Recent highlights of top-quark property measurements from CMS

AJ Wildridge¹ on behalf of the CMS Collaboration

¹Purdue University

Top Quark Physics

 Top quark is the heaviest fundamental particle discovered thus far: m_t = 173.34 +/- 0.76 GeV

• LHC is a top quark factory (100m+ thus far)

Run I Top Quark Mass Combination - Motivation

- Top quark mass is a fundamental parameter of the Standard Model
- Precision of top quark mass dictates our ability to predict (and sometimes measure) phenomena

Run I Top Quark Mass Combination - Motivation

- Top quark mass is a fundamental parameter of the Standard Model
- Precision of top quark mass dictates our ability to predict (and sometimes measure) phenomena

Run I **Top Quark Mass** Combination – Motivation ctd.

- ~10 years since last LHC combination
 - Preliminary for world combination
 - Didn't include most precise 8 TeV measurements
- ATLAS and CMS combinations both agree

Run I **Top Quark Mass** Combination – Motivation ctd.

- ~10 years since last LHC combination
 - Preliminary for world combination
 - Didn't include most precise 8 TeV measurements
- ATLAS and CMS combinations both agree

	ATLAS+CMS Preliminary LHCtopWG	n	n _{top} summary, √ s = 7-13 TeV	June 2023	
on	World comb. (Mar 2014) [2]		total stat		
	total uncertainty		$m_{top} \pm total (stat \pm syst \pm recoil)$	√s Ref.	
	LHC comb. (Sep 2013) LHCtopWG		173.29 ± 0.95 (0.35 ± 0.88)	7 TeV [1]	
	World comb. (Mar 2014)		173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV [2]	
	ATLAS, I+jets	┝┼╼╸┼┥	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [3]	
	ATLAS, dilepton		173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [3]	
	ATLAS, all jets		175.1±1.8 (1.4±1.2)	7 TeV [4]	
	ATLAS, single top		172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [5]	
	ATLAS, dilepton		172.99 ± 0.85 (0.41± 0.74)	8 TeV [6]	
agree	ATLAS, all jets		173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [7]	
ugice	ATLAS, I+jets	┝┼═┼┨┋	172.08 ± 0.91 (0.39 ± 0.82)	8 TeV [8]	
	ATLAS comb. (Oct 2018)	HTTH	172.69 ± 0.48 (0.25 ± 0.41)	7+8 TeV [8]	
	ATLAS, leptonic invariant mass		174.41±0.81 (0.39±0.66±0.2	5) 13 TeV [9]	
	ATLAS, dilepton (*)		172.21 ± 0.80 (0.20 ± 0.67 ± 0.3	9) 13 TeV [10]	
	CMS, I+jets		173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [11]	
	CMS, dilepton		172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [12]	
	CMS, all jets		173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [13]	
	CMS, I+jets	Held	172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [14]	
	CMS, dilepton	⊢ + ●↓	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [14]	
	CMS, all jets	⊢++ +	172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [14]	
	CMS, single top		172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [15]	
	CMS comb. (Sep 2015)	H#H :	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [14]	
	CMS, I+jets		172.25 ± 0.63 (0.08 ± 0.62)	13 TeV [16]	
	CMS, dilepton	┝━┿╋━┫	172.33 ± 0.70 (0.14 ± 0.69)	13 TeV [17]	
	CMS, all jets	┝┼╪┥┥┥	172.34 ± 0.73 (0.20 ± 0.70)	13 TeV [18]	
	CMS, single top		172.13 ± 0.77 (0.32 ± 0.70)	13 TeV [19]	
	CMS, I+jets	Hel I	171.77 ± 0.37	13 TeV [20]	
	CMS, boosted	┝─┼●┼─┨	172.76 ± 0.81 (0.22 ± 0.78)	13 TeV [21]	
	* D - 1''		[1] ATLAS-CONF-2013-102 [8] EPJC 79 (2019) 290 [2] a039/1403.4427 [9] a039/209.00583	(15) EPUC 77 (2017) 354 (16) EPUC 78 (2018) 881	
	^ Preliminary		[3] EPJC 76 (2016) 330 [10] ATLAS-CONF-2022-0 [4] EPJC 76 (2016) 168 [11] JHEP 12 (2012) 106	58 [17] EPJC 79 (2019) 368 [18] EPJC 79 (2019) 313	
			[6] PLB 761 (2016) 350 [12] EPJC 74 (2014) 2588 [7] JHEP 09 (2017) 118 [14] PRD 54 (2014) 2758	[10] anxie:2102.10407 [20] anxie:2202.01967 4 [21] anxie:2211.01456	
l					
	165 170	17	5 180	185	
Lake Louise Winter Institute 2024 m_{top} [GeV]					

6

Run I Top Quark Mass Combination – Input Measurements

Run I Top Quark Mass Combination – Method & Correlations

[SoftwareX 11 (2020) 100468] [Nucl. Instrum. Meth. A 270 (1988) 110]

- Best Linear Unbiased Estimated BLUE $m = \sum w m^{i}$ where $\sum w = 1$
 - $m_t = \sum_i w_i m_t^i$ where $\sum_i w_i = 1$
- Correlations between channels within an experiment are determined
- Correlations between experiments are assessed:
 - Uncorrelated: $\rho = 0$
 - Partially Correlated: ho = 0.5
 - Strongly Correlated: ho = 0.85
- Covariance matrices are summed

Uncertainty category	0	Scan range	$\Delta m_{\rm t}/2$	$\Delta \sigma_{m_t}/2$
Oncertainty category	Ρ	Scan range	[MeV]	[MeV]
LHC JES 1	0		_	_
LHC JES 2	0	[-0.25, +0.25]	8	7
LHC JES 3	0.5	[+0.25, +0.75]	1	<1
LHC b-JES	0.85	[+0.5, +1]	26	5
LHC g-JES	0.85	[+0.5, +1]	2	<1
LHC 1-JES	0	[-0.25, +0.25]	1	<1
CMS JES 1	_	_		_
JER	0	[-0.25, +0.25]	5	1
Leptons	0	[-0.25, +0.25]	2	2
b tagging	0.5	[+0.25, +0.75]	1	1
$p_{\mathrm{T}}^{\mathrm{miss}}$	0	[-0.25, +0.25]	<1	<1
Pileup	0.85	[+0.5, +1]	2	<1
Trigger	0	[-0.25, +0.25]	<1	<1
ME generator	0.5	[+0.25, +0.75]	<1	4
LHC radiation	0.5	[+0.25, +0.75]	7	1
LHC hadronization	0.5	[+0.25, +0.75]	1	<1
CMS B hadron BR	_			
Color reconnection	0.5	[+0.25, +0.75]	3	1
Underlying event	0.5	[+0.25, +0.75]	1	<1
PDF	0.85	[+0.5, +1]	1	<1
Top quark $p_{\rm T}$	_	_	_	_
Background (data)	0	[-0.25, +0.25]	8	2
Background (MC)	0.85	[+0.5, +1]	2	<1
Method	0	_		_
Other	0		_	

Run I Top Quark Mass Combination – Correlations

ATLAS+CMS

√s = 7,8 TeV

ATLAS dil 7 TeV -0.07 0.42 0.06 0.07 0.13 0.23 0.13 0.10 -0.06 0.51 0.22 0.11 0.18 -0.15 ATLAS Ij 7 TeV 0.8 -0.07 -0.01 0.00 -0.07 -0.02 0.09 0.08 0.01 0.10 0.02 -0.04 0.03 0.04 ATLAS aj 7 TeV 0.42 -0.01 0.29 -0.06 0.00 0.21 0.09 -0.01 0.11 0.19 0.11 0.13 0.16 -0.04 0.6 ATLAS dil 8 TeV 0.51 0.00 0.29 -0.18 0.31 0.09 0.16 0.08 0.12 0.10 0.07 -0.04 -0.10 0.16 ATLAS Ij 8 TeV 0.4 0.06 -0.07 -0.06 -0.18 -0.03 0.02 -0.00 -0.00 -0.04 0.05 -0.03 0.03 -0.01 0.00 ATLAS aj 8 TeV 0.07 -0.02 0.00 0.31 -0.03 0.10 0.11 0.06 -0.01 0.08 0.07 0.01 0.14 0.10 0.2 CMS dil 7 TeV 0.09 0.02 0.10 0.57 0.13 0.09 0.11 0.31 0.31 0.46 0.36 0.26 0.08 0.13 CMS Ij 7 TeV 10 0.22 0.08 0.19 0.16 -0.00 0.11 0.31 0.53 0.10 0.41 0.45 0.29 -0.03 0.03 _ CMS aj 7 TeV -0.00 0.57 0.53 0.12 -0.03 0.11 0.03 0.11 0.08 0.06 0.34 0.35 0.21 0.07 -0.2 CMS dil 8 TeV 0.10 0.12 0.23 0.07 0.09 -0.04 0.18 0.13 0.12 -0.04 -0.01 0.31 0.08 -0.16 CMS Ij 8 TeV -0.4 0.23 0.04 0.21 0.16 0.05 0.14 0.46 0.34 0.23 0.70 0.48 0.06 0.15 0.41 CMS aj 8 TeV 0.13 0.01 0.16 0.10 -0.03 0.08 0.36 0.45 0.35 0.07 0.70 1.00 0.47 0.05 0.22 -0.6 CMS t 8 TeV 0.10 0.09 0.07 0.03 0.07 0.26 0.29 0.21 0.09 0.48 0.47 -0.01 0.08 0.10 CMS J/Ψ 8 TeV -0.8 0.05 -0.01 0.12 -0.06 0.02 -0.01 -0.04 -0.01 0.01 0.08 -0.03 -0.03 -0.04 0.06 CMS vtx 8 TeV -0.15 -0.04 -0.04 -0.10 0.00 0.10 0.13 0.03 0.07 -0.16 0.15 0.22 0.08 0.12 -1

Run I Top Quark Mass Combination – Results

- Most precise determination of the top quark mass to date – 0.2% relative uncertainty!
- Dominated by systematic uncertainties
 - JES, b-tagging, and tt modeling are dominant

 $m_{top} = 172.52 \pm 0.14(stat) \pm 0.30(syst) \text{ GeV}$

Search for Violation of Lorentz Invariance - Motivation

- The Standard Model is Lorentz invariant
- Lorentz violation can emerge in string theory & loop quantum gravity $@\sim M_{PL}$
- Searches via neutral meson mixing: KLOE, KTeV, FOCUS, BaBar, and LHCb
- 1st search with $t\overline{t}$ @Tevatron $p\overline{p}$ collider: D0 [Phys. Rev. Lett. 108 (2012) 261603]
- New search with CMS!

CMS-TOP-22-007

Search for Violation of Lorentz Invariance - Method

• Lorentz Violation in SME model given by:

$$L_{\rm SME} = \frac{1}{2} i \bar{\psi} (\gamma^{\nu} + c^{\mu\nu} \gamma_{\mu} + d^{\mu\nu} \gamma_5 \gamma_{\mu}) \overleftrightarrow{\partial_{\nu}} \psi - m_{\rm t} \bar{\psi} \psi$$

• Average direction of top quarks change w/ sidereal time \rightarrow Wilson coefficients $c^{\mu\nu}$ and $d^{\mu\nu}$ encode sidereal dependency

 $\Omega_{\text{sidereal}} t_{\text{sidereal}} = \Omega_{\text{UTC}} (t_{\text{UNIX}} - t_0) + \phi_{\text{UNIX}} + \phi_{\text{longitude}}$

<u>CMS-TOP-22-007</u>

Search for Violation of Lorentz Invariance – Method ctd.

- Measured the tt cross section differentially in UZ + jets Single top UZ + jets UZ
- Luminosity unc., pileup, & lepton trigger efficiencies determined as a function of sidereal time
- Added nuisances that are uncorrelated across sidereal bins to account for unknown sidereal dependence

Search for Violation of Lorentz Invariance - Results

- 10x increase in precision of Lorentz Violation top quark Wilson coefficient constraints compared to D0 [Phys. Rev. Lett. 108 (2012) 261603]
- Checked both fitting coefficients individually and together with no sizeable differences due to small correlations between coefficients
- No significant deviation from 0 observed

Measurement of the top quark **Yukawa coupling** - Motivation

- Important goal for LHC is to characterize new Higgs boson and its couplings
- Top quark Yukawa coupling is curiously close to unity
- Can be measured directly through ttH
- Indirectly through electroweak contributions to tt cross section

Phys. Rev. D 102, 092013

Measurement of the top quark Yukawa coupling -Method

- Used dileptonic decays and full Run II dataset
- Profile likelihood fit in double differential distribution:

 $\mathbf{M}_{\mathbf{b}\overline{\mathbf{b}}\ell\overline{\ell}}\otimes\Delta y_{\mathbf{b}\overline{\mathbf{b}}\ell\overline{\ell}}$

- $M_{b\overline{b}\ell\overline{\ell}} = M(b + \overline{b} + \ell + \overline{\ell})$
- $\Delta y_{b\overline{b}\ell\overline{\ell}} = |y(b+\overline{\ell}) y(\overline{b}+\ell)|$
- Removes necessity for top quark reconstruction which is difficult in dileptonic decays

$$\mathcal{L}_{\text{bin}} = \text{Poisson} \left[n_{\text{obs}}^{\text{bin}} \left| s^{\text{bin}}(\{\theta_i\}) R_{\text{EW}}^{\text{bin}}(Y_t, \phi) + b^{\text{bin}}(\{\theta_i\}) \right]$$

Measurement of the top quark Yukawa coupling - Method

•
$$Y_t = \frac{g_t}{g_t^{SM}}$$
, $g_t = \frac{\sqrt{2}m_t}{\nu}$

- Yukawa coupling and nuisance for electroweak corrections change signal event yields $R_{EW}^{bin}(Y_t, \phi) = [1 + \delta_{EW}^{bin}(Y_t)] [1 + \delta_{QCD}^{bin} \delta_{EW}^{bin}(Y_t)]^{\phi}$
- Unc. for electroweak correction is difference between additive and multiplicative approach

 $\delta_{\rm EW}^{\rm bin} = \frac{n_{\rm HATHOR}^{\rm bin} - n_{\rm LOQCD}^{\rm bin}}{n_{\rm LOQCD}^{\rm bin}}, \ \delta_{\rm QCD}^{\rm bin} = \frac{n_{\rm POWHEG}^{\rm bin} - n_{\rm LOQCD}^{\rm bin}}{n_{\rm POWHEG}^{\rm bin}}$

Measurement of the top quark **Yukawa coupling** - Result

•
$$Y_t = 1.16^{+0.24}_{-0.35}$$

 Measurement of top quark Yukawa coupling independent of assumptions on other Yukawa couplings

Summary

- Lots of exciting new results from CMS
- Most precise top quark mass measurement from CMS+ATLAS combination
 - Lots of work performed in determining the correlations between experiments
- 1st search for Lorentz violation in top quark pairs produced from protonproton collider
- Indirect and independent top quark Yukawa coupling measurement consistent with SM
 - Electroweak corrections crucial for correct modeling of tt threshold region

Thanks!

awildrid@purdue.edu

Miller

HI.**I**.**N**

Correlations for LIV

- Statistical unc. in corrections are uncorrelated across years
- Modeling systematics are correlated (sidereal timeindependent)

Systematic uncertainty source	Correlation 2016-2017	Correlation time bins	Magnitude
Flat luminosity, year-to-year correlated part	100%	100%	0.6% (2016), 0.9% (2017)
Flat luminosity, year-to-year uncorrelated part	0%	100%	0.9% (2016), 1.4% (2017)
Time-dependent luminosity stability	0%	100%	0.2% (2016), 0.4% (2017)
Time-dependent luminosity linearity	0%	100%	0.2% (2016), 0.4% (2017)
Time-dependent pileup reweighting	100%	100%	0.3–5%
Time-dependent trigger efficiency, syst. component	0%	100%	0.5–1%
Time-dependent trigger efficiency, stat. component	0%	0%	0.5%
L1 ECAL prefiring	100%	0%	0.5%
Electron reconstruction	100%	0%	0.4%
Electron identification	100%	0%	1.2-2.2%
Muon identification, syst. component	100%	0%	0.3%
Muon identification, stat. component	0%	0%	0.5%
Muon isolation, syst. component	100%	0%	< 0.1%
Muon isolation, stat. component	0%	0%	0.2%
Phase-space extrapolation of lepton isolation	100%	100%	0.5–1%
Jet energy scale, year-to-year correlated part	100%	0%	0.8%
Jet energy scale, year-to-year uncorrelated part	0%	0%	1.4%
Parton flavor impact on jet energy scale	100%	100%	1.1%
b tagging	0%	0%	2-4%
Matrix element scale	100%	100%	0.3-6%
$PDF+\alpha_{S}$	100%	100%	0.1-0.4%
Initial- & final-state radiation scale	100%	100%	1–5%
Top quark p _T	100%	100%	0.5-2.5%
Matrix element-parton shower matching	100%	100%	0.7%
Underlying event tune	100%	100%	0.2%
Color reconnection	100%	100%	0.3%
Top quark mass	100%	100%	0.5–3%
Single top quark cross section	100%	100%	30%
tt+X cross section	100%	100%	20%
Diboson cross section	100%	100%	30%
W/Z+jets cross section	100%	100%	30%
tī cross section *	100%	100%	4%
Single top quark time modulation *	100%	100%	2%
MC statistical uncertainty	0%	100%	0.1–1%

Profile Maximum Likelihood fit

$$\mathbf{L} = \prod_{c \in channels} \prod_{b \in bins_c} Pois(n_{cb} | v_{cb}(\mathbf{H}, \mathbf{X})) \prod_{\chi \in \mathbf{X}} p_{\chi}(a_{\chi} | \chi)$$

- Channels are statistically independent "channels". Can be decay topology for example (ee vs. e μ vs. $\mu\mu$)
- $\eta_i \in H$ are unconstrained nuisance parameters meaning they have no prior
 - Signal strength modifier is typically an unconstrained nuisance
 - D is also unconstrained in our fit and we freeze signal strength modifier
- $\chi_i \in X$ are constrained nuisance parameters meaning we know/can estimate their prior probability distribution
 - a_{χ} are parameters/inputs for the prior
 - All of our priors are either log normal or shape-based