

Advances and Perspectives of Neutrino Physics Experiments

Anne Schukraft Lake Louise Winter Institute Feb 21st 2024

Introduction

Neutrinos are among the most abundant particles in our Universe

- Neutrino Physics has strong ties to not only Particle Physics, but also Astrophysics & Cosmology, Astroparticle Physics, Nuclear Physics
- huge range in energies and fluxes requires very different experimental techniques
- most neutrino detectors are not single-purpose experiments and can search for interesting phenomena outside their main purpose

Open Questions in Neutrino Physics

Are neutrinos responsible for matter-antimatter asymmetry?

- Are there > 3 flavours of neutrinos?
- How do neutrinos get their mass? What is their absolute mass? What is the mass ordering?
- Can we probe other BSM physics with neutrino detectors?
- What can we learn about the Universe with neutrinos as messengers?

Open Questions in Neutrino Physics

Are neutrinos responsible for matter-antimatter asymmetry?

Are there > 3 flavours of neutrinos?

How do neutrinos get their mass? What is their absolute mass? What is the mass ordering?

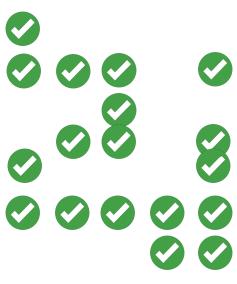
Can we probe other BSM physics with neutrino detectors?

What can we learn about the Universe with neutrinos as messengers?

🚰 Fermilab

Open Questions in Neutrino Physics

Cosmology


stroparticle Phys

γββ

ονββ

-decay

Oscillations

‡ Fermilab

Disclaimer:

This talk will focus on the discussion neutrino oscillations, mass measurements and neutrinoless double beta decay, and unfortunately neglect the wonderful physics at the very low and very high end of the neutrino energy spectrum.

Are neutrinos responsible for matter-antimatter asymmetry?

- Are there > 3 flavours of neutrinos?
- How do neutrinos get their mass? What is their absolute mass? What is the mass ordering?

Can we probe other BSM physics with neutrino detectors?

What can we learn about the Universe with neutrinos as messengers?

Let's start with these:

Are neutrinos responsible for matter-antimatter asymmetry?

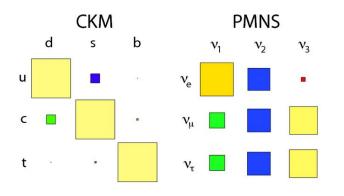
Are there > 3 flavours of neutrinos?

How do neutrinos get their mass?

What is their absolute mass?

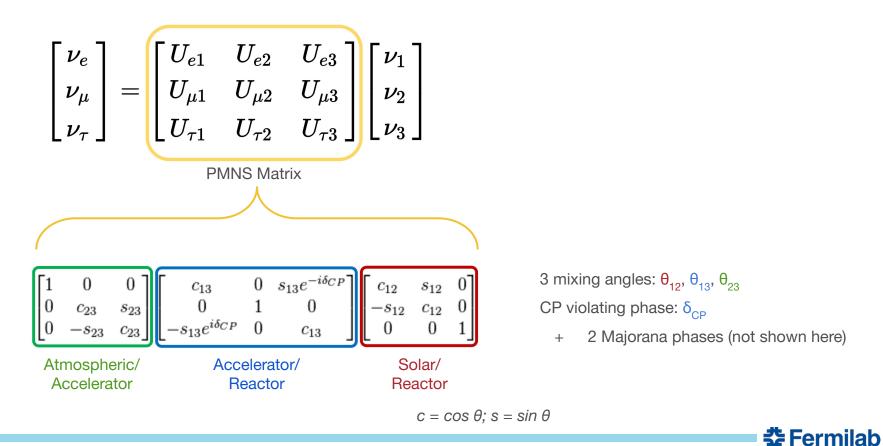
What is the mass ordering?

Can we probe other BSM physics with neutrino detectors?


What can we learn about the Universe with neutrinos as messengers?

Introduction to 3-flavor Neutrino Oscillations

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$
PMNS Matrix


The PMNS matrix is the analog to the CKM matrix in quark mixing.

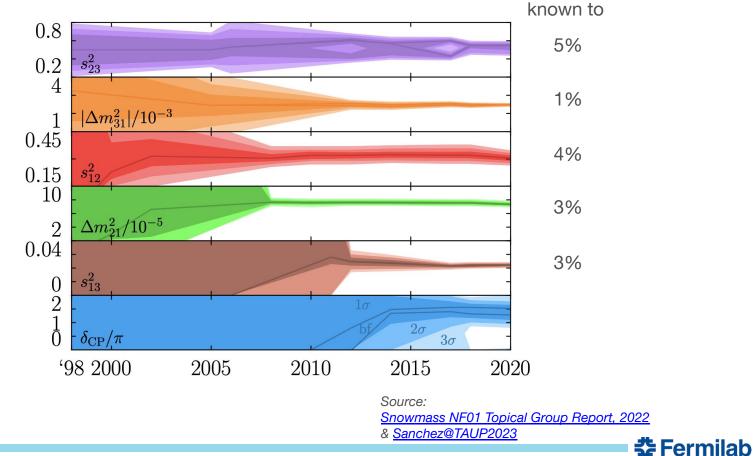
- Are they related?
- Are they connected to their masses?
- They appear to be very different why?

Introduction to 3-flavor Neutrino Oscillations

2/21/2024 A. Schukraft | Lake Louise Winter Institute

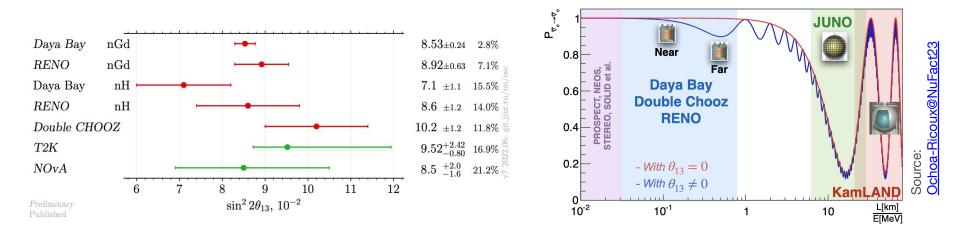
8

The fundamental neutrino parameters


Neutrino experiments measure neutrino mixing parameters through appearance and/or disappearance observations of neutrino flavor eigenstates

$$P_{\alpha \to \beta} = \delta_{\alpha\beta} - 4 \sum_{i > j} \operatorname{Re}(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin^{2}\left(\frac{\Delta m_{ij}^{2} L}{4E}\right)$$
Appearance
$$\alpha \neq \beta$$
Disappearance
$$\alpha = \beta$$

$$\alpha, \beta \in (v_{e}, v_{\mu}, v_{\tau})$$
S mixing angles: $\theta_{12}, \theta_{13}, \theta_{23}$
CP violating phase: δ_{CP}
2 mass differences: $\Delta m_{31}^{2}, \Delta m_{21}^{2}$
Sign of Δm_{31}^{2}



Mixing parameter evolution

Status of reactor measurements on θ_{13}

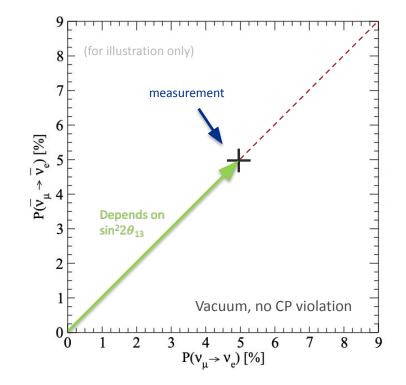
The success story of θ_{13} : From unknown to non-zero to one of the best known parameters thanks to reactor experiments.

- A large value of θ_{13} is good for our sensitivity to δ_{CP}
- A good knowledge of θ_{13} is important for determining δ_{CP} and mass ordering in long-baseline experiments

Accelerator Neutrino Oscillation Experiments

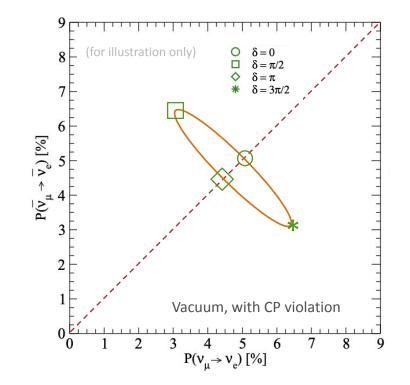
- v_{μ} and/or \overline{v}_{μ} beams (with some contamination of other flavors)
- Measure the disappearance of v_{μ}/\bar{v}_{μ} and the appearance of v_{e}/\bar{v}_{e} at the detector location
- Typically have a near detector to constrain the initial flux and uncertainties

Current long baseline experiments

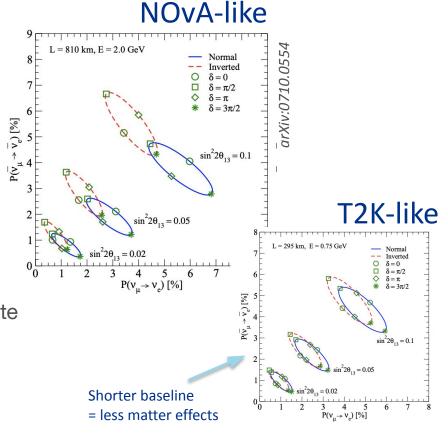

	T2K experiment	
Super-Kamiokando	295km	J-PARC Main Ring (KEK-JAEA, Tokal)
	Т2К	NOvA
Proton energy & power	30GeV/~500kW	120 GeV / ~700 kW
Peak neutrino energy	0.6 GeV	1.8 GeV
Baseline	295 km	810 km
Far detector mass	50 kton	14 kton
Detector technique	Water Cherenkov	Segmented liquid scintillator bar
Run period	2010 - (~2027)	2014 (~2026)

Source: <u>S. Cao, arXiv:2310.09855, 2023</u>

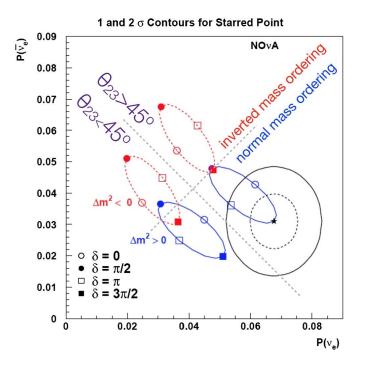
- Several ambiguities between oscillation parameters
 - measure several channels simultaneously and calculate a best fit of oscillation parameters
 - Input from multiple experiments at different baselines & energies is crucial!
 - Use other (reactor) measurements to constrain parameters the accelerator experiments are less sensitive to



- Very simplified, the oscillation analysis is a counting experiment
- In vacuum, no CP violation, expect same probability for neutrino and antineutrino appearance/disappearance



- Very simplified, the oscillation analysis is a counting experiment
- In vacuum, no CP violation, expect same probability for neutrino and antineutrino appearance/disappearance
- With CP violation, the measurement will be located on an ellipse



- Very simplified, the oscillation analysis is a counting experiment
- In vacuum, no CP violation, expect same probability for neutrino and antineutrino appearance/disappearance
- With CP violation, the measurement will be located on an ellipse
- Including **matter effects** (which are different for neutrinos and antineutrinos), the ellipses separate for the two **mass ordering** scenarios
 - Different baselines lead to different ambiguities

🛠 Fermilab

- Very simplified, the oscillation analysis is a counting experiment
- In vacuum, no CP violation, expect same probability for neutrino and antineutrino appearance/disappearance
- With CP violation, the measurement will be located on an ellipse
- Including matter effects (which are different for neutrinos and antineutrinos), the ellipses separate for the two mass ordering scenarios
 - Different baselines lead to different ambiguities
- The θ_{23} octant leads to another set of solutions

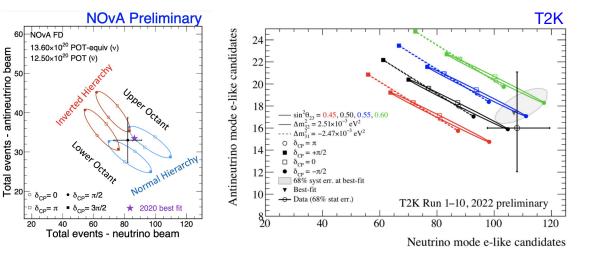
https://www.sciencedirect.com/science/article/pii/S0550321316300657

\rightarrow See T2K (Nugent) and NOvA (Wu) talks tomorrow

NOvA & T2K results

- NOvA doesn't observe asymmetry; Disfavor IO+ $\delta_{CP} = \pi/2$ by > 3 σ and NO+ $\delta_{CP} = 3\pi/2$ by > 2 σ
- T2K favors maximal CP violation; $\delta_{CP} = 0 \text{ or } \pi \text{ excluded at} > 90\% \text{ CL}$

Mass Ordering


 both NOvA and T2K favor normal mass ordering

Octant θ_{23}

• slight preference for the upper Octant is driven by reactor constraints

Outlook

- NOvA and T2K working towards a joint fit to quantify consistency of their results
- Both experiments expected to double statistics before the end of runtime
- Next-generation experiments DUNE and Hyper-K for definitive answers under construction

Last week's Outlook

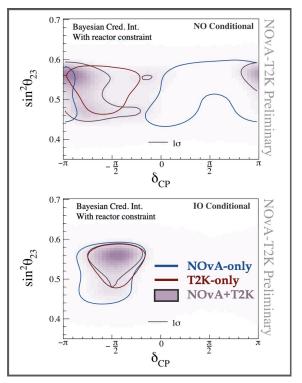
🛠 Fermilab

NOvA & T2K joint fit results

Why NOvA-T2K joint fit?

- The complementarity between the experiments provides the power to **break degeneracies**.
- Full implementation of:

Energy reconstruction and detector response
 Detailed likelihood from each experiment
 Consistent statistical inference across the full dimensionality


In-depth review of:

Models, systematic uncertainties and possible correlations

Different analysis approaches driven by contrasting detector designs.

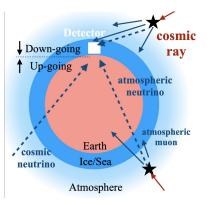
Source: Z. Vallari,

Fermilab Joint Experimental-Theoretical Physics Seminar, Feb 16, 2024

Normal Ordering (tension between T2K and NOvA individual results):

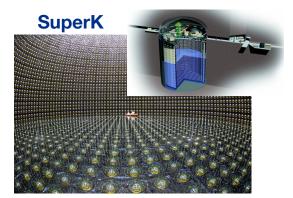
\rightarrow joint fit splits the difference

Inverted Ordering


(agreement between T2K and NOvA individual results):

 \rightarrow joint fit places tighter constraint on $\delta^{}_{CP}$

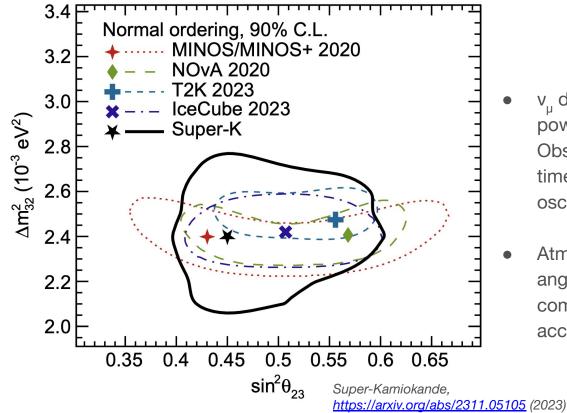
- Joint fit has smallest uncertainty on $|\Delta m^2_{32}|$: 1.5%
- Joint fit results on mass ordering and θ_{23} Octant still inconclusive



Atmospheric Neutrino Oscillations

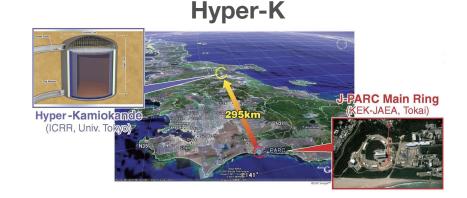
Atmospheric Neutrinos provide a complementary approach to measure oscillations parameters

- Huge statistics with extremely large detectors
- Large range of very long baselines \rightarrow matter effects
- In addition to v_{μ} disappearance can observe $v_{\mu} \rightarrow v_{\tau}$ appearance with v_{τ} detection
- Higher neutrino energies and different systematics than accelerator neutrino experiments

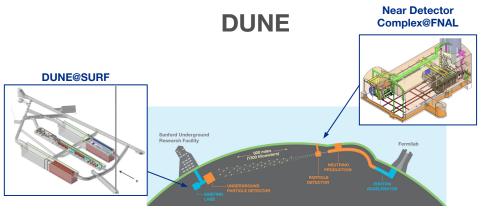


Status of $\boldsymbol{\theta}_{_{23}}$ Octant measurement


```
How much \nu_{\mu} is in \nu_3?
```


$$\stackrel{\boldsymbol{\nu}_{\mathbf{e}}}{\longleftarrow} \stackrel{\boldsymbol{\nu}_{\mu}}{\longleftarrow} \stackrel{\boldsymbol{\nu}_{\tau}}{\longleftarrow} \quad \boldsymbol{\nu}_{3}$$

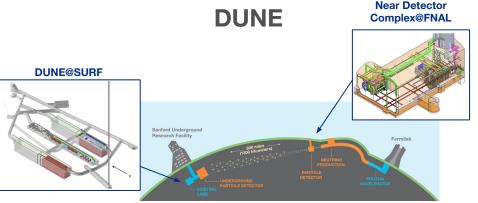
- ν_µ disappearance channel alone has little power to distinguish the octant.
 Observing ν_e or ν_τ appearance at the same time enables Octant separation in a joint fit of oscillation parameters
- Atmospheric mass splitting and large mixing angle results using atmospheric neutrinos very competitive with latest with long-baseline accelerator measurements.



Next Generation Long Baseline Experiments

 \rightarrow See Hyper-K (Koerich) and DUNE (Maricic) talks tomorrow

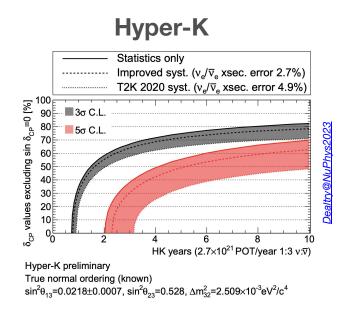
- Upgraded 1.3 MW J-PARC beam over 295 km baseline
- 258 kt Water Cherenkov Far Detector
- Upgraded off-axis near detector (ND280-upgrade + new intermediate Water Cherenkov Detector (IWCD))


- New 1.2 MW neutrino beam from Fermilab to South Dakota over 1285 km baseline (upgradable to > 2 MW in Phase II)
- Two 17 kt liquid Argon Time Projection Chamber (LArTPC) far detector modules in Phase I (Phase II upgrade with more far detector mass planned)
- Movable LArTPC near detector with muon catcher + on-axis detector (with plans for upgrade)

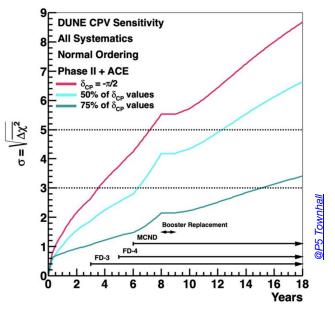
Complementarity between Hyper-K and DUNE

Hyper-Kamiokande (IcRR, Univ. Toko)

- short baseline \rightarrow small matter effect
- off-axis detector, narrower beam
- lower energy range, dominantly charged-current quasi-elastic scattering
- very large Water Cherenkov detector


- long baseline \rightarrow large matter effect
- on-axis detector, broadband beam
- broad energy range, high statistics over full oscillation region
- LArTPC technology

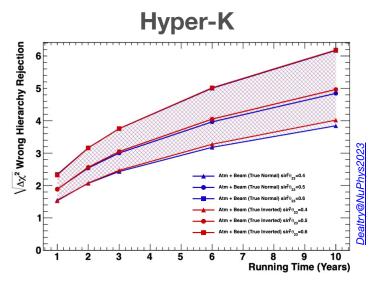
credit: <u>Marshall@NuFact2023</u>


Sensitivities to δ_{CP}

DUNE

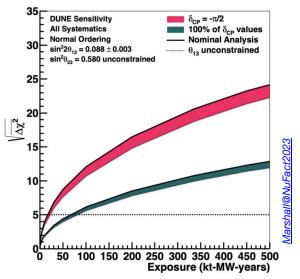
Hyper-K can exclude 50% of true δ_{CP} values in < 2 years @ 3\sigma if the mass ordering is known

 addition of atmospheric data help if mass ordering is not known



If δ_{CP} is maximal, DUNE reaches 3σ CP violation in 3.5 years of running

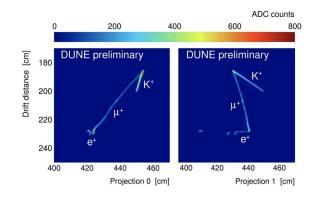
• other scenarios are reachable with DUNE Phase II



Sensitivities to Mass Ordering and Octant

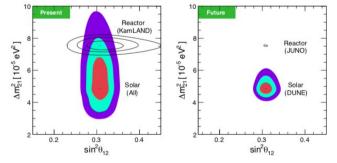
- Hyper-K can determine the mass ordering using a combination of beam and atmospheric neutrinos
 - atmospheric neutrinos typically have longer baselines
 → increased matter effect
- The incorrect mass ordering can be excluded with $4-6\sigma$ in 10 years

DUNE



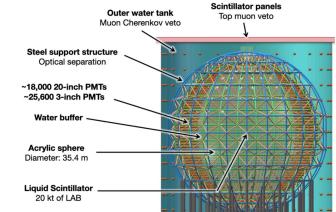
- DUNE can determine the mass ordering above 5 σ for all values of δ_{CP} in 1-4 years
- Excellent resolution to θ₂₃, including octant discovery potential

More Physics with Hyper-K and DUNE


New large underground neutrino detectors with excellent imaging capabilities enable a huge physics program beyond long baseline oscillations

Complementary sensitivity to various nucleon decay channels

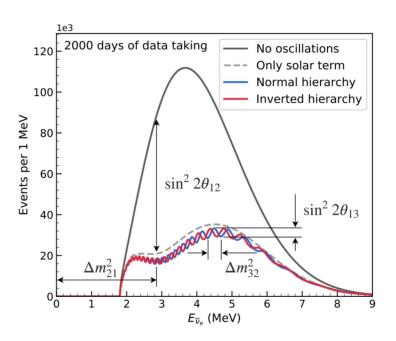
Study the core collapse mechanism and supernova evolution Source: Capozzi et al.


Measurement of solar neutrino oscillation parameters in comparison with other experiments (JUNO) sensitive to new physics

... and more

JUNO

- The world's largest liquid scintillator neutrino detector (20 kt, 35 m diameter)
- Instrumented with 43k PMTs for 75% photo-cathode coverage
- Aiming at 3% energy resolution
- Undergoing construction in Kaiping, South China
- Observing reactor neutrinos at 53 km baseline
 - Will also detect solar, atmospheric and geo neutrinos
- Expect data taking to begin soon



JUNO Physics Potential

- Simultaneous observation of two oscillation modes driven by $(\theta_{12}, \Delta m^2_{21})$ and $(\theta_{13}, \Delta m^2_{31})$ for the first time
- Optimized baseline to determine the Neutrino Mass Ordering via reactor disappearance
 - vacuum oscillation driven, independent of θ_{23} and δ_{CP}
 - This is complementary to long baseline accelerator or atmospheric neutrino experiments, dominated by matter effects
- JUNO projects that measurements of sin² $2\theta_{12}$, Δm^2_{21} , and Δm^2_{32} will reach ~1% precision in six years of data taking

Source: <u>Snowmass NF01</u> <u>Topical Group Report, 2022</u>

Let's talk about anomalies:

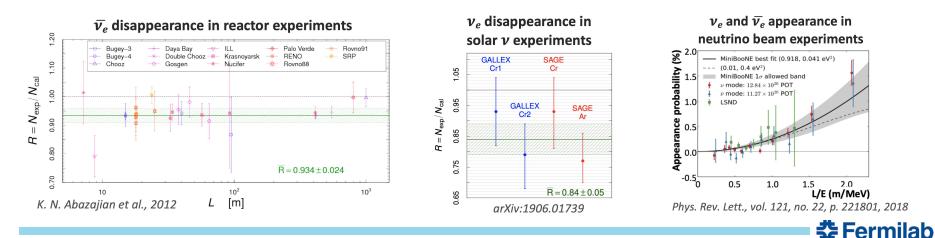
Are neutrinos responsible for matter-antimatter asymmetry?

Are there > 3 flavours of neutrinos?

How do neutrinos get their mass? What is their absolute mass? What is the mass ordering?

Can we probe other BSM physics with neutrino detectors?

What can we learn about the Universe with neutrinos as messengers?

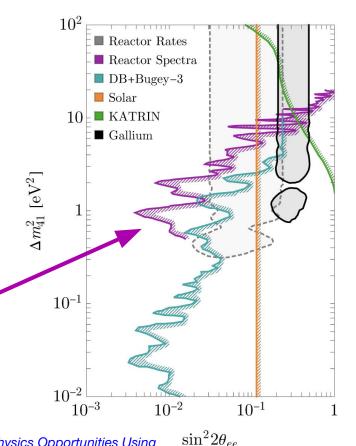

Motivation for Sterile Neutrino Searches (last decade)

- Sterile neutrinos motivated by anomalies observed in neutrino experiments at very short baselines (L/E ~ 1 km/GeV), i.e. before 3-flavor oscillations set in
 - \overline{v} disappearance in reactor experiments
 - v disappearance in source calibrations of solar v experiments

 - $\breve{Appearance}$ of v_{e} and \overline{v}_{e} in neutrino beam experiments but no anomalies in v_{u} disappearance experiments so far

	Experiment	Туре	Channel	Significance	
6	LSND	DAR accelerator	$\bar{\nu}_{\mu} \rightarrow \ \bar{\nu}_{e}$	3.8 σ	
	MiniBooNE	SBL accelerator	$ u_{\mu} ightarrow u_{e} $ $ \bar{\nu}_{\mu} ightarrow u_{e} $	4.5 σ 2.8 σ	
	GALLEX/SAGE	Source – e capture	v_{μ} v v v v v v v v v v v v v v v v v v v	2.8 σ	
	Reactors	β decay	$\bar{\nu}_e$ disappearance	3.0 σ	

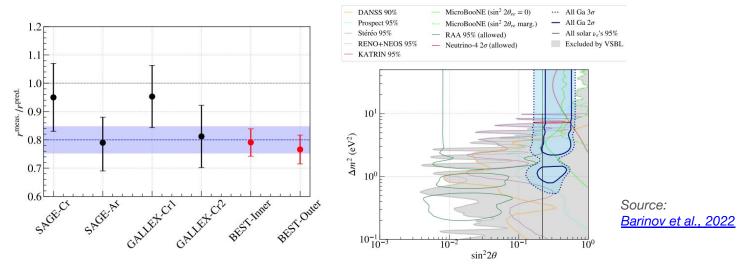
Believed that observations can possibly be explained by sterile neutrinos (1 or more) with a Δm^2 of ~ 1 eV².



credit: A. Fava

Reactor Antineutrino Anomaly status

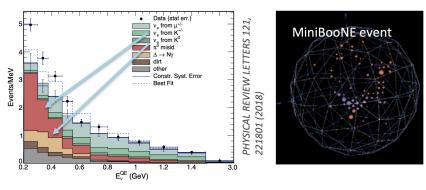
- \overline{v}_{a} rate deficit of ~ 6% (known as Reactor Antineutrino Anomaly (RAA)) established by more recent measurements from STEREO, Double Chooz, Daya Bay, RENO
- New data suggests that ²³⁵U beta spectrum underlying all rate predictions is largely responsible for the RAA This weakens sterile neutrino hypothesis
- New spectral measurements (in particular ratios of ۲ antineutrino spectra at different baselines) are less sensitive to input flux model
 - \rightarrow No significant evidence for sterile neutrino hypothesis so far



🛠 Fermilab

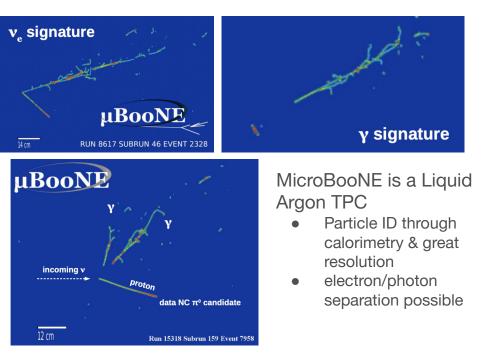
Gallium anomaly status

 BEST experiment confirms 20% deficit in ratio of measured and predicted ⁷¹Ge production rates in all Ga source experiments, bringing the significance of the anomaly to 5-6σ



🚰 Fermilab

- However:
 - No distance dependence in BEST measurements → no hint for oscillatory behavior
 - tension between the Gallium Anomaly and other experiments in the 3+1 scenario


Accelerator Low Energy Excess (LEE) Anomaly

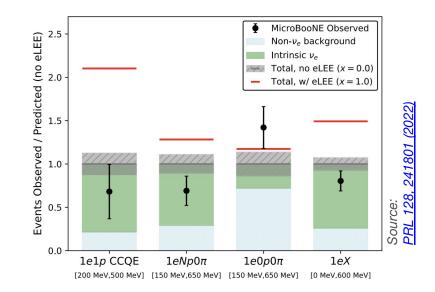
- MicroBooNE designed to probe the anomaly in v_e and v_e appearance measurements in neutrino beam experiments, specifically MiniBooNE:
 - same beam
 - same baseline
 - but different detection technology

MiniBooNE result limited by Particle ID capabilities of the detector

• electrons and photons both show as fuzzy rings in a Cherenkov detector like MiniBooNE

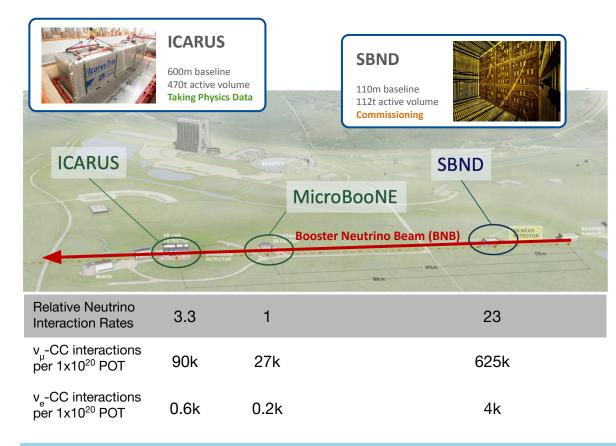
MicroBooNE Initial Results

Single γ channels:

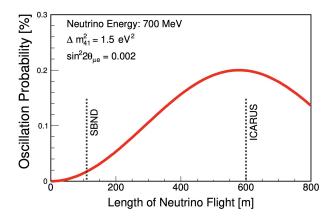

- No excess in NCA \rightarrow 1 γ + 0p and NCA \rightarrow 1 γ + 1p channels
 - \rightarrow Photons from NCA \rightarrow Ny as sole explanation for the LEE is rejected at > 90% CL

Single e channels:

 No significant excess in 1e1p, 1eNp, 1e0p0π, and 1eX channels


 \rightarrow single electrons from v $_{e}$ as sole explanation for the LEE is rejected at > 97% CL

Upcoming MicroBooNE results will use the final dataset (~ 2x more statistics) and a combination of BNB and NuMI beam


Short Baseline Neutrino (SBN) Program at Fermilab

All detectors sampling the *same neutrino beam* at different distances

Same nuclear target (Ar) and detector technology (LArTPC)

Reduces systematic uncertainties to the %-level

🛟 Fermilab

SBN Oscillation Potential

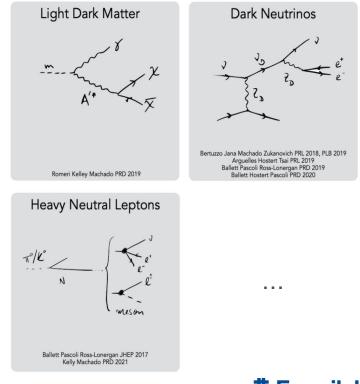
- SBND + ICARUS can cover the parameter space favored by past anomalies with 5σ significance
- - Search for appearance of v_e and disappearance of v_µ within the same experiment is key \circ current results show a 4.7 σ tension between v_e appearance and v_µ disappearance channels

🛠 Fermilab

SBND under Commissioning

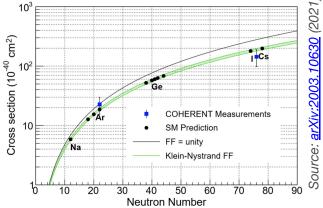
SBND completed construction in January.

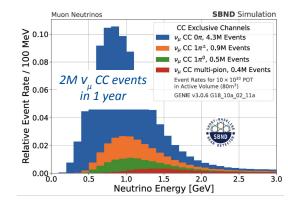
SBND under Commissioning


The cryostat is right now being filled with liquid Argon and will be ready to power on the detector in a couple of weeks!

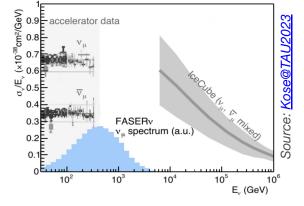
Alternative explanations

- With recent results, a 3+1 or 3+N flavor conversion hypothesis as joint explanation for the observed anomalies is weakening
 - but most observed anomalies remain to be explained!
- Many BSM physics ideas have been suggested that can explain one or more of the observations
 - current experiments exploring alternative explanations with high sensitivity
- New experiments continue to probe 3+N flavor conversion hypothesis
 - in addition to categories previously discussed, this includes also meson decay-at-rest experiments, muon decay-in-flight experiments, beta decay and electron capture experiments


 \rightarrow See BeEST (Lennarz) and other talks today/tomorrow


Neutrino Cross Section Measurements

→ See FASERv (Ohashi), SND@LHC (Conaboy), MINERvA (Mehmood) and MicroBooNE (Wu) talks tomorrow


- Refined neutrino cross section measurements are important to develop nuclear models and to constrain uncertainties in precision neutrino experiments
- Many recent measurements have been presented by T2K, NOvA, MINERvA, MicroBooNE

First measurements of CEvNS by COHERENT and other experiments, extending cross section measurements into sub-keV energies

Huge datasets expected from SBND and other future short baseline and near detectors

Cross section measurements exploiting intense neutrino flux of forward experiments at the LHC with FASERv, SND@LHC extending the energy range of current data into TeV energies

We talked mostly about these:

Are neutrinos responsible for matter-antimatter asymmetry?

Are there > 3 flavours of neutrinos?

How do neutrinos get their mass? What is their absolute mass?

What is the mass ordering?

Can we probe other BSM physics with neutrino detectors?

What can we learn about the Universe with neutrinos as messengers?

Now let's talk about these:

Are neutrinos responsible for matter-antimatter asymmetry?

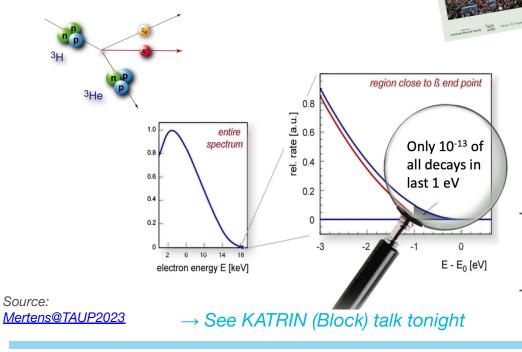
Are there > 3 flavours of neutrinos?

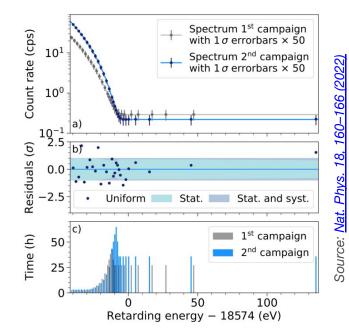
How do neutrinos get their mass? What is their absolute mass?

What is the mass ordering?

Can we probe other BSM physics with neutrino detectors?

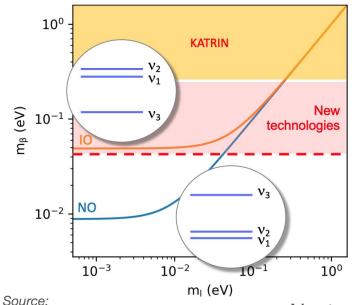
What can we learn about the Universe with neutrinos as messengers?


Neutrino Mass Measurements

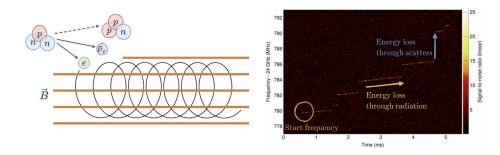

			np 3H 3H 3He ⁺	
	Cosmology	Search for 0vββ	β-decay & electron capture	
Observable	$M_{\nu} = \sum_{i} m_{i}$	$m^2_{\beta\beta} = \left \sum_i U^2_{ei} m_i \right ^2$	$m_\beta^2 = \sum_i U_{ei} ^2 m_i^2$	
Present upper limit	~0.1 - 0.6 eV	~0.1 – 0.4 eV	2 eV 0.8 eV	
Potential: near-term (long-term)	60 meV (15 meV)	50 – 200 meV (20 – 40 meV)	200 meV (40 – 100 meV)	
Model dependence	Multi-parameter cosmological model	 Majorana nature of v, lepton number violation BSM contributions other than m(v)? Nuclear matrix elements 	Direct, only kinematics; no cancellations in incoherent sum	Source: K. Valerius

Results from KATRIN

endpoint measurement of the tritium
 β-spectrum with an electrostatic filter (MAC-E)


PHYSICAL

- Combined result from 1st and 2nd campaign: m_v < 0.8 eV (90% CL)
- Expected sensitivity of final result:
 m_v < 0.3 eV (90% CL)


😤 Fermilab

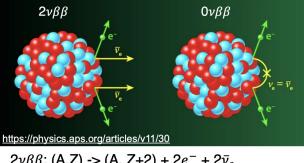
Neutrino Mass Measurements

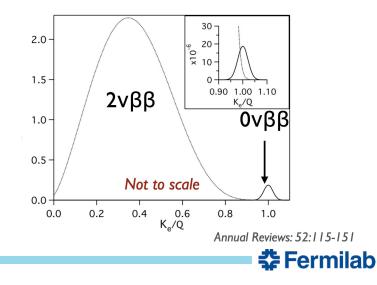
Covering the Inverted Ordering requires new technologies:

Cyclotron Radiation Emission Spectroscopy (CRES): **Project-8, QTNM**

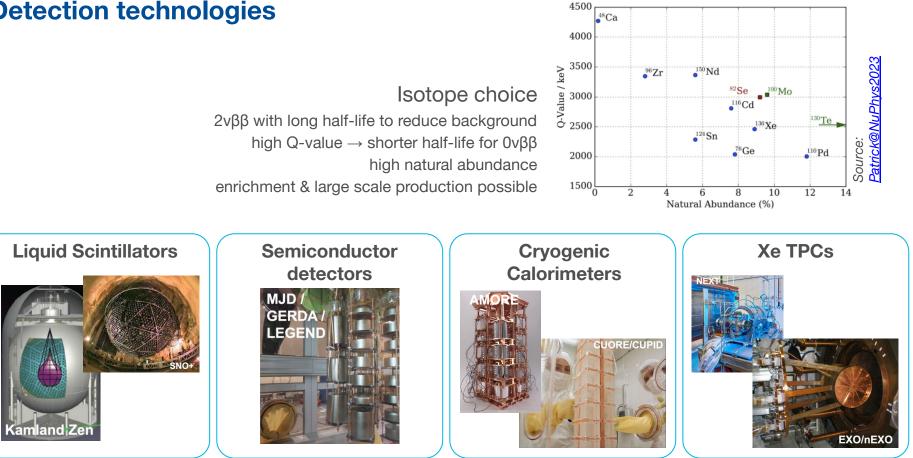
• Low-temperature micro-calorimetry with holmium: **ECHo, HOLMES**

Source: <u>Mertens@TAUP2023</u>

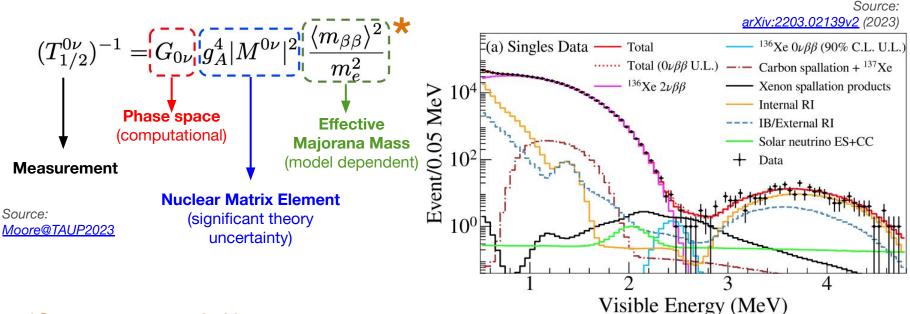

Next generation experiments aim for sensitivities of m, < 0.05 eV


Neutrinoless double-beta decay

- Observation of 0vββ is proof that neutrinos and antineutrinos are the same object
 - only known method with plausible sensitivity to determine neutrinos are Majorana fermions
- 0vββ would be a demonstration of creation of matter without antimatter
 - direct violation of L and B-L
- Searches for 0vββ are a powerful experimental probe of lepton number violation (LNV) and other BSM physics


Schematic of $\beta\beta$ decay processes:

 $2\nu\beta\beta$: (A,Z) -> (A, Z+2) + $2e^-$ + $2\bar{\nu}_e$ $0\nu\beta\beta$: (A,Z) -> (A, Z+2) + $2e^-$

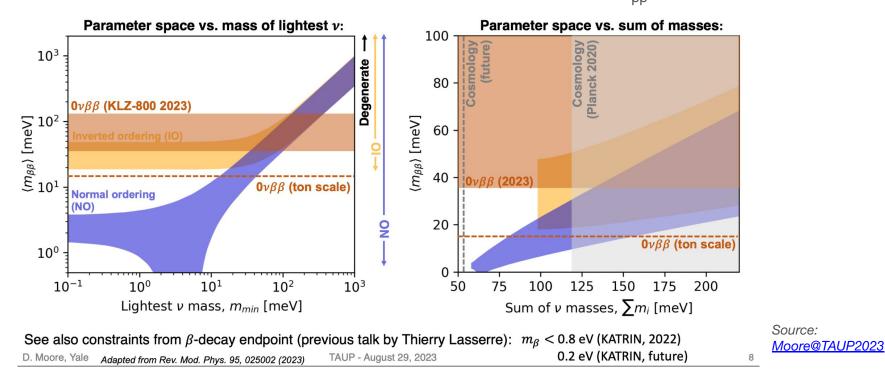


(not exhaustive)

🛟 Fermilab

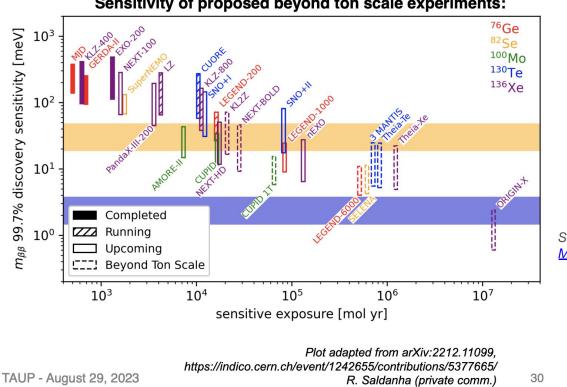
Neutrinoless double-beta decay outlook

• Most sensitive search to date for $0\nu\beta\beta$ from KamLAND-Zen: $m_{\beta\beta} < 36-156$ meV


*Sensitive also to 3+N sterile neutrino oscillation scenario!

 \rightarrow See KamLAND-Zen (Miyake) talk today

Neutrinoless double-beta decay outlook

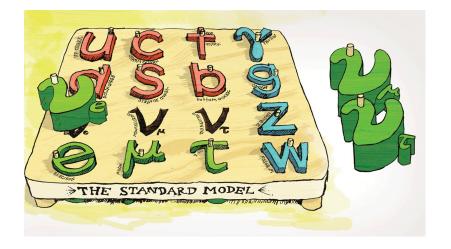

• Most sensitive search to date for $0\nu\beta\beta$ from KamLAND-Zen: $m_{\beta\beta} < 36-156$ meV

🚰 Fermilab

Neutrinoless double-beta decay outlook

Sensitivity of proposed beyond ton scale experiments:

Several new ton-scale experimental efforts ongoing


Sensitivity will cover inverted ordering!

Source: Moore@TAUP2023

 \rightarrow See KamLAND-Zen (Miyake), LEGEND (Bos), CUORE (Kowalski), CUPID (Torres) and AMoRE (Kim) talks today/tomorrow

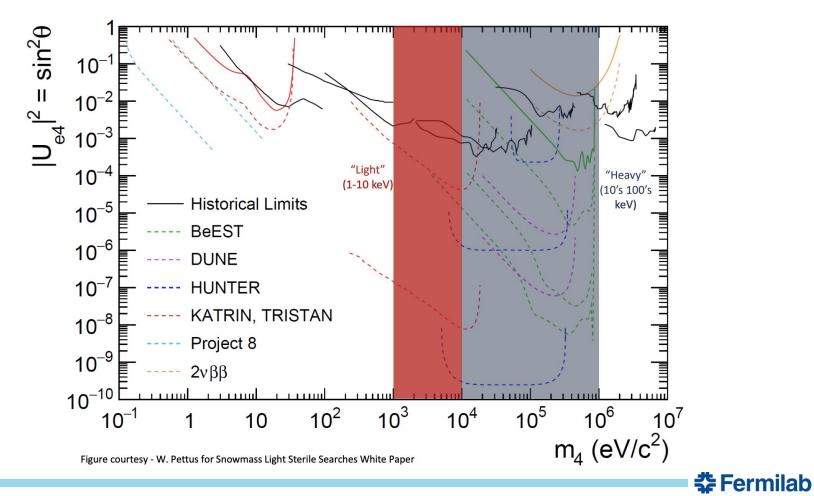
Summary

- Neutrino physics holds answers to several open questions in and beyond the Standard Model
- Current and future oscillation experiments probing the three-flavor model and beyond from all angles
- Coming neutrino mass and 0vββ experiments closing in on mass mechanism and absolute scale
- Large & sensitive (neutrino) experiments are always good for surprises!
- Looking forward to exciting talks at this conference!

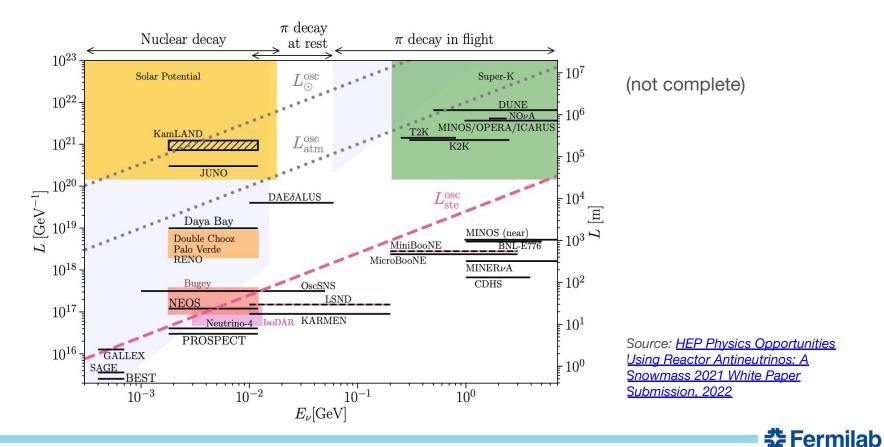
Backup Material

51 2/21/2024 A. Schukraft | Lake Louise Winter Institute

Category	Model	Signature	Anomalies			References	
			LSND	MiniBooNE	Reactor	Gallium	References
Flavor Conversion: Transitions	(3+N) oscillations	oscillations	1	~	1	1	Reviews and global fits [19–22
	(3+N) w/ invisible sterile decay	oscillations w/ $ u_4$ invisible decay	1	~	1	~	[23, 24]
	(3+N) w/ sterile decay	$ u_4 \rightarrow \phi \nu_e$	1	1	1	1	[25-29]
Flavor Conversion: Matter Effects	(3+N) w/ anomalous matter effects	$ $	1	1	×	×	[30-34]
	(3+N) w/ quasi-sterile neutrinos	$ \begin{array}{c} \nu_{\mu} ightarrow \nu_{e} w/ \text{ resonant} \\ \nu_{s} \text{ matter effects} \end{array} $	1	1	1	1	[35]
Flavor Conversion: Flavor Violation	lepton-flavor-violating μ decays	$\mu^+ \to e^+ \nu_\alpha \overline{\nu_e}$	×	×	×	×	[36–38]
	neutrino-flavor-changing bremsstrahlung	$\nu_{\mu}A \to e\phi A$	× .	×	×	×	[39]
Dark Sector: Decays in Flight	transition magnetic mom., heavy ν decay	$N ightarrow \nu \gamma$	×	~	×	×	[40]
	dark sector heavy neutrino decay	$\begin{array}{c} N \rightarrow \nu(X \rightarrow e^+e^-) \text{ or } \\ N \rightarrow \nu(X \rightarrow \gamma\gamma) \end{array}$	×	~	×	×	[41]
Dark Sector: Neutrino Scattering	neutrino-induced up-scattering	$ \begin{array}{c} \nu A \rightarrow N A, \\ N \rightarrow \nu e^+ e^- \text{ or } \\ N \rightarrow \nu \gamma \gamma \end{array} $	*	1	×	×	[42–51]
	neutrino dipole up-scattering	$\nu A \rightarrow N A, N \rightarrow \nu \gamma$	1	1	×	×	[52–59]
Dark Sector: Dark Matter Scattering	dark particle-induced up-scattering	γ or e^+e^-	×	×	×	*	[60]
	dark particle-induced inverse Primakoff	γ	×	×	×	×	[60]


2021 Source: <u>Snowmass NF02 Topical Group Report,</u>

‡ Fermilab


	Flavor Conversion:	Flavor Conversion:	Flavor Conversion:	Dark Sector:	Dark Sector:	Dark Sector:
Source	3+N Oscillations	Anomalous Matter Effects	Lepton Flavor Violation	Decays in Flight	Neutrino- induced Up-scattering	Dark-particle- induced Up-scattering
Reactor	DANSS Upgrade, JUNO-TAO, NEOS-II, Neutrino-4 Upgrade, PROSPECT-II					
Radioactive Source	BEST-2, IsoDAR, THEIA, Jinping					
Atmospheric	IceCube Upgrade, KM3NET, ORCA and ARCA, DUNE, Hyper-Kamiokande, THEIA				IceCube Upgrade, KM3NET, ORCA and ARCA, DUNE, Hyper-Kamiokande, THEIA	
Pion/Kaon Decay-At- Rest	JSNS ² , COHERENT, Coherent-Captain-Mills, KPIPE		JSNS ² , COHERENT, Coherent- Captain-Mills, KPIPE, PIP2-BD			COHERENT, Coherent- Captain-Mills, KPIPE, PIP2-BD, SBN-BD
Beam Short Baseline	SBN			SBN, FASER _ν , SND@LHC, FLArE		FLArE
Beam Long Baseline	DUNE, Hyper-Kamiokande, ESSnuSB		DUNE, Hyper-Kamiokande, ESSnuSB			
Muon Decay- In-Flight	nuSTORM				nuSTORM	
Beta Decay and Electron Capture	KATRIN/TRISTAN, Project-8, HUNTER, BeEST, DUNE (39 Ar), PTOLEMY, $2\nu\beta\beta$					

2021 Source: <u>Snowmass NF02 Topical Group Report,</u>

Landscape of Neutrino Oscillation Experiments

