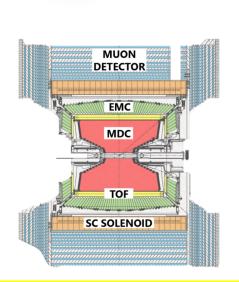
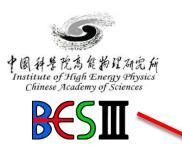


Recent Results from Light Hadron Spectroscopy @ BESIII

Isabella Garzia


University of Ferrara and INFN
On behalf of the ₩SII Collaboration

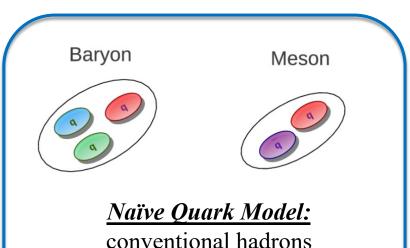

February 24, 2023

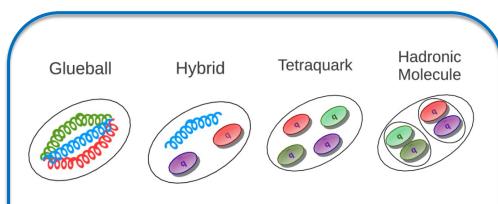
The BESIII experiment @ BEPCII

Nucl. Instr. Meth. A614, 345 (2010)

2004: started Beijing Electron Positron Collider II/BESIII construction

- ✓ Double rings
- ✓ Beam energy: 1 2.45 GeV
- ✓ Design luminosity: 1×10^{33} cm⁻²s⁻¹ @ ψ (3770), achieved in 2016


2009 – today: BESIII physics runs


Haidian

Hadron Spectrum

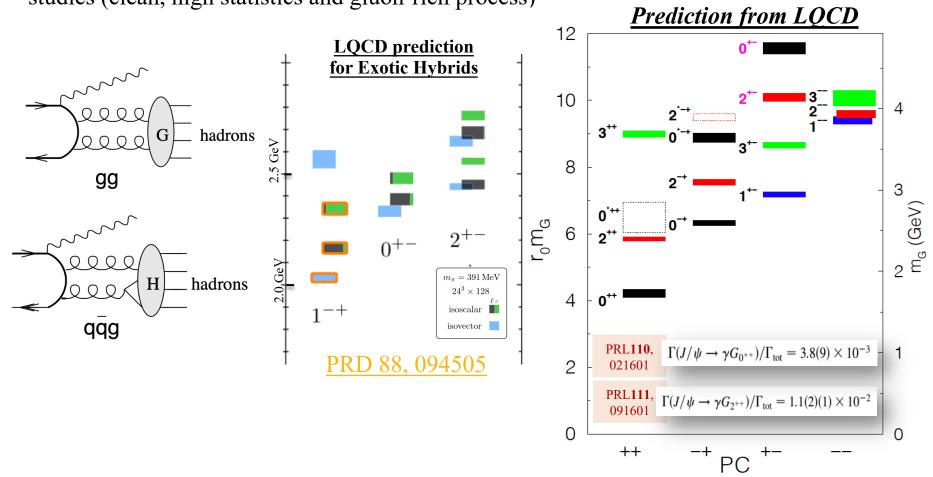
Hadron spectroscopy: establish the spectrum and study the exotic hadrons properties

contain two or three quarks

... but QCD allows also different combinations of quarks and gluons: **EXOTIC** hadrons

A lot of exotic states observed experimentally, but their nature is still far from being understood!!!

@ 55 J/ ψ 10.1×10⁹

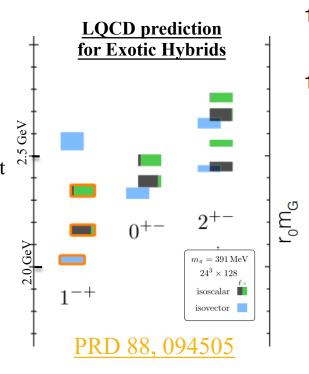


Light hadron physics

- Meson and baryon spectroscopy
- Glueballs and hybrids

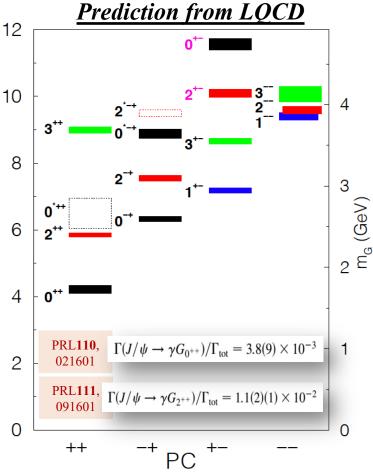
Hunting for glueballs and new form of hadrons

Charmonium radiative decays is the ideal laboratory for light glueballs and hybrids hadron studies (clean, high statistics and gluon-rich process)



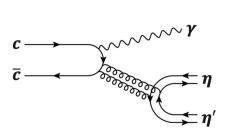
https://doi.org/10.1142/S0218 301309012124

Hunting for glueballs and new form of hadrons

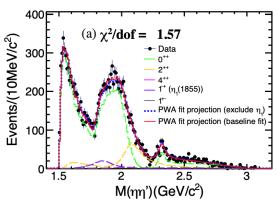

➤ Charmonium radiative decays is the ideal laboratory for light glueballs and hybrids hadron studies (clean, high statistics and gluon-rich process)

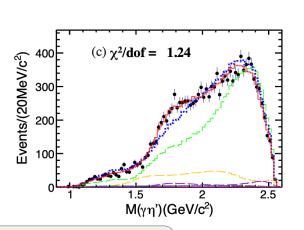
- **Exotic Hybrids**: $I^{PC} = 0^{+-} 1^{-+} 2^{+}$
 - J^{PC} = 0⁺⁻, 1⁻⁺, 2⁺⁻ (forbidden in the conventional QCD scheme)
- ➤ The exotic J^{PC} = 1⁻⁺ nonet of hybrids is predicted to be the lightest
- Nonly isovector candidate observed yet: $\pi_1(1400)$, $\pi_1(1600)$ [the most extensively studied], $\pi_1(2015)$

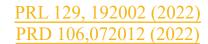
- ➤ Isoscalar 1⁻⁺ hybrids
- Can decay to ηη' in P-wave (PRD 83,014021, PRD 83, 014006, Eur.Phys.J.Plus 135, 945)

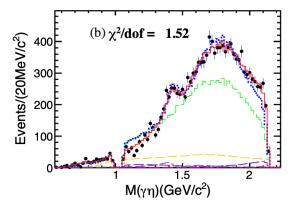


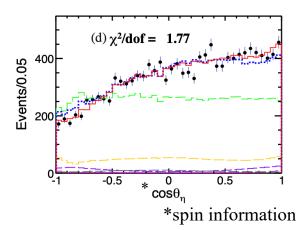
https://doi.org/10.1142/S0218 301309012124

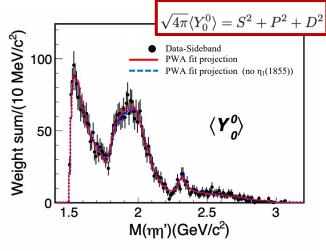

Observation of Exotic Isoscalar State $\eta_1(1855)$ in $J/\psi \rightarrow \gamma \eta \eta'$

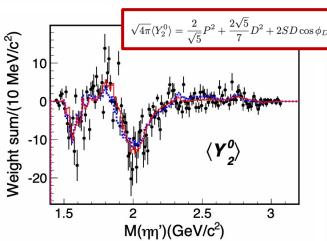

PWA of $J/\psi \rightarrow \gamma \eta \eta'$ using 10 Billion of J/ψ data @ BESIII

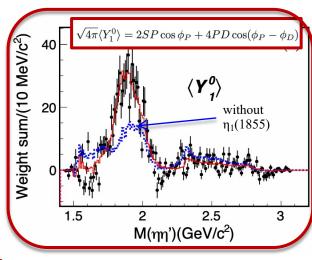

 \rightarrow $\eta \rightarrow \gamma \gamma$ and $\eta' \rightarrow \gamma \pi^+ \pi^- / \eta \pi^+ \pi^-$

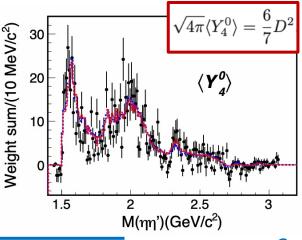



- ➤ An isoscalar 1⁻⁺ state, $\eta_1(1855)$, has been observed with statistical significance larger than 19σ
- > Mass is consistent with LQCD calculation for the 1^{-+} hybrid (1.7 - 2.1) GeV/c^2




 $M = (1855 \pm 9^{+6}_{-1}) \,\text{MeV}/c^2; \quad \Gamma = (188 \pm 18^{+3}_{-8}) \,\text{MeV}$ $\mathcal{B}(J/\psi \to \gamma \eta_1(1855) \to \gamma \eta \eta') = (2.70 \pm 0.41^{+0.16}_{-0.35}) \times 10^{-6}$


Experiment The Theorem 12 (1855)


The $\cos(\theta_{\eta})$ distribution can be expressed as an expansion in terms of Legendre polynomials; the coefficients (unnormalized moments of expansion) $\langle Y_l^0 \rangle \equiv \sum_{i=1}^{N_k} W_i Y_l^0 (\cos \theta_{\eta}^i)$. characterize the spin of the $\eta \eta$ ' resonances

- Neglecting resonance contributions in the γη^(*) subsystem and amplitude with spin greater than 2, the moments are related to the spin-0 (S), spin-1 (P) and spin-2 (D) amplitudes
- Good data/PWA consistency
- Narrow structure in $<Y^0_1>: \eta_1(1855)$ P-wave component is needed

Discussion about $f_0(1500)$ and $f_0(1710)$

The dominant contributions in the baseline PWA are from scalar resonance:

PRL 129, 192002 (2022) PRD 106,072012 (2022)

Decay mode	Resonance	$M ({\rm MeV}/c^2)$	Γ (MeV)	$M_{ m PDG}~({ m MeV}/c^2)$	Γ_{PDG} (MeV)	B.F. $(\times 10^{-5})$	Sig.
	$f_0(1500)$	1506	112	1506	112	$1.81 \pm 0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	$0.11\pm0.01^{+0.04}_{-0.03}$	11.1σ
	$f_0(2020)$	$2010\pm6_{-4}^{+6}$	$203{\pm}9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	$2312{\pm}7_{-3}^{+7}$	$65{\pm}10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2σ
	$\eta_1(1855)$	$1855\pm 9_{-1}^{+6}$	$188{\pm}18^{+3}_{-8}$	-	-	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ
	$f_2(1565)$	1542	122	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7σ
	$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	2011	202	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4σ
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
	0 ⁺⁺ PHSP	-	-	-	-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7σ
$I/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1415)$	1416	90	1416	90	$0.08 {\pm} 0.01^{+0.01}_{-0.02}$	10.2σ
	$h_1(1595)$	1584	384	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9σ

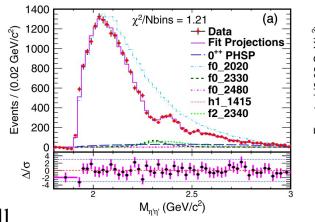
$$\frac{\mathcal{B}(f_0(1500) \to \eta \eta')}{\mathcal{B}(f_0(1500) \to \pi \pi)} = (8.96^{+2.95}_{-2.87}) \times 10^{-2}$$

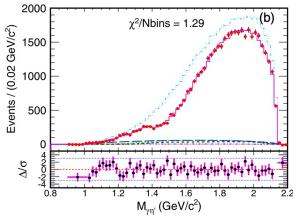
Consistent with PDG

$$\frac{\mathcal{B}(f_0(1710) \to \eta \eta')}{\mathcal{B}(f_0(1710) \to \pi \pi)} < 1.61 \times 10^{-3}$$
@90% C.L.

This suppressed decay rate supports the hypothesis that the $f_0(1710)$ has a large overlap with the ground state scalar glueball (PRD 92,121902)

Partial Wave Analysis of $J/\psi \rightarrow \gamma \eta' \eta'$

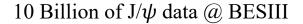

PRD 105, 072002(2022)

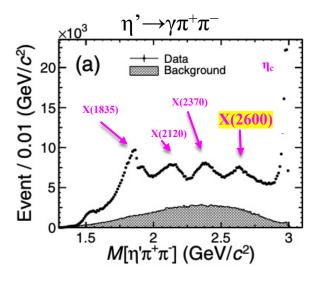

PWA of J/ $\psi \rightarrow \gamma \eta$ ' using 10 Billion of J/ ψ data @ BESIII

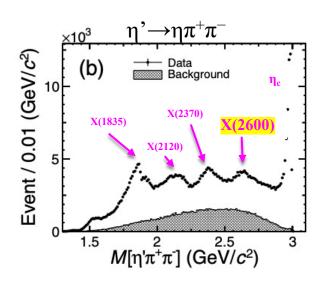
 $\rightarrow \eta' \rightarrow \gamma \pi^+ \pi^- / \eta \pi^+ \pi^- (\eta \rightarrow \gamma \gamma)$

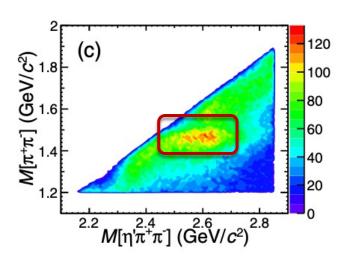
Resonance	$M(MeV/c^2)$	Γ(MeV)	B.F.	Significance (σ)
$f_0(2020)$	$1982 \pm 3^{+54}_{-0}$	$436 \pm 4^{+46}_{-49}$	$(2.63 \pm 0.06^{+0.31}_{-0.46}) \times 10^{-4}$	≫25 Dominant
$f_0(2330)$	$2312 \pm 2^{+10}_{-0}$	$134 \pm 5^{+30}_{-9}$	$(6.09 \pm 0.64^{+4.00}_{-1.68}) \times 10^{-6}$	16.3 contributions
$f_0(2480)$	$2470 \pm 4^{+4}_{-6}$	$75 \pm 9^{+11}_{-8}$	$(8.18 \pm 1.77^{+3.73}_{-2.23}) \times 10^{-7}$	5.2 new 0 ⁺⁺ state
$h_1(1415)$	$1384 \pm 6^{+9}_{-0}$	$66 \pm 10^{+12}_{-10}$	$(4.69 \pm 0.80^{+0.74}_{-1.82}) \times 10^{-7}$	5.3
$f_2(2340)$	$2346 \pm 8^{+22}_{-6}$	$332 \pm 14^{+26}_{-12}$	$(8.67 \pm 0.70^{+0.61}_{-1.67}) \times 10^{-6}$	16.1
0 ⁺⁺ PHSP	•••	•••	$(1.17 \pm 0.23^{+4.09}_{-0.70}) \times 10^{-5}$	15.7

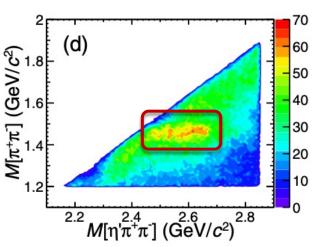
- $f_0(2020)$, $f_0(2330)$ and $f_2(2340)$ observed in $\eta'\eta'$ decay mode for the first time $f_0(2020)$:
- Its large production rate in radiative J/ψ decay suggest a large overlap with scalar glueball






• Consistent with previous analysis results, but its mass is lower than the mass of the first excitation of scalar glueball from the LQCD prediction (Phys. Lett. B 309, 378, Phys. Rev. D 60, 034509)




χ X(2600): A New State Observed in $J/\psi \rightarrow \gamma \pi^+\pi^-\eta^2$

PRL 129, 042001

A new state in $M(\eta'\pi^+\pi^-)$ invariant mass is observed around 2.6 GeV/c^2 , which is correlated to a structure in $M(\pi^+\pi^-)$ @ 1.5 GeV/c^2

χ X(2600): A New State Observed in $J/\psi \rightarrow \gamma \pi^+\pi^-\eta^2$

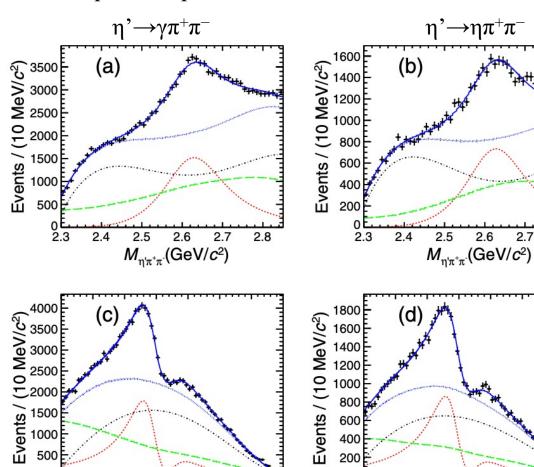
1.3

 $M_{\pi^+\pi^-}(\text{GeV}/c^2)$

Simultaneous fit to $\eta' \pi^+ \pi^-$ and $\pi^+ \pi^-$ mass spectra is performed

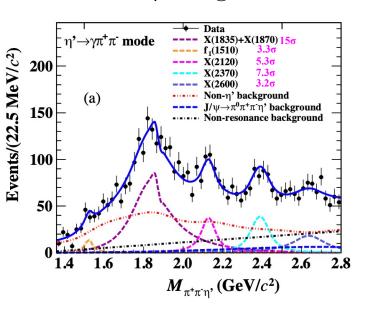
DDI 1	100	0.42001
PKI	129.	042001
		0 12001

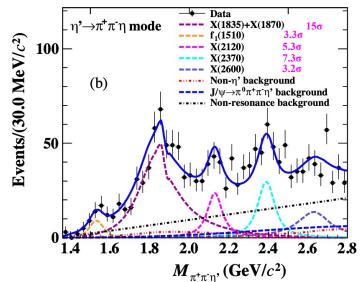
2.6


 $M_{\pi^+\pi}$ (GeV/ c^2)

2.7

2.8

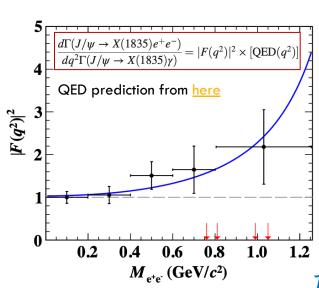

Resonance	Mass (MeV/ c^2)	Width (MeV)
$f_0(1500)$	$1492.5 \pm 3.6^{+2.4}_{-20.5}$	$107 \pm 9^{+21}_{-7}$
X(1540)	$1540.2 \pm 7.0^{+36.3}_{-6.1}$	$157 \pm 19^{+11}_{-77}$
X(2600)	$2618.3 \pm 2.0^{+16.3}_{-1.4}$	$195 \pm 5^{+26}_{-17}$


- \triangleright X(2600) resonance observed for the first time with a statistical significance greater than 20σ
- \triangleright The structure in M($\pi^+\pi^-$) around 1.5 GeV/c^2 can be well described with the interference between $f_0(1500)$ and the X(1540) resonances

Dobservation of X(1835), X(2120), X(2370) in J/ψ EM Dalitz Decays

10 Billion of J/ ψ data @ BESIII

PRL 129, 022002


 $J/\psi \rightarrow e^+e^-\eta'\pi^+\pi^-$ Confirmation of X(1835), X(2120) and X(2370) observed in J/ψ radiative decays

Access to the EM transition form factor between J/ ψ and X(1835) states

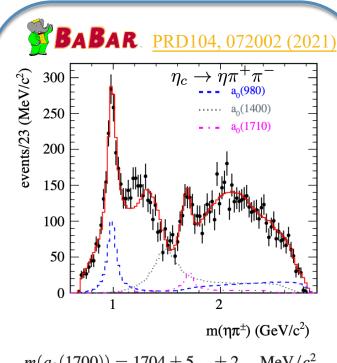
 Additional information on the internal structure of X(1835)

$$F(q^2) = \frac{1}{1 - q^2/\Lambda^2}$$

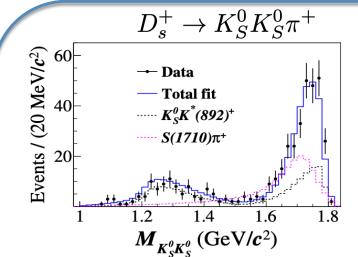
$$\Lambda = 1.75 \pm 0.29 \pm 0.05 \ GeV/c^2$$

Light hadrons in open-charm decays

Ground state


- $f_0(500), f_0(980):0++, I=0$
- $a_0(980)$: 0++, I = 1

Radially excited states


- $f_0(1370), f_0(1500)$
- $a_0(1450)$

Higher set of excitations

- $f_0(1710), f_0(1770)$
- $a_0(1710)$???

 $m(a_0(1700)) = 1704 \pm 5_{\text{stat}} \pm 2_{\text{sys}} \text{ MeV}/c^2$, $\Gamma(a_0(1700)) = 110 \pm 15_{\text{stat}} \pm 11_{\text{sys}} \text{ MeV}/c^2.$

PRD105, L051103 (2022)

$$\mathcal{B}(D_s^+ \to S(980)\pi^+) < 1.8 \times 10^{-4}$$

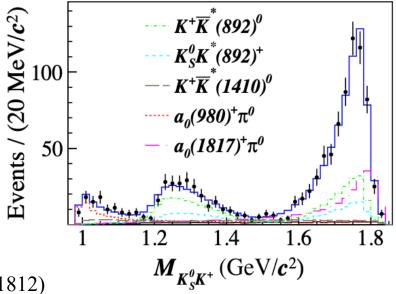
@ 90% CL

suppression attributed to the destructive int. between $a_0(980)$ and $f_0(980)$

$$\mathcal{B}(D_s^+ \to S(1710)\pi^+) = (0.31 \pm 0.03 \pm 0.01)\%$$

One order of magnitude larger than the expectation \rightarrow existence of isospin partner of $f_0(1710) \rightarrow$ constructive int.

Light hadrons in open-charm decays


6.32 fb⁻¹ between 4.178 and 4.226 GeV

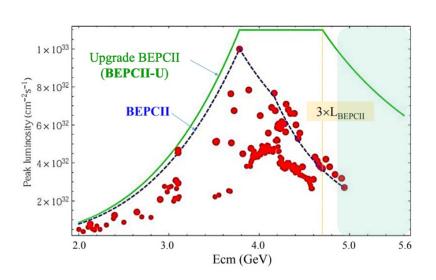
PRL129, 182001 (2022)

- ➤ Amplitude analysis of Cabibbo-favored $D_s^+ \rightarrow K^0_S K^+ \pi^0$
- Together with $\underline{D}_{\underline{s}}^{+} \to \underline{K}_{\underline{s}}^{0} \underline{K}_{\underline{s}}^{0} \underline{\pi}^{+}$ BESIII analysis, this result support the existence of a new a_0 triplet
- ► BF of $D_s^+ \rightarrow a_0(1817)^+ \pi^0$ with $a_0(1817)^+ \rightarrow K^0_S K^+ \pi^0$ is roughly consistent with the prediction EPJC 82, 225(2022)
- $ightharpoonup m(a_0)$ about 100 MeV/c² greater than the expectation

$$m(a_0) = (1.817 \pm 0.008 \pm 0.020) \text{ GeV/c}^2$$

 $\Gamma(a_0) = (0.097 \pm 0.022 \pm 0.015) \text{ GeV/c}^2$

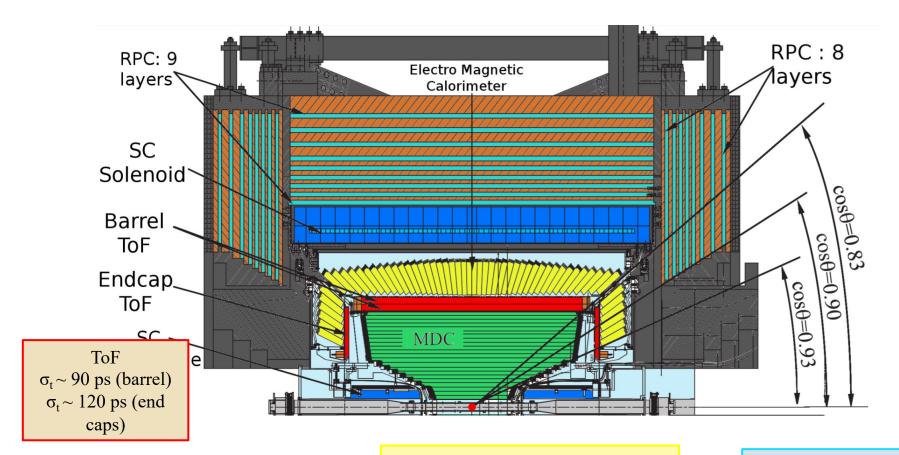
ightharpoonup a₀(1817) could be the isospin one partner of the X(1812) PRD105, 114014(2022)



Amplitude	Phase (rad)	FF (%)	BF (10 ⁻³)	σ
$D_s^+ \to \bar{K}^*(892)^0 K^+$	0.0 (fixed)	$32.7 \pm 2.2 \pm 1.9$	$4.77 \pm 0.38 \pm 0.32$	> 10
$D_s^+ \to K^*(892)^+ K_S^0$	$-0.16 \pm 0.12 \pm 0.11$	$13.9 \pm 1.7 \pm 1.3$	$2.03 \pm 0.26 \pm 0.20$	> 10
$D_s^+ \to a_0(980)^+ \pi^0$	$-0.97 \pm 0.27 \pm 0.25$	$7.7 \pm 1.7 \pm 1.8$	$1.12 \pm 0.25 \pm 0.27$	6.7
$D_s^+ \to \bar{K}^* (1410)^0 K^+$	$0.17 \pm 0.15 \pm 0.08$	$6.0 \pm 1.4 \pm 1.3$	$0.88 \pm 0.21 \pm 0.19$	7.6
$D_s^+ \to a_0(1817)^+ \pi^0$	$-2.55 \pm 0.21 \pm 0.07$	$23.6 \pm 3.4 \pm 2.0$	$3.44 \pm 0.52 \pm 0.32$	> 10

- > J/ψ decay provides an excellent laboratory to study light hadron decays: 10 billion of J/ψ data collected at BESIII
 - This huge data sample allows to study light meson decays with unprecedent statistics: unique opportunity to map the light hadron spectroscopy and search for glueball and exotic states
 - First observation of exotic isoscalar state $\eta_1(1855)$ PRL 129, 192002 (2022) PRD 106,072012 (2022)
 - X(2600) state in $J/\psi \rightarrow \gamma \pi + \pi \eta$ ' PRL 129, 042001
 - X(1835), X(2120), X(2370) in J/ψ EM Dalitz Decays PRL 129, 022002
- ➤ Light hadrons in open-charm decays (6.32 fb⁻¹ between 4.178 and 4.226 GeV)

PRD129, 182001 (2022)

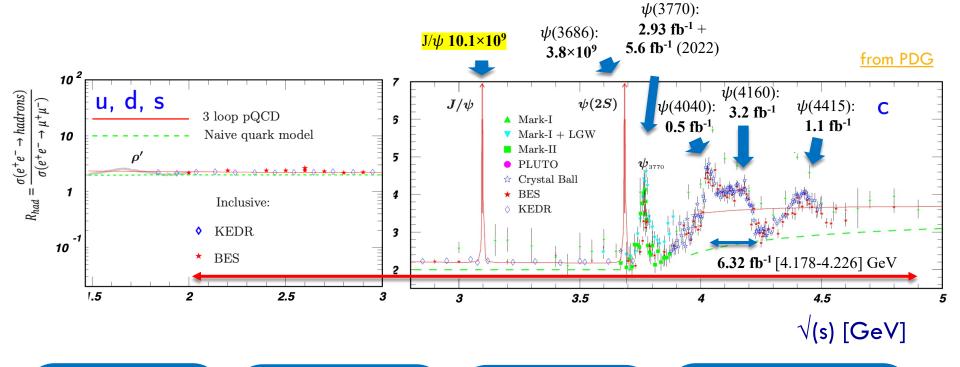

- Further upgrade in energy (5.6 GeV) and luminosity (BEPCII-U, 3x) planned for the next year
- ➤ Inner MDC → CGEM-IT

More interesting results are expected

Back-up slídes

The BESIII Detector

Nucl. Instr. Meth. A614, 345 (2010)


$$\begin{split} & \text{Drift Chamber} \\ \sigma_{r\phi} \sim 130 \ \mu m \ (\text{single wire}) \\ \sigma_{pt}/p_t \sim 0.5 \ \% \ @ \ 1 \ GeV \end{split}$$

$$\begin{split} &\text{Electromagnetic CsI(Tl) Calorimeter} \\ &\sigma_E/E \leq 2.5\% \quad \text{@ 1 GeV (barrel)} \\ &\sigma_E/E \leq 5\% \quad \text{@ 1 GeV (end caps)} \\ &\sigma_{xy} \sim (6 \text{ mm})/E^{1/2} \text{ @ 1 GeV} \end{split}$$

RPC Muon Detector $\Delta\Omega/4\pi$ =93%

BESIII dataset and physics program

Optimised for flavour physics in the τ -charm region

- 130 points between 2 and 4.6 GeV (~715 pb⁻¹ up to 3.08 GeV for ρ^* , ω^* , ϕ^* ,... studies)
- Light hadron spectroscopy
- η/η ' decays
- Hyperon physics
- Charmonium transitions

- D⁰D⁰pairs
- $D_{(S)}$ meson decays
- D*_(s)
- ...

- XYZ decays and spectroscopy
- Open charm production
- Charmed baryons
- ..

BESIII physics programme

Light hadron physics

- Meson and baryon spectroscopy
- Multiquark states
- Threshold effects
- Glueballs and hybrids
- two-photon physics
- Form factors

QCD and T

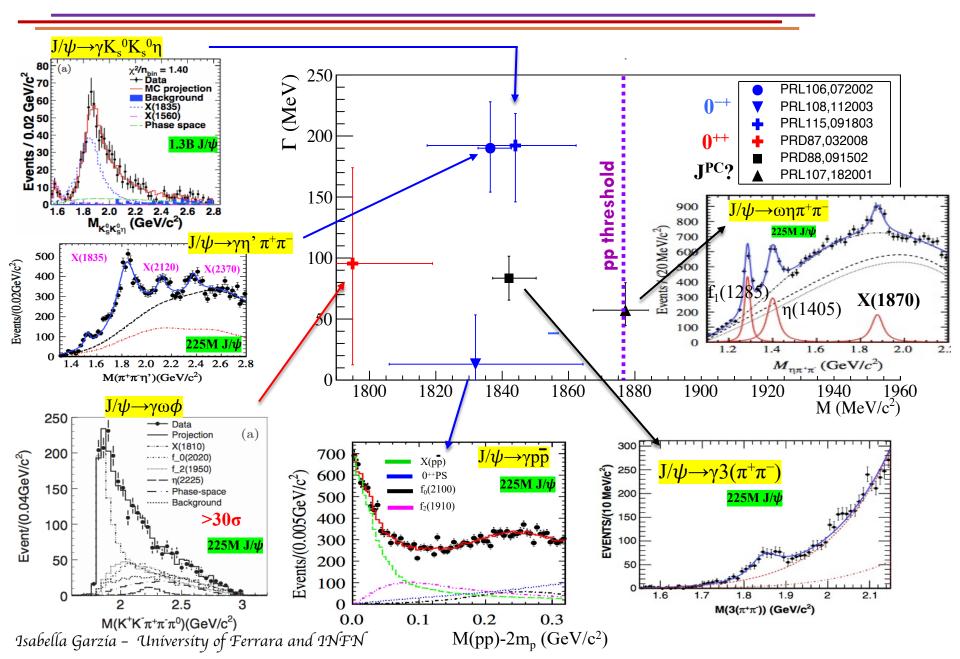
- Precision R measurement
- τ decay

Charmonium physics

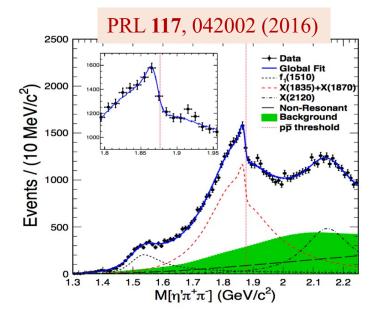
- Precision spectroscopy
- Transitions and decays

XYZ meson physics

- Y(4260), Y(4360) properties
- $Z_c(3900)^+, \dots$


Charm physics

- Semi-leptonic form factors
- Decay constants f_D and f_{Ds}
- CKM matrix: $|V_{cd}|$ and $|V_{cs}|$
- $D^0-\overline{D}^0$ mixing, CPV
- Strong phases


Precision mass measurements

- T mass
- D, D* mass

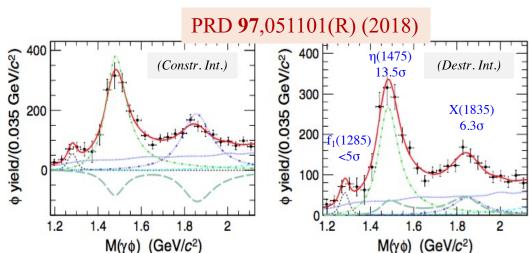
X(18xx) between 1.8-1.9 GeV

Other Results on X(1835)

$1.09 \times 10^9 \text{ J/} \psi$ @ BESIII

$$J/\psi \rightarrow \gamma \eta' \pi^- \pi^+$$

Significant distortion of the η ' $\pi^-\pi^+$ line shape near the ppbar mass threshold

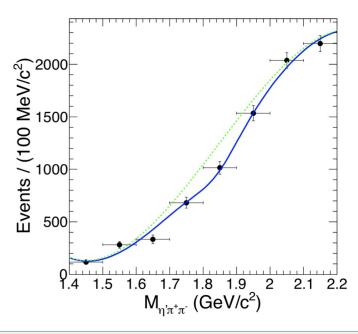

Two fit models are taken into account and both support the existence of a $p\bar{p}$ moleculelike or bound state

$1.3\times10^9 \text{ J/}\psi$ @ BESIII

 $J/\psi \rightarrow \gamma \gamma \phi$: two structures corresponding to $\eta(1475)$ and X(1835) are observed

- X(1835) and $\eta(1475)$: $J^{PC} = 0^{-+}$ assignment favored
- Sizable ss component in X(1835)
 - more complicated than a pure $N\overline{N}$ state

Solution	Resonance	$m_R ({\rm MeV}/c^2)$	Γ (MeV)
I	$\eta(1475)$	$1477 \pm 7 \pm 13$	$118 \pm 22 \pm 17$
(Destr. Int.)	X(1835)	$1839\pm26\pm26$	$175\pm57\pm25$
II	$\eta(1475)$	$1477\pm7\pm13$	$118\pm22\pm17$
(Constr. Int.,	X(1835)	$1839 \pm 26 \pm 26$	$175\pm57\pm25$


Isabella Garzía - University of Ferrara and INFN

Search for X(1835) in other decay modes

• J/ $\psi \rightarrow \omega \eta' \pi^+ \pi^-$ hadronic decay and search for X(1835) $\rightarrow \eta' \pi^+ \pi^-$

PRD **99**, 071101 (R) (2019)

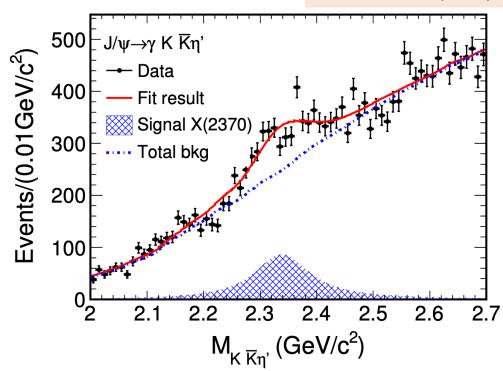
- No obvious sign of X(1835)'s existence
- Large gluon component? [PRD74,034019]

$$\mathcal{B}(J/\psi \to \omega \eta' \pi^+ \pi^-) = (1.12 \pm 0.02 \pm 0.13) \times 10^{-3}$$

$$\mathcal{B}(J/\psi \to \omega X(1835), \ X(1835) \to \eta' \pi^+ \pi^-) < 6.2 \times 10^{-5}$$

@ 90% C.L.

The puzzle is still not complete

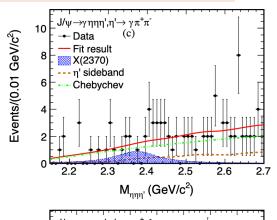

First Observation of X(2370) in $J/\psi \rightarrow \gamma K \overline{K} \eta$

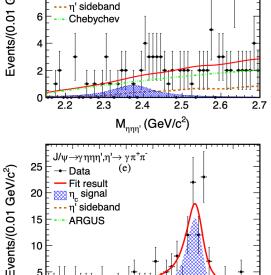
- X(2120) and X(2370) states observed in the $\pi^-\pi^+\eta^+$ invariant mass spectra (PRL106,072002)
- The **X(2370)** measured mass is consistent with the pseudoscalar glueball candidate predicted by LQCD calculation (PRD73,014516)
 - Simulataneus fit performed for two decay η' modes
 - \triangleright No evidence of X(2120) is found

$$\begin{split} \mathcal{B}(J/\psi \to \gamma X(2120) \to \gamma K^+ K^- \eta') &< 1.49 \times 10^{-5} \\ \mathcal{B}(J/\psi \to \gamma X(2120) \to \gamma K_S^0 K_S^0 \eta') &< 6.38 \times 10^{-6} \end{split}$$

$1.3 \times 10^9 \,\text{J/}\psi$ @ BESIII

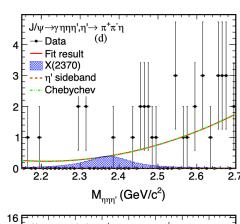
EPJC **80**, 746 (2020)

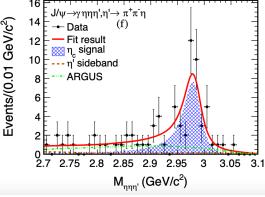

\triangleright Clear X(2370) signal observed with significance of about 8.3 σ


$$\begin{split} M_{X(2370)} &= 2341.6 \pm 6.5 \pm 5.7 \; \mathrm{MeV}/c^2 \quad \Gamma_{X(2370)} = 117 \pm 10 \pm 8 \; \mathrm{MeV} \\ \mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma K^+ K^- \eta') &= (1.79 \pm 0.23 \pm 0.65) \times 10^{-5} \\ \mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma K_S^0 K_S^0 \eta') &= (1.18 \pm 0.32 \pm 0.39) \times 10^{-5} \end{split}$$

Search for X(2370) in $J/\psi \rightarrow \gamma \eta \eta \eta$

PRD **103**, 012009 (2021)


$1.3\times10^9 \text{ J/}\psi$ @ BESIII



2.7 2.75 2.8 2.85 2.9 2.95

 $M_{nnn'}$ (GeV/c²)

Branching ratios prediction for the decay of pseudoscalar glueball with M~2.37 GeV into three pseudoscalar mesons (PRD **87**,054036 (2013))

$$\Gamma_{G \to \eta \eta \eta'} / \Gamma_G^{tot} = 0.00082$$

$$\Gamma_{G \to KK\eta'} / \Gamma_G^{tot} = 0.011$$

$$\Gamma_{G \to \pi \pi \eta'} / \Gamma_G^{tot} = 0.090$$

\triangleright No obvious signal of X(2370)

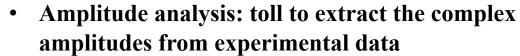
Simultaneous unbinned maximum likelihood fit to the $\eta\eta\eta$ ' is performed and the 90% C.L. upper limit is calculated

$$\mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma \eta \eta \eta') < 9.2 \times 10^{-6}$$

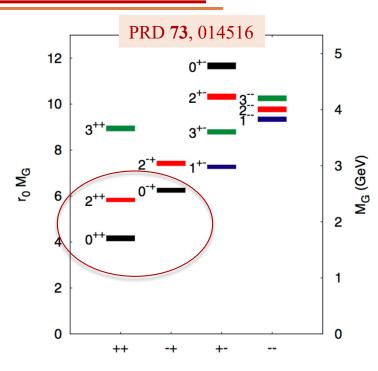
3.05

=vents/(0.01 GeV/c²

(it does not contradict PRD **87**,054036)

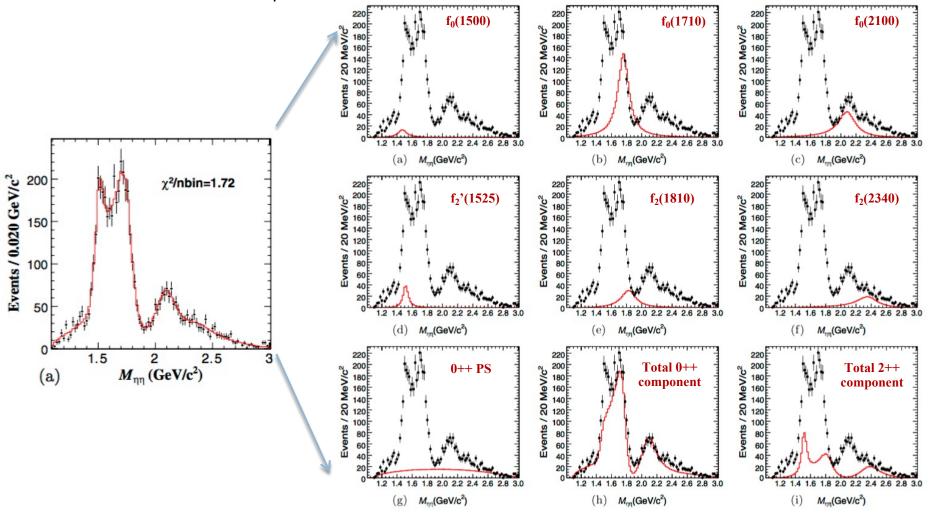

$$\mathcal{B}(J/\psi \to \gamma \eta_c) \cdot \mathcal{B}(\eta_c \to \eta \eta \eta') = (4.86 \pm 0.62 \pm 0.45) \times 10^{-5}$$

FIRST OBSERVATION in the nnn' invariant mass spectra


Isabella Garzía - University of Ferrara and INFN

Amplitude Analyses in BESIII

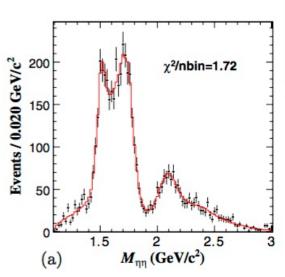
- J/ ψ radiative decays are ideal for searching glueballs
 - $J/\psi \rightarrow \gamma PP: 0^{++}, 2^{++}, ...$
 - $J/\psi \rightarrow \gamma PPP, \gamma VV: 0^{-+}$
- Neutral channel is much cleaner than the charged ones
- Very complicated mass spectrum in the low mass region: many broad, overlapping states complicate the study of the spectra


- Models with free parameters
- Consider the kinematic of final states particles
- Vary the parameters to maximize the likelihood
- Mass Dependent (MD) PWA: model the dynamics of particle interactions as coherent sum of resonances
- Mass Independent (MI) PWA: make minimal model assumptions and measure the dynamical amplitudes independently in small regions of two-meson invariant mass (PRD92, 052003 (2015))

PWA of $J/\psi \rightarrow \gamma \eta \eta$

PRD **87**, 092009 (2013)

- J/ $\psi \rightarrow \gamma \eta \eta$: clean laboratory to search for 0++ and 2++ states
- PWA based on $2.25 \times 10^8 \text{ J/}\psi$ events

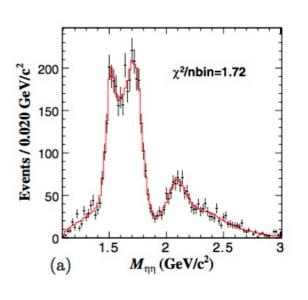


Isabella Garzía - University of Ferrara and INFN

PWA of $J/\psi \rightarrow \gamma \eta \eta$

PRD **87**, 092009 (2013)

- J/ $\psi \rightarrow \gamma \eta \eta$: clean laboratory to search for 0++ and 2++ states
- PWA based on $2.25 \times 10^8 \text{ J/}\psi$ events

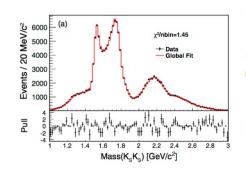

Resonance	Mass (MeV/ c^2)	Width (MeV/c^2)	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
$f_0(1500)$	$1468^{+14}_{-15}^{+23}_{-74}$	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
$f_0(1710)$	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13}_{-0.11}^{+1.24}) \times 10^{-4}$	25.0σ
$f_0(2100)$	$2081 \pm 13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09}_{-0.10}{}^{+0.64}_{-0.28}) \times 10^{-4}$	13.9σ
$f_2'(1525)$	$1513 \pm 5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43}_{-0.51}^{+1.37}) \times 10^{-5}$	11.0σ
$f_2(1810)$	$1822^{+29}_{-24}{}^{+66}_{-57}$	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362^{+31+140}_{-30-63}$	$334^{+62+165}_{-54-100}$	$(5.60^{+0.62}_{-0.65}^{+2.37}) \times 10^{-5}$	7.6σ

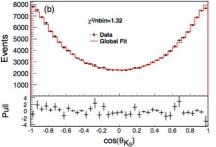
- $f_0(1500)$ dominant decays are 4π and $\pi\pi$
- The production rate of $f_0(1710)$ is compatible with LQCD (PRL110,021601) prediction for a pure scalar glueball
 - Suggest a large overlap with 0++ gluball
- PWA requires a strong contribution from f₂(2340) with fairly large production rate ⇒ it could be a good candidate for the lowest lying tensor glueball

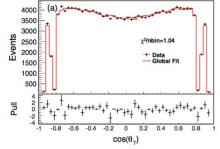
PWA of $J/\psi \rightarrow \gamma \eta \eta$

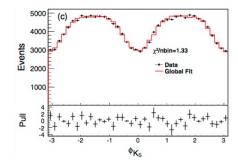
PRD **87**, 092009 (2013)

- J/ $\psi \rightarrow \gamma \eta \eta$: clean laboratory to search for 0++ and 2++ states
- PWA based on $2.25 \times 10^8 \text{ J/}\psi$ events

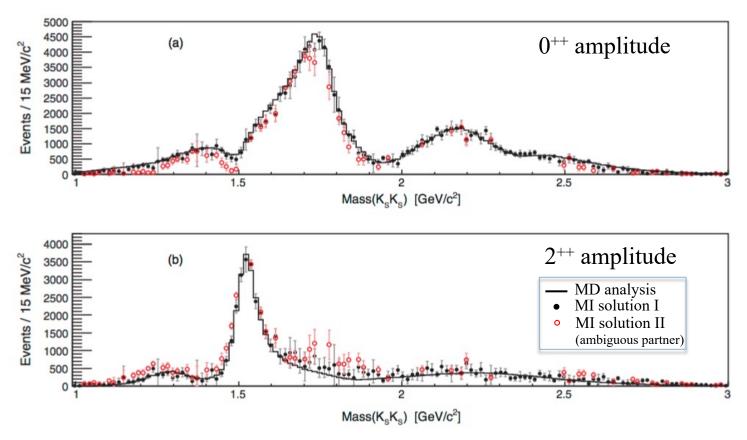

·	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	
$f_0(1500)$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
$f_0(1710)$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0σ
$f_0(2100)$	$(1.13^{+0.09}_{-0.10}^{+0.64}) \times 10^{-4}$	13.9σ
f ₂ '(1525)	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	6.4σ
$f_2(1810)$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	7.6σ
$f_2(2340)$	$(5.60^{+0.62}_{-0.65}) \times 10^{-5}$	


- $f_0(1500)$ dominant decays are 4π and $\pi\pi$
- The production rate of $f_0(1710)$ is compatible with LQCD (PRL110,021601) prediction for a pure scalar glueball
 - Suggest a large overlap with 0++ glueball
- PWA requires a strong contribution from f₂(2340) with fairly large production rate ⇒ it could be a good candidate for the lowest lying tensor glueball


PWA of $J/\psi \rightarrow \gamma K^{0}_{S}K^{0}_{S}$


PRD 98, 072003 (2018)

- $J/\psi \rightarrow \gamma K_S K_S$: clean laboratory to search for even++ states
- PWA based on 1311M of J/ψ events

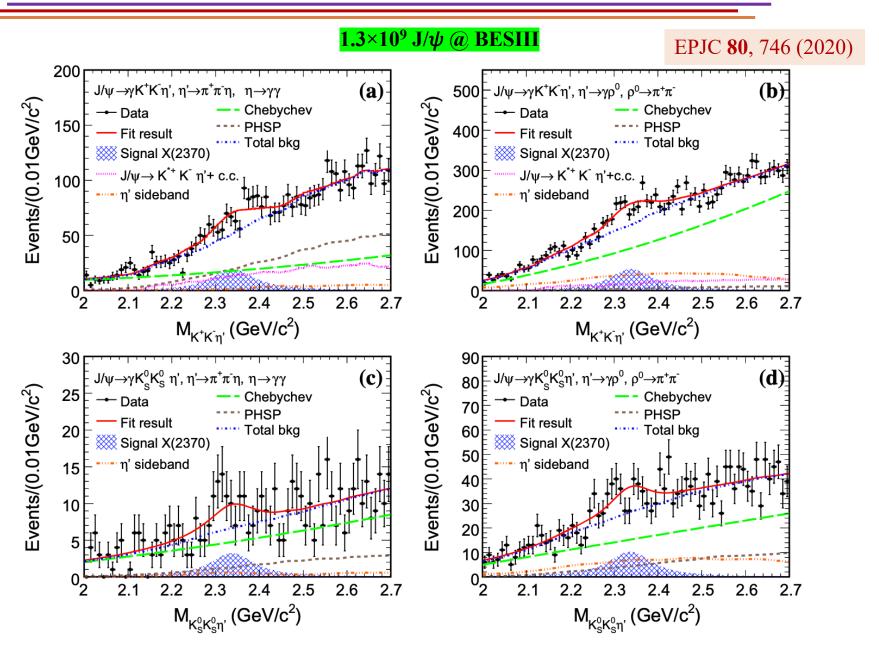

Resonance	$M (\text{MeV}/c^2)$	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma ({ m MeV}/c^2)$	$\Gamma_{\rm PDG}~({ m MeV}/c^2)$	Branching fraction	Significance
K*(892)	896	895.81 ± 0.19	48	47.4 ± 0.6	$(6.28^{+0.16+0.59}_{-0.17-0.52}) \times 10^{-6}$	35σ
$K_1(1270)$	1272	1272 ± 7	90	90 ± 20	$(8.54^{+1.07+2.35}_{-1.20-2.13}) \times 10^{-7}$	16σ
$f_0(1370)$	$1350 \pm 9^{+12}_{-2}$	1200 to 1500	$231 \pm 21^{+28}_{-48}$	200 to 500	$(1.07^{+0.08+0.36}_{-0.07-0.34}) \times 10^{-5}$	25σ
$f_0(1500)$	1505	1504 ± 6	109	109 ± 7	$(1.59^{+0.16+0.18}_{-0.16-0.56}) \times 10^{-5}$	23σ
$f_0(1710)$	$1765 \pm 2^{+1}_{-1}$	1723^{+6}_{-5}	$146 \pm 3^{+7}_{-1}$	139 ± 8	$(2.00^{+0.03+0.31}_{-0.02-0.10}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(1790)$	$1870 \pm 7^{+2}_{-3}$		$146 \pm 14^{+7}_{-15}$		$(1.11^{+0.06+0.19}_{-0.06-0.32}) \times 10^{-5}$	24σ
$f_0(2200)$	$2184 \pm 5^{+4}_{-2}$	2189 ± 13	$364 \pm 9^{+4}_{-7}$	238 ± 50	$(2.72^{+0.08+0.17}_{-0.06-0.47}) \times 10^{-4}$	≫ 35 <i>σ</i>
$f_0(2330)$	$2411 \pm 10 \pm 7$		$349 \pm 18^{+23}_{-1}$		$(4.95^{+0.21+0.66}_{-0.21-0.72}) \times 10^{-5}$	35σ
$f_2(1270)$	1275	1275.5 ± 0.8	185	$186.7^{+2.2}_{-2.5}$	$(2.58^{+0.08+0.59}_{-0.09-0.20}) \times 10^{-5}$	33σ
$f_2'(1525)$	1516 ± 1	1525 ± 5	$75\pm1\pm1$	73^{+6}_{-5}	$(7.99^{+0.03+0.69}_{-0.04-0.50}) \times 10^{-5}$	$\gg 35\sigma$
$f_2(2340)$	$2233 \pm 34^{+9}_{-25}$	2345^{+50}_{-40}	$507 \pm 37^{+18}_{-21}$	322^{+70}_{-60}	$(5.54^{+0.34+3.82}_{-0.40-1.49}) \times 10^{-5}$	26σ
0 ⁺⁺ PHSP					$(1.85^{+0.05+0.68}_{-0.05-0.26}) \times 10^{-5}$	26σ
2 ⁺⁺ PHSP					$(5.73^{+0.99}_{-1.00}{}^{+4.18}_{-3.74}) \times 10^{-5}$	13σ

- $f_0(1710)$ and $f_0(2200)$ dominate the scalar spectrum, but we need also to include $f_0(2330)$
- BR of $f_0(1710)$ is one order of magnitude larger than BR of $f_0(1500)$: $f_0(1710)$ overlap with glueball state
- Structure near 1.5 GeV dominated by tensor contribution f_2 '(1525), while above 2 GeV is dominantly f_2 (2340)

PWA of $J/\psi \rightarrow \gamma K^{0}_{S}K^{0}_{S}$

PRD 98, 072003 (2018)

- Mass independent PWA results
 - Amplitudes extracted independently in bins of K_SK_S invariant mass


- Agreement with results from MD PWA (no acceptance correction included)
- MI results useful for a systematic study of hadronic interaction

PWA status and plans in a nutshell

	0+	2+	0-	
$J/\psi{ ightarrow}\gamma PP$	$J/\psi ightarrow \gamma\eta\eta$ (PRI $J/\psi ightarrow \gamma\pi^0\pi^0$ (PR $J/\psi ightarrow \gamma K_S K_S$ (PI $J/\psi ightarrow \gamma\eta$ $J/\psi ightarrow \gamma\eta$	D92,052003) RD98,072003) ηη'		PWA Published Ongoing Published, no PWA PRD 93, 112011 (2016)
$J/\psi{ ightarrow}\gamma VV$			$\psi \rightarrow \gamma \omega \phi$ (PRD87,032008) $\psi \rightarrow \gamma \phi \phi$ (PRD93,112011) $J/\psi \rightarrow \gamma \omega \omega$	2000 - 0" model dependent 0" model independent 2" model independent 2" model independent 2" model dependent
$J/\psi \rightarrow \gamma PPP$			J/ψ \rightarrow γη' $\pi\pi$ (PRL106,072002) J/ψ \rightarrow γΚΚη' J/ψ \rightarrow γη $\pi^0\pi^0$	500 2 2.2 2.4 2.6 M(φφ) (GeV/c²)

- 0++: the production rate $f_0(1710)$ is compatible with LQCD prediction for a pure gauge scalar glueball
- 2++: $f_0(2340)$ seems to be a good candidate for tensor gluball [PRL111,091601] (large production rate)
- 0—+: $\eta(2225)$ is confirmed and two additional pseudoscalar states, $\eta(2100)$ and X(2500), are observed

First Observation of X(2370) in $J/\psi \rightarrow \gamma K \overline{K} \eta$

