
Cris Panda
UC Berkeley Department of Physics
Lake Louise Winter Institute
02/23/2024

Fundamental physics with 
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Measuring gravity by 
holding atoms
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• Astrophysical observations tell us 
the Universe is mostly “dark”
• What is the microscopic composition 

of dark matter/energy?

• Quantum and gravity
• How do they fit 

together?

Quantum Field Theory

General Relativity
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Precision Quantum Metrology with Atoms and Molecules

Atom Interferometers

• Fundamental constants: Alpha, G
• Universality of free fall

R .  Pa rker, e t .  a l . ,  Sc ienc e .  360, 191 –195 (2018) 

P. Asenbaum, et. al., PRL. 118, 183602 (2017)
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• Variation of fundamental constants
• Gravitational redshift

Magnetometers 

ACME Collaboration, Nature 562 (2018).
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• Dark matter (Axions)
• Lorentz symmetry
• Parity violation
• CP-violation – searches for EDMs
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New Technologies can be Disruptive 

General Relativity
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• Permanent EDMs of fundamental 

particles violate T-symmetry.

• CPT Theorem <-> EDMs are also

CP-violating <-> baryogenesis.

• No permanent EDMs observed, 

despite 70 years of searches[1].
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• Molecular spin precession to measure 

𝐻 = −𝑑𝑒 ⋅ ℰeff .

• Large internal electric fields:
• For us ℰeff = 78.4 GV/cm[1,2,3].

• 1,000,000 larger than in lab.

• Doublet structure
• Allows us to reverse the internal electric field of 

the molecule without switching the lab electric 
field by tuning our laser.

• Magnetically insensitive, reduces 
B field systematics
• Magnetic moment is 0.004 𝜇𝐵. +

[1] L.V. Skripnikov, A.V. Titov, J. Chem Phys. 142, 024301 (2015)

[2] T. Fleig and M. K. Nayak, J. Mol. Spectrosc. 300, 16 (2014)

[3] E. R. Meyer, J. L. Bohn, Phys. Rev. A 78, 010502 (2008)

Why use a molecule?

“A diatomic molecule is a molecule with one 
atom too many.”

 - Arthur Schawlow, Nobel Prize winner



• Molecular spin precession to measure 

𝐻 = −𝑑𝑒 ⋅ ℰeff .

• Large internal electric fields:
• For us ℰeff = 78.4 GV/cm[1,2,3].

• 1,000,000 larger than in lab.

• Doublet structure
• Allows us to reverse the internal electric field of 

the molecule without switching the lab electric 
field by tuning our laser.

• Magnetically insensitive, reduces 
B field systematics
• Magnetic moment is 0.004 𝜇𝐵. +

[1] L.V. Skripnikov, A.V. Titov, J. Chem Phys. 142, 024301 (2015)

Elab

−

−

+

+

−
Doublet 
switching

[2] T. Fleig and M. K. Nayak, J. Mol. Spectrosc. 300, 16 (2014)

[3] E. R. Meyer, J. L. Bohn, Phys. Rev. A 78, 010502 (2008)

Why use a molecule?



• Molecular spin precession to measure 

𝐻 = −𝑑𝑒 ⋅ ℰeff .

• Large internal electric fields:
• ThO: ℰeff = 78.4 GV/cm[1,2,3].

• >1,000,000 larger than in lab.

• Doublet structure
• Allows us to reverse the internal electric field of 

the molecule without switching the lab electric 
field by tuning our laser.

• Magnetically insensitive, reduces 
B field systematics
• Magnetic moment is 0.004 𝜇𝐵. +

[1] L.V. Skripnikov, A.V. Titov, J. Chem Phys. 142, 024301 (2015)

Elab

−

−

+

+

−
Doublet 
switching

[2] T. Fleig and M. K. Nayak, J. Mol. Spectrosc. 300, 16 (2014)

[3] E. R. Meyer, J. L. Bohn, Phys. Rev. A 78, 010502 (2008)

Why use a molecule?



• Molecular spin precession to measure 

𝐻 = −𝑑𝑒 ⋅ ℰeff .

• Large internal electric fields:
• ThO: ℰeff = 78.4 GV/cm[1,2,3].

• >1,000,000 larger than in lab.

• Doublet structure
• Reverse ℰeff by tuning our laser, without switching 

the lab electric field.

• Magnetically insensitive, reduces 
B field systematics
• Magnetic moment is 0.004 𝜇𝐵.

+
[1] L.V. Skripnikov, A.V. Titov, J. Chem Phys. 142, 024301 (2015)

Elab

−

+

+

−
Doublet 
switching

[2] T. Fleig and M. K. Nayak, J. Mol. Spectrosc. 300, 16 (2014)

[3] E. R. Meyer, J. L. Bohn, Phys. Rev. A 78, 010502 (2008)

Why use a molecule?



• Molecular spin precession to measure 

𝐻 = −𝑑𝑒 ⋅ ℰeff .

• Large internal electric fields:
• ThO: ℰeff = 78.4 GV/cm[1,2,3].

• >1,000,000 larger than in lab.

• Doublet structure
• Reverse ℰeff by tuning our laser, without switching 

the lab electric field.

• Magnetically insensitive, reduces 
B field systematics
• Magnetic moment is 0.004 𝜇𝐵.

+
[1] L.V. Skripnikov, A.V. Titov, J. Chem Phys. 142, 024301 (2015)

Elab

−

+

+

−
Doublet 
switching

[2] T. Fleig and M. K. Nayak, J. Mol. Spectrosc. 300, 16 (2014)

[3] E. R. Meyer, J. L. Bohn, Phys. Rev. A 78, 010502 (2008)

Why use a molecule?



ACME I Result, Science 343, p. 269-272 (2014)
Demonstration of efficient STIRAP to the H-state 
of ThO, CDP et al, Phys. Rev. A 93, 052110 (2016)
ACME II Result, Nature 562, 355-360 (2018)

Measurements of the Electron EDM



ACME I Result, Science 343, p. 269-272 (2014)
Demonstration of efficient STIRAP to the H-state 
of ThO, CDP et al, Phys. Rev. A 93, 052110 (2016)
ACME II Result, Nature 562, 355-360 (2018)

Measurements of the Electron EDM



ACME I Result, Science 343, p. 269-272 (2014)
Demonstration of efficient STIRAP to the H-state 
of ThO, CDP et al, Phys. Rev. A 93, 052110 (2016)
ACME II Result, Nature 562, 355-360 (2018)

Measurements of the Electron EDM



ACME I Result, Science 343, p. 269-272 (2014)
Demonstration of efficient STIRAP to the H-state 
of ThO, CDP et al, Phys. Rev. A 93, 052110 (2016)
ACME II Result, Nature 562, 355-360 (2018)

Measurements of the Electron EDM



ACME I Result, Science 343, p. 269-272 (2014)
Demonstration of efficient STIRAP to the H-state 
of ThO, CDP et al, Phys. Rev. A 93, 052110 (2016)
ACME II Result, Nature 562, 355-360 (2018)

Measurements of the Electron EDM
ACME III 
(projected)



Molecule E-field

Lab E-field

Lab B-field

Dither Angle

Switches!
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Outline

• Atom interferometry review

• Optical lattice atom interferometer 

- theory and experiment

• Precise measurement of gravity and fifth forces

• Future directions

2.
5 

cm
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• Light (Laser) Interferometer
• Use matter to manipulate light

Interferometers Review
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• Light (Laser) Interferometer
• Use matter to manipulate light

• Atom Interferometer
• Use lasers to manipulate atoms
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A
   

   
 

𝑆1

𝑆2

𝐴 =
𝑆1 − 𝑆2

𝑆1 + 𝑆2

𝐴 = 𝐶 sin(Δ𝜙)

Interferometers Review



D𝜙 = k g T 2

28

Atom Interferometer Phase

• Propagation phase 

determined by Lagrangian

𝜙prop = Τ1 ℏ ∫ 𝐿 𝑑𝑡

• Atom-laser interaction phase

laser acts as ruler
𝜙laser = 𝑘 𝑧

• Total phase > 109 radians possible 
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X. Wu, et. al., Science Advances 5(9), eaax0800 (2019)

30

• Measure local gravity, 
geophysics, inertial sensing.

Commercial atomic gravimeters:
• VectorAtomic
• AOSense
• iXBlue
etc.

Quantum Sensing using Atom Interferometer



+Dφgravity

−Dφgravity

The gravitational 

constant G

The fine structure 

constant α

Fifth-force searches

M. Ja f fe et a l . , Nature Phys ics  14 , 257–260 (2017)
D.  O .  Sabu lsky, et.  a l . , PRL 123, 061102 (2019)

R.  Parker , et.  a l . , Science.  360, 191 –195 (2018)  

Previous Atom 
Interferometry Result

Many others
• Testing weak equivalence principle
• Quantum and gravity
• Proposed searches for gravitational waves
• Searches for dark matter
etc…

Precision Interferometry
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I. Atomic Fountains

Interferometers Limited by Free-Fall Time

Stanford, 10m 
fountain, T ~2 seconds 34
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Zero-g flights 

36Nasa Cold atom lab

II. Zero-G planes, Drop towers, Sounding rockets

III. In space

I. Atomic Fountains

Interferometers Limited by Free-Fall Time
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Hannover, 10m 
fountain

Stanford, 10m 
fountain, T ~2 seconds

Zero-g flights 

37Nasa Cold atom lab

II. Zero-G planes, Drop towers, Sounding rockets

III. In space

I. Atomic Fountains

Atom fountain measurement 
time limited to 2-3 seconds

Interferometers Limited by Free-Fall Time



• Atom interferometry review

• Optical lattice atom interferometer 

- theory and experiment

• Precise measurement of gravity and fifth forces

• Future directions

2.
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Outline
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• New theories predict particles at the TeV
energy scale.

• Electron EDM sensitive to coupling with 
T-violating interactions with particles at 
the 3-30 TeV scale.

39
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ℏ
∫ 𝐿 𝑑𝑡
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𝑚𝑔Δ𝑧

ℏ
𝜏

≈ 𝑘𝑔𝑇𝜏
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• New theories predict particles at the TeV
energy scale.

• Electron EDM sensitive to coupling with 
T-violating interactions with particles at 
the 3-30 TeV scale.

Δ𝜙prop =
1

ℏ
∫ 𝐿 𝑑𝑡

=
𝑚𝑔Δ𝑧

ℏ
𝜏
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Atom Interferometer in an Optical Lattice



• Optical lattice filtered by in-vacuum Fabry Perot cavity

g

44

~1
 m

Experimental Apparatus
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Probing gravity by holding atoms for 20 
seconds. Victoria Xu, Matt Jaffe, CDP, Sofus L. 
Kristensen, Logan W. Clark, Holger 
Müller, Science 366, 745-749 (2019)

Long Coherence Times

http://science.sciencemag.org/cgi/content/full/366/6466/745?ijkey=1R4yQozWh9Sns&keytype=ref&siteid=sci
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Probing gravity by holding atoms for 20 
seconds. Victoria Xu, Matt Jaffe, CDP, Sofus L. 
Kristensen, Logan W. Clark, Holger 
Müller, Science 366, 745-749 (2019)

But… sensitivity not sufficient for measuring gravity of localized mass

Long Coherence Times

http://science.sciencemag.org/cgi/content/full/366/6466/745?ijkey=1R4yQozWh9Sns&keytype=ref&siteid=sci


• Decoherence (contrast loss)

where
• 𝐶0 is initial contrast, 

• 𝑈 is the lattice trap depth

• Why is 𝜅 ∼ 110 𝜇m 𝐸r 𝑠 ?

• Depends on 𝑈, Δ𝑧 => spatial variation in 
lattice potential?

𝜅

50

Investigating Decoherence Mechanisms
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Δ𝜙prop =
1

ℏ
∫ 𝐿 𝑑𝑡

               =
𝑚𝑔Δ𝑧

ℏ
𝜏

Δ𝑧

Δ𝜙prop =
1

ℏ
∫ 𝐿 𝑑𝑡

               =
𝑚𝑔Δ𝑧

ℏ
𝜏+ ? ? ?

Spatial 
variation of 
lattice 
potential

Simplified Ideal Lattice Atom Interferometer
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Parameters Varied Experimental Test Performed Observed Outcome
Radial lattice uniformity Installed new superpolished cavity mirrors (surface rms <1 Å) Same 𝜅

Axial lattice uniformity Replaced planar- concave cavity with symmetric concave-concave cavity (mirrors have equal radii of curvature) Same 𝜅

Vacuum pressure New pumps, reduced outgassing Same 𝜅

Lattice laser frequency noise 2x higher with tuning PID lock Same 𝜅

Narrower laser linewidth by locking to a high-finesse (F=20,000) cavity

Raman beamsplitter symmetry Symmetric beamsplitters using microwave 
𝜋

2
pulse followed by optical 𝜋 pulse (32) Same 𝜅

Laser lattice broadband emission Suppressed >10x with filter cavity Same 𝜅

Lattice intensity noise 10x reduced by intensity stabilization using transmitted light as a monitor Same 𝜅

Background scatter Increased 20x by shining mode-mismatched light at cavity mirror and/or experiment vacuum window Same 𝜅

Acoustic noise Phone speaker, tapping the optical table Same 𝜅

Alignment with gravity Tilted optical table by 1.5 mrad Same 𝜅

Changing atom number and density 2x reduction by lowering state selection efficiency Same 𝜅

Axial atom temperature selection Reduced 3x by increasing the length of velocity selection pulse Same 𝜅

Misaligned lattice laser, coupling light to high order cavity 
modes

Reduced cavity coupling efficiency 2x by misaligning and changing beam diameter Same 𝜅

Lattice laser detuning Replaced lattice laser with 866 nm ECDL (14 nm det.) and 1064 nm fiber laser (212 nm det.) Same 𝜅

Environmental field gradients Varied the vertical atom position by up to 1.5 cm Same 𝜅

Magnetic field gradients Increased 1000x by turning on MOT coils during interferometer Same 𝜅

Position within the atomic sample Analyzed horizontal and vertical slices of fluorescence image Same 𝜅

𝜅 is Robust to Changing Many Parameters



• Observed 3-fold higher 𝜅 when loading into symmetric 
Laguerre Gauss higher order modes

0.05      0.1     0.15     0.2     0.25     0.3

• Transverse sample temperature • Apparatus tilt-noise

53

High Order Lattice Modes Reduce Decoherence
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Δ𝜙prop =
1

ℏ
∫ 𝐿 𝑑𝑡

=
𝑚𝑔Δ𝑧𝜏

ℏ
+ Δ𝜙latt

prop

Δ𝑧

𝜔tilt

Ingredient 1: Phase Shifts due to Tilt-Noise



55

Quantitative agreement of ensemble 
dephasing model and experimental data

Minute-scale gravimetry using a coherent 
atomic spatial superposition, 
CDP et al, arXiv:2210.07289, (under review 
Nature Physics) (2023)

Position and 
velocity distribution 
in thermal cloud      
=> Phase dispersion

Ensemble Phase Distribution

Ingredient 2: Thermal Motion of Atoms

https://arxiv.org/abs/2210.07289
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Enduring Coherence at Ultra-Long Hold Time

Minute-scale gravimetry using a 
coherent atomic spatial 
superposition, 
CDP et al, arXiv:2210.07289 (under 
review Nature Physics) (2023)

https://arxiv.org/abs/2210.07289
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Long Coherence Times

https://arxiv.org/abs/2210.07289


58

Minute-scale gravimetry using a coherent 
atomic spatial superposition, 
CDP et al, arXiv:2210.07289 (under review 
Nature Physics) (2023)

Long Coherence Times

https://arxiv.org/abs/2210.07289


59

Minute-scale gravimetry using a coherent 
atomic spatial superposition, 
CDP et al, arXiv:2210.07289 (under review 
Nature Physics) (2023)

Long Coherence Times
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Minute-scale gravimetry using a coherent 
atomic spatial superposition, 
CDP et al, arXiv:2210.07289 (under review 
Nature Physics) (2023)

Coherent After 70 Seconds

https://arxiv.org/abs/2210.07289


• Atom interferometry review

• Optical lattice atom interferometer 

- theory and experiment

• Precise measurement of gravity and fifth forces

• Future directions
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• Measure acceleration from cm-sized tungsten mass.
• Small signal – 35 nm/s2 - 3 parts per billion of Earth’s gravity g

• Upgrades to lattice interferometer:
• Quickly move atoms - use atom elevator

• Better SNR - 10x increased precision

• Better precision than any previous 
measurements (atom fountains)

• But...
Drifts and systematics unexplored

2.
5 

cm

Measuring gravity by holding atoms, 
CDP et al, arXiv:2310.01344 (under review Nature) (2023) 62

Searching for Fifth Forces by Measuring Gravity 
of Small Mass

https://arxiv.org/abs/2310.01344


𝑎mass = 33.3 ± 5.6stat ± 2.7syst Τnm s2

𝑎mass
calc = 35.2 ± 1.0 Τnm s2

𝑎mass − 𝑎mass
calc < 13 nm/s2 (95% confidence interval) 

Possible causes for drift/noise

• Tides

• Perturbations in gravitational 
field (seismic, local noise)

• Tilt drift

• Cavity thermal drift

• Next door magnet ON/OFF

etc…

Measuring gravity by holding atoms, 
CDP et al, arXiv:2310.01344 (under review Nature) (2023)

Possible systematic effects

• Strong interactions with 
the lattice

• Field gradients

• Source mass effects

etc…

63

Drifts and Systematics
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• Suppress experiment drifts and systematic effects 
by differential measurement (ACME inspired)

• Four experiment configurations
• Mass in ( ෩ℳ = 1) and mass out ( ෩ℳ = 0).

• Atoms positioned above ( ሚℰ = +1) and below source 
mass ( ሚℰ = +1).

𝒂𝐦𝐚𝐬𝐬 = Τ𝒂 𝟏, 𝟏 − 𝒂 𝟏, −𝟏 − 𝒂 𝟎, 𝟏 + 𝒂 𝟎, −𝟏 𝟐 Measuring gravity by holding atoms, 
CDP et al, arXiv:2310.01344 (under review Nature) (2023)
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Atom
position

ሚℰ
Mass

position ෩ℳ

• Suppress experiment drifts and systematic effects 
by differential measurement (ACME inspired)

• Four experiment configurations
• Mass nearby ( ෩ℳ = 1) and mass far-away ( ෩ℳ = 0).

• Atoms positioned above ( ሚℰ = +1) and below source 
mass ( ሚℰ = −1).

• 4 measurements: 𝑎 ሚℰ = ±1, ෩ℳ = {0, +1}

Switches

https://arxiv.org/abs/2310.01344


𝑎mass ≡ 𝑎ℳℰ

 = Τ𝑎 1,1 − 𝑎 1, −1 − 𝑎 0,1 + 𝑎 0, −1 2
Measuring gravity by holding atoms, 
CDP et al, arXiv:2310.01344 (under review Nature) (2023)
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• Atoms positioned above ( ሚℰ = +1) and below source 
mass ( ሚℰ = −1).

• 4 measurements: 𝑎 ሚℰ = ±1, ෩ℳ = {0, +1}

Switches
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Measuring gravity by holding atoms, 
CDP et al, arXiv:2310.01344 (under review Nature) (2023)

• 2 months of data, ~45 days, 400 hours

• Noise near the standard quantum limit 
and 𝜒𝑟

2 = 1.06 ± 0.04

𝑎nr − offset acceleration

𝑎mass ≡ 𝑎ℳℰ

Dataset Statistics

https://arxiv.org/abs/2310.01344


• Variation of over 40 parameters. Systematics understood, under control

Measuring gravity by holding atoms, 
CDP et al, arXiv:2310.01344 (under review Nature) (2023)

known

Lattice divergence -“expected”

known

Mass motion 
effects
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Systematic Checks
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• Variation of over 40 parameters. Systematics understood, under control

Measuring gravity by holding atoms, 
CDP et al, arXiv:2310.01344 (under review Nature) (2023)

known

known

5 times better 
than previous 
measurement

Mass motion 
effects

Lattice divergence -“expected”
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Systematic Checks
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• Blinded result

𝑎mass =? ? ? ? ± 5.6stat ± 2.7syst Τnm s2

𝑎mass
calc = 35.2 ± 1.0 Τnm s2

𝑎mass − 𝑎mass
calc < 13 nm/s2 (95% confidence interval) 

Measuring gravity by holding atoms, 
CDP et al, arXiv:2310.01344 (under review Nature) (2023)

• Limit on deviation from Newtonian gravity

Results

https://arxiv.org/abs/2310.01344


• Unblinded result

𝑎mass = 33.3 ± 5.6stat ± 2.7syst Τnm s2

𝑎mass
calc = 35.2 ± 1.0 Τnm s2

𝑎mass − 𝑎mass
calc < 13 nm/s2 (95% confidence interval) 
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• Limit on deviation from Newtonian gravity
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• Unblinded result

𝑎mass = 33.3 ± 5.6stat ± 2.7syst Τnm s2

𝑎mass
Newton = 35.2 ± 1.0 Τnm s2

𝑎mass − 𝑎mass
calc < 13 nm/s2 (95% confidence interval) 
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• Limit on deviation from Newtonian gravity

𝑎mass − 𝑎mass
Newton < 13 nm/s2 (95% confidence) 

Results
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Measuring gravity by holding atoms, 
CDP et al, arXiv:2310.01344 (under review Nature) (2023)

• Particles (chameleon, symmetron) 
=> theories of screened gravity 

• Help explain dark energy => why 
the Universe is expanding at an 
accelerated rate

• First lattice interferometry result - 
probes parameter space that is 6 
times larger than before.

Probing New Fifth Force Physics

https://arxiv.org/abs/2310.01344


• Particles (chameleon, symmetron) 
=> theories of screened gravity 

• Help explain dark energy => why 
the Universe is expanding at an 
accelerated rate

• First lattice interferometry result - 
probes parameter space that is 6 
times larger than before
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Probing New Fifth Force Physics

https://arxiv.org/abs/2310.01344


• Modified 1/r Newtonian potential with 
Yukawa term: 

• Sensitive at short ranges <1 cm

• New experiment geometry => atoms 
near a mirror that acts as a source mass

Measuring gravity by holding atoms, 
CDP et al, arXiv:2310.01344 (under review Nature) (2023)

100-1000 um

Beyond “Screened Potentials”

https://arxiv.org/abs/2310.01344


• Atom interferometry review

• Optical lattice atom interferometer 

- theory and experiment

• Precise measurement of gravity and fifth forces

• Future directions

2.
5 

cm
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Outline



• Probe quantum interactions between atom 
interferometer (Cesium) and torsion 
balance pendulum

• Requires:
• Non-gravitational pre-entanglement

• Shielding to reduce other interactions

79
Using an Atom Interferometer to Infer Gravitational Entanglement Generation. 
Daniel Carney et al., PRX Quantum 2, 3, 030330 (2021).
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Probe gravity-mediated entanglement



Previous Atom 
Interferometry Result

80

Measuring Big G



1 mHz linewidth
160s lifetime

Advantages of Strontium (vs Cesium)

• Lower atom temperatures (10-100 times) 
possible with easy cooling => reduced 
decoherence

• Reduced collisions (1000-fold) => no 
decoherence

• Clock states 
• Single-photon large momentum transfer
• Insensitive to background fields

• Fermionic and bosonic isotopes -> Quantum 
enhanced precision and accuracy via 
entanglement.

Lower temperature + improved lattice uniformity 
=> Sensitivity gains of 𝟏𝟎𝟐-𝟏𝟎𝟑 possible in table-
top setup.

• sufficient for 10−4-10−5 big G precision.

Strontium

Blue MOT

Red MOT
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Next Generation Atom Interferometer
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Next Generation Atom Interferometer



1 mHz linewidth
160s lifetime

Advantages of Strontium (vs Cesium)

• Lower atom temperatures (10-100 times) 
possible with easy cooling => reduced 
decoherence

• Reduced collisions (1000-fold) => no 
decoherence

• Clock states 
• Single-photon large momentum transfer
• Insensitive to background fields

• Fermionic and bosonic isotopes -> Quantum 
enhanced precision and accuracy via 
entanglement

Lower temperature + improved lattice uniformity 
=> Sensitivity gains of 𝟏𝟎𝟐-𝟏𝟎𝟑 possible in table-
top setup.

• Sufficient for 10−4-10−5 big G precision

Strontium

Blue MOT

Red MOT
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Next Generation Atom Interferometer



G. Rosi, et. al., Nature. 510, 518–521 (2014)

Atom position
accuracy

Source mass
properties

Analysis and 
Imaging

Lattice
Interf.

Fountain
Interf.

Determined 
by optical 
lattice

Smaller mass
- easy to 
characterize

Small detection 
region

ppm

84

Reduced Systematics when Measuring G



G. Rosi, et. al., Nature. 510, 518–521 (2014)

Atom position
accuracy

Source mass
properties

Analysis and 
Imaging

Lattice Interf. <10 ppm

Lattice
Interf.

Fountain
Interf.

Determined 
by optical 
lattice

Smaller mass
- easy to 
characterize

Small detection 
region

ppm
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Reduced Systematics when Measuring G



• New Science vacuum chamber – houses 
larger source mass + detection.     
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Next Generation Atom Interferometer



Previous Atom 
Interferometry Result

87

Projected Big G Results

Lattice G - GEN I
Lattice G - GEN II



• Nuclear mass defect: mass of the atomic 
nucleus is less than the sum of its nucleons 
(protons + neutrons) => binding energy

• Analogous change in “mass of excited atom”

• Extract “mass defect” Δ𝑚 from phase 
difference between ground and excited 
states 

Δ𝑚

𝑚Sr
=

𝜙𝑒 − 𝜙𝑔

𝜙𝑔

• Precise atomic weight balance: 10−33 grams.

88

Measuring Atomic Mass Defect



Zych, M et al. Quantum interferometric visibility as a witness of general relativistic proper 
time.  Nat Commun 2, 505 (2011).

• Sr atoms in superposition of ground and excited states.

• Correspondence principle: contrast loss when which-way information 
becomes available from reading out general relativistic proper time.

89

Testing GR Proper Time in QM



• Spatial superposition state coherent 
for 1 minute

• Interferometry with atoms 
trapped in an optical lattice

• New bounds on fifth forces

Fundamental Physics with Atoms and Molecules

Summary

• Searches for eEDMs with molecules
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Credit Seyda Ipek



• Spatial superposition state coherent 
for 1 minute

• Interferometry with atoms 
trapped in an optical lattice

• New bounds on fifth forces

Fundamental Physics with Atoms and Molecules

Summary

• Searches for eEDMs with molecules
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