(\vec{c}) \xleftarrow{N}$ so can predict the yield for this selection for any arbitrary values of the WCs

 ${\cal N}$ is the sum of a bunch of quadratics, so it is also a quadratic

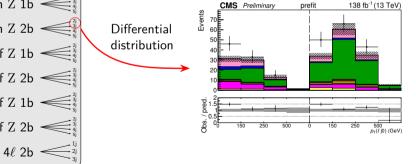
Scaling EFT Contributions



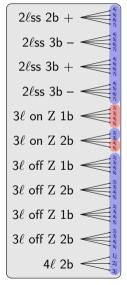
Event Selection


CMS

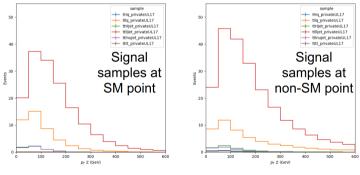
- The event selection targets prompt well isolated leptons produced with b jets and additional other jets
- Aims to discriminate between signal processes as much as possible
 - 2ℓ ss: $t\bar{t}H$ and $t\bar{t}W$ (split by charge)
 - 3ℓ on Z: ttll (2b), tllq (1b)
 - 3ℓ off Z: non-resonant $t\bar{t}ll$ and tllq(2-quark 2-lepton EFT contributions)
 - $\geq 4\ell$: $t\bar{t}H$ and $t\bar{t}ll$



Event Selection

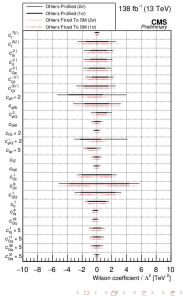


- We use a differential kinematic distribution for each of the 43 jet categories
- Kinematic variable for each jet category is chosen to optimize sensitivity to EFT effects



Event Selection

- Use different variables for different categories to optimize sensitivity to EFT effects
 - $p_{\mathrm{T}}(\ell \mathrm{j}0)
 ightarrow p_{\mathrm{T}}$ of the leading lepton plus jet pairs
 - $p_{\mathrm{T}}(\mathrm{Z})
 ightarrow p_{\mathrm{T}}$ of the opposite sign lepton pair



CMS

- The solid black bars show the limits for each WC where the other WCs are **profiled**
- The dashed red bars show the limits when the other WCs are frozen to the SM
- Results are consistent with the SM
- Disjoint 1σ intervals for the 4-heavy quark operators is due to the quadratic nature of the EFT parameterization
 - In principle this is true for all WCs
 - Varied signal processes and kinematic distributions help resolve these double minima

э

- EFT can be a powerful technique for indirect searches of BSM physics at the LHC
- EFT approaches stand to benefit greatly from increased statistics of the current LHC and future HL-LHC runs
- Showcased a search by CMS for new physics in associated top production processes using EFT
 - Data corresponds to $138~{\rm fb}^{-1}$ of pp collisions collected by CMS
 - Set simultaneous confidence interval limits on 26 WCs associated with top quarks
 - All limits found to be consistent with SM expectations
- There are a number of potential future directions for expanding and improving the analysis:
 - More data!
 - Optimization of the categorization and kinematic variable choices
 - Adding additional signal processes and final states
 - Translate the limits back into constraints on potential BSM models

Backup

Modeling EFT Contributions

- The EFT MC samples for the six signal processes (t $\bar{t}H$, t $\bar{t}l\nu$, t $\bar{t}ll$, tHq, t $\bar{t}t\bar{t}$) are generated using the dim6top model (1802.07237) to estimate relevant EFT effects
 - Uses the Warsaw basis
 - LO calculation, so include an extra jet in the matrix element (when possible) to improve modeling at high jet-multiplicities
 - Include 26 WCs which were found to significantly impact the signal processes

Operator category	WCs
Two heavy quarks	$c_{\mathrm{t}\varphi}, c_{\varphi\mathrm{Q}}^{-}, c_{\varphi\mathrm{Q}}^{3}, c_{\varphi\mathrm{t}}, c_{\varphi\mathrm{tb}}, c_{\mathrm{tW}}, c_{\mathrm{tZ}}, c_{\mathrm{bW}}, c_{\mathrm{t}G}$
Two heavy quarks two leptons	$c_{\mathrm{Q}l}^{3(\ell)}, c_{\mathrm{Q}l}^{-(\ell)}, c_{\mathrm{Q}e}^{(\ell)}, c_{\mathrm{t}l}^{(\ell)}, c_{\mathrm{t}e}^{(\ell)}, c_{\mathrm{t}}^{S(\ell)}, c_{\mathrm{t}}^{T(\ell)}$
Two light quarks two heavy quarks	$c_{ m Qq}^{31}, c_{ m Qq}^{38}, c_{ m Qq}^{11}, c_{ m Qq}^{18}, c_{ m tq}^{1}, c_{ m tq}^{8}$
Four heavy quarks	$c_{\mathrm{QQ}}^{1}, c_{\mathrm{Qt}}^{1}, c_{\mathrm{Qt}}^{8}, c_{\mathrm{tt}}^{1}$

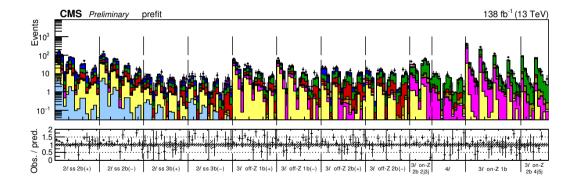
- Generated ${\sim}300\text{M}$ private MC events in total using the same configurations as central CMS samples

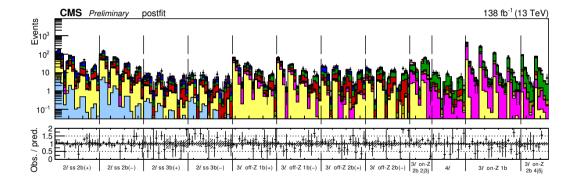
Event category	Leptons	$m_{\ell\ell}$	b tags	Lepton charge sum	Jets	Differential variable
2ℓss 2b	2	No requirement	2	> 0, <0	4,5,6,≥7	$p_{\mathrm{T}}(\ell \mathrm{j} 0)$
2ℓss 3b	2	No requirement	≥ 3	> 0, < 0	4,5,6,≥7	$p_{\mathrm{T}}(\ell \mathrm{j} 0)$
3ℓ off-Z 1b	3	$ m_{\rm Z} - m_{\ell\ell} > 10 {\rm GeV}$	1	> 0, < 0	2,3,4,≥5	$p_{\mathrm{T}}(\ell \mathrm{j} 0)$
3ℓ off-Z 2b	3	$ m_{\mathrm{Z}} - m_{\ell\ell} > 10 \mathrm{GeV}$	≥ 2	> 0, < 0	2,3,4, ≥5	$p_{\rm T}(\ell j 0)$
3ℓ on-Z 1b	3	$ m_{\mathrm{Z}} - m_{\ell\ell} \leq 10 \mathrm{GeV}$	1	No requirement	2,3,4, ≥5	$p_{\mathrm{T}}(\mathrm{Z})$
3ℓ on-Z 2b	3	$ m_{\mathrm{Z}} - m_{\ell\ell} \leq 10 \mathrm{GeV}$	≥ 2	No requirement	2,3,4, ≥5	$p_{\mathrm{T}}(\mathrm{Z})$ or $p_{\mathrm{T}}(\ell \mathrm{j} 0)$
4ℓ	≥ 4	No requirement	≥ 2	No requirement	2,3,≥4	$p_{\mathrm{T}}(\ell \mathrm{j} 0)$

- All jets required to have $|\eta|<2.4$ and $p_{\rm T}>30\,{\rm GeV}$
- All electrons require $|\eta|<2.5$ and all muons require $|\eta|<2.4$
- Lepton $p_{\rm T}$ cuts (GeV):
 - $2\ell ss: p_T > 25, 15$
 - 3ℓ for e (μ): $p_{\rm T} > 25, 15, 15$ (10)
 - 4ℓ for e (μ): $p_{\rm T} > 25, 15, 15$ (10), 15 (10)

Interpretation of Sensitivity

• Sensitivity to most WCs comes from a wide range of bins over all selection categories


Grouping of WCs	WCs	Lead categories
Two heavy two leptons	$\begin{array}{c} c_{\mathrm{Q}l}^{3(\ell)}, \ c_{\mathrm{Q}l}^{-(\ell)}, \ c_{\mathrm{Q}e}^{(\ell)}, \ c_{\mathrm{t}l}^{(\ell)}, \ c_{\mathrm{t}e}^{(\ell)}, \\ c_{\mathrm{t}}^{S(\ell)}, \ c_{\mathrm{t}}^{T(\ell)} \end{array}$	3ℓ off-Z
Four heavy	$c_{ m QQ}^1$, $c_{ m Qt}^1$, $c_{ m Qt}^8$, $c_{ m tt}^1$	2ℓ ss
Two heavy two light "t $\bar{t}l\nu\text{-like}$	$c_{ m Qq}^{11}$, $c_{ m Qq}^{18}$, $c_{ m tq}^{1}$, $c_{ m tq}^{8}$	$2\ell ss$
Two heavy two light "tllq-like" $% {\displaystyle \int} {\displaystyle \int } {\displaystyle \int {\displaystyle \int$	c_{Qq}^{31} , c_{Qq}^{38}	3ℓ on- ${ m Z}$
Two heavy with bosons " $t\bar{t}ll\text{-like}"$	c_{tZ} , $c_{arphi\mathrm{t}}$, $c_{arphi\mathrm{Q}}^-$	3ℓ on-Z and 2ℓ ss
Two heavy with bosons $\mathrm{``tXq}\-like''$	$c^3_{arphi ext{Q}}$, $c_{arphi ext{tb}}$, $c_{ ext{bW}}$	3ℓ on- ${ m Z}$
Two heavy with bosons with significant impacts	$c_{\mathrm{t}G}$, $c_{\mathrm{t}arphi}$, c_{tW}	3ℓ and $2\ell ss$
on many processes		Net


Nebraska Lincoln

Э

イロト イロト イヨト イヨト

