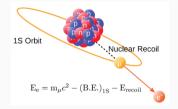
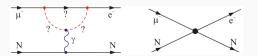

The Mu2e Experiment — Searching for Charged Lepton Flavor Violation

Michael Hedges Purdue University 02/23/2023 Charged leptons are only fermions without observation of flavor violation

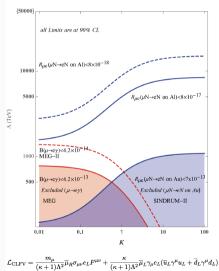
- Quarks mix (CKM)
- Neutrinos oscillate

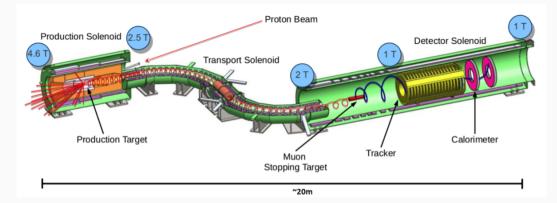

CLFV is required in ν SM, but ludicrously suppressed

• $Br(\mu
ightarrow e\gamma) \propto (rac{\Delta m_{
u}}{M_W})^4 < 10^{-52}$



Any experimental observation would unambiguously indicate New Physics


$\mathsf{CLFV}:\ \mu \to e \ \text{conversion}$

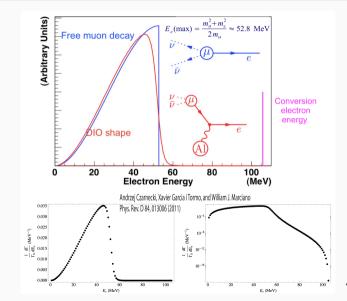

- Monoenergetic ~105 MeV/c conversion-electron (CE)
- Sensitive to energy scales $\mathcal{O}(1000)$ TeV

Adapted from A. de Gouvea and P. Vogel, Progress in Particle and Nuclear Physics 71, 75–92 (2013)

Mu2e

Discovery potential of $R_{\mu e} = \frac{\Gamma(\mu^- + N(Z,A) \rightarrow e^- + N(Z,A))}{\Gamma(\mu^- + N(Z,A) \rightarrow \nu_{\mu} + N(Z-1,A))} > 2 \times 10^{-16} (5\sigma)$

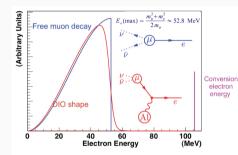
- $R_{\mu e} < 8 imes 10^{-17}$ (90% CL)
- $\mathcal{O}(10^4)$ improvement of previous result (SINDRUM-II)

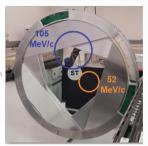

Backgrounds

Intrinsic

- μ Decay-in-orbit (DIO)
- Cosmic rays
- Mitigate with detector design

Beam-induced

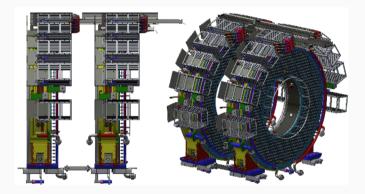

- Beam electrons (decays-in-flight)
- Radiative pion capture (pions in μ-target)
- Mitigate with accelerator design and μ -target choice



Tracker

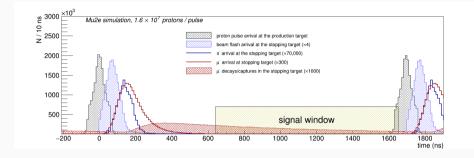
Annular disks of straw tubes

- Inner hole (38 cm) reduces flux of high-intensity, low-momentum particles
- 20k mylar straws (15 μ m)
- 1 atm 80:20 Ar:CO2 at 1450 $\rm V$
- \sim 100 keV/c momentum resolution to separate signal from DIO tail



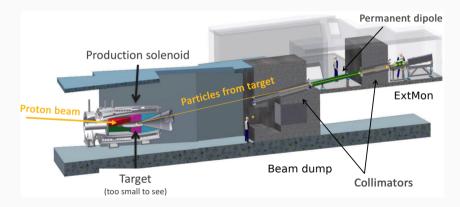

2 annular disks of 674 undoped CsI crystals

- Provides *E*/*p* (along with tracker)
- $\sigma_E/E = \mathcal{O}(10\%)$
- $\sigma_t < 500 \ \mathrm{ps}$
- $\sigma_{x,y} \leq 1 \text{ cm}$
- $\tau <$ 40 ns



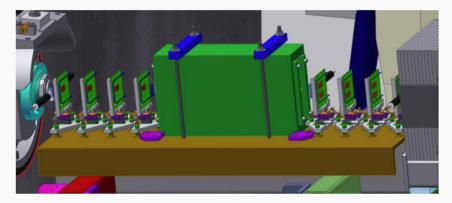
- Expect base rate of ~1 CE-like event / day from cosmic rays
- Need 99.99% veto efficiency
- Solution: 4 layers of extruded polystyrene scintillators surrounding entire detector area
 - Veto events with triple coincidence

Beam backgrounds: pulsed beam and aluminum target



- \sim 200 ns pulses of \sim 10⁷ protons at 8 GeV/c, spaced at \sim 1700 ns
- Muonic aluminum lifetime of 864 ns
- Strategy: Extract muon beam onto Al target, wait for prompt backgrounds to decay, search for CLFV signal

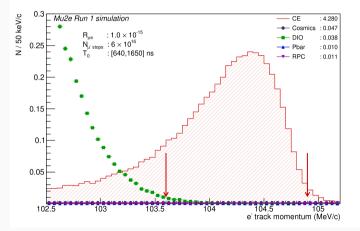
Extinction Monitor


How do we know the signal window is free of residual beam?

- Measure beam extinction as ratio of out-of-time beam to in-time beam
 - Must achieve extinction level of 10⁻¹⁰ or better

Extinction Monitor

- Track target-scattered protons using ATLAS silicon pixel sensors and FE-I4b readout chips
- 8 pixel planes and a permanent dipole magnet
 - Detect \sim 4 GeV/c protons and deflect low-energy secondary particles



Recently completed MC campaign to estimate Run 1 sensitivity

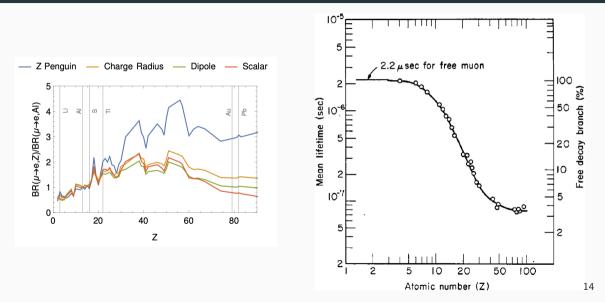
• arxiv:2210.11380

Discovery potential at $R_{\mu e} > 1 imes 10^{-15}$ (5 σ)

- $R_{\mu e} < 6 imes 10^{-16}$ (90% CL)
- 10³ improvement over SINDRUM-II

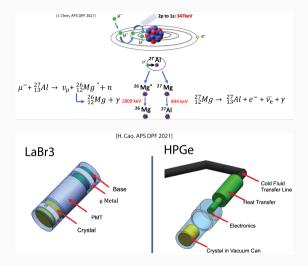
Searches for CLFV provide excellent opportunity to probe New Physics Mu2e will search for CLFV in $\mu \rightarrow e$ conversion and improve previous results by $\mathcal{O}(10^4)$ by the end of the decade

Mu2e is currently under construction and performing system integration tests


Commissioning underway, Run 1 expected during the middle of this decade

Similar schedule expected for COMET (J-PARC)

Should be an exciting few years!


Backup

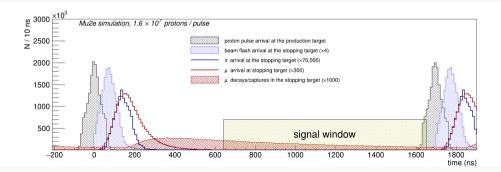
Physics reach and μ -lifetime vs Z

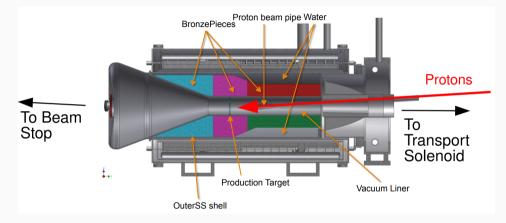
Stopping target monitor

- Need to measure denominator of $R_{\mu e}$
 - Measure rate of muonic atoms to O(10%)
- System of HPGe and LaBr detectors downstream of Mu2e detect γ spectrum

Challenge 1: μ^- beam from FNAL protons

Resonant extraction @ FNAL:


- $\bullet~\sim 4\times 10^7$ protons @ 8 GeV
- ullet \sim 1 mm gaussian beam radius
- 250 ns pulses
- 1.7 µs pulse period
- At 2.5 MHz


Challenge 2: Ideal Mu2e conditions

Mu2e needs:

- High yield of stoppable muons \Rightarrow low momentum μ^- beam
- Minimal beam-induced backgrounds (i.e. radiative pion capture)
- Low radiation environment

Production Solenoid (PS)

Compact, high-Z pion-production target in high B-field with backwards extraction

Production Target

 $\label{eq:LaO2-doped Tungsten, core EDMed} from single \ rod$

Longitudinally segmented cylinder

 \Rightarrow stress management

Longitudinal fins \Rightarrow thermal and structural management

1mm tungsten spokes

 ${\sim}700$ W power absorbtion $\Rightarrow {\sim}1500$ K

• Radiatively cooled

Expect target lifetime of ${\sim}1$ year: \Rightarrow replace during summer shutdowns

Production Target

First target is in-hand

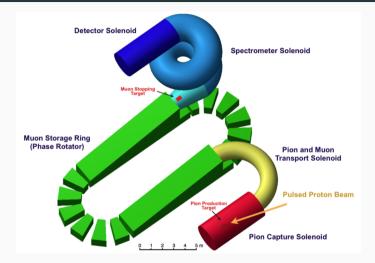
• Mu2e Run 1 scheduled for \sim 2026 (\leq 1 year long, \sim 0.5x beam intensity)

First-of-its-kind target: fully simulation-driven optimization and stress analysis

- $\bullet\,$ Designed with nominal beam intensity @ 1 year: \Rightarrow Run 1 should not be a concern
- Target failure and replacement outside of shutdown window slows experiment

What can we test and how?

• Are expected performance degradations (e.g. thermal stresses, oxidation, creep) within tolerances?


Can we setup Mu2e target testing at FNAL?

Parameter	Mu2e	Mu2e-II	Comment
Proton source	Slow extraction from DR	PIP-II Linac	
Proton kinetic energy	$8 {\rm GeV}$	$0.8 {\rm GeV}$	
Beam Power for expt.	8 kW	100 kW	Mu2e-II can be increased
Protons/s	6.25×10^{12}	$7.8 imes 10^{14}$	
Pulse Cycle Length	$1.693 \ \mu s$	$1.693 \ \mu s$	variable for Mu2e-II
Proton rms emittance	2.7	0.25	mm-mrad, normalized
Proton geometric emittance	0.29	0.16	mm-mrad, unnormalized
Proton Energy Spread (σ_E)	$20 { m MeV}$	$0.275 { m ~MeV}$	
$\delta p/p$	$2.25 imes 10^{-3}$	2.2×10^{-4}	
Stopped μ per proton	$1.59 imes 10^{-3}$	9.1×10^{-5}	
Stopped μ per cycle		1.2×10^5	

TABLE III. Mu2e and Mu2e-II Proton beam parameters

Mu2e-II whitepaper: arvix:2203.07569

$\mu \rightarrow e$ at the Advanced Muon Facility (proposed)

AMF whitepaper: arvix:2203.08278