
Light QCD exotics at **BES**II

Tingting Han Institute of High Energy Physics (On behalf of the BESIII Collaboration)

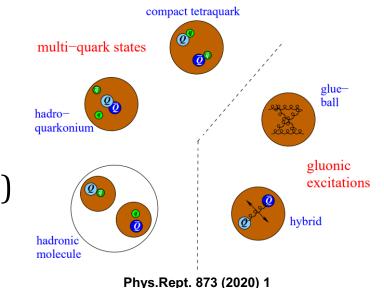
Lake Louise Winter Institute 2024, February 18-24, 2024, Calgary

Light QCD Exotics

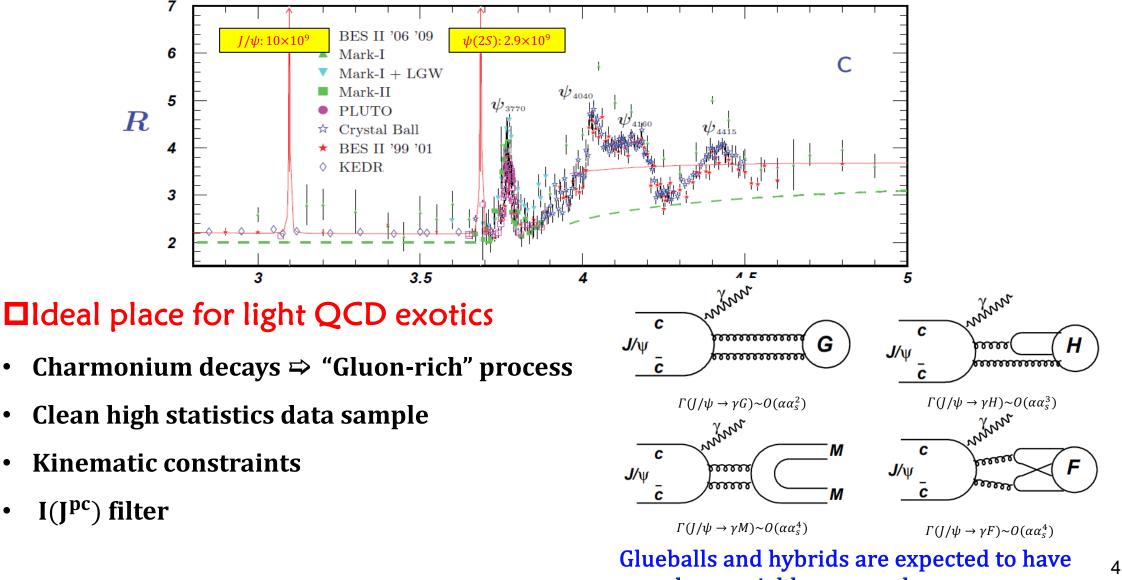
- Quantum Chromodynamics (QCD)
- High energy region : nature of asymptotic
 freedom has been confirmed experimentally
- Low energy region : non-perturbation effects are dominant and the solution cannot be solved analytically (color confinement)

Hadron spectroscopy

• Study the effective degrees of freedom in non-perturbative regime of QCD.


Light QCD Exotics

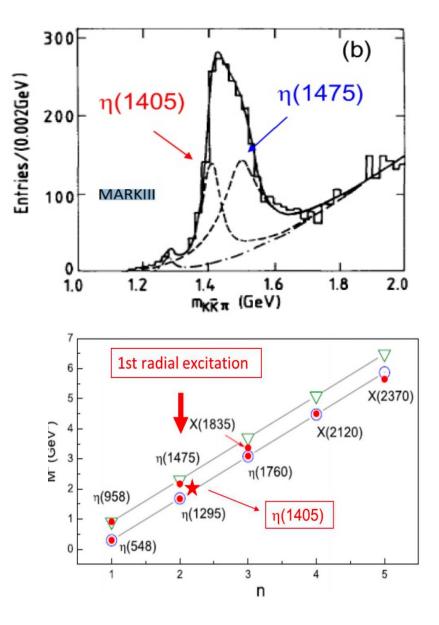
Hadron spectroscopy


- > Well-known classes of hadrons: $meson(q\overline{q})$, baryon(qqq)
- QCD allows the existence of exotic hadrons
 - multi-quark states ; hybrids; glueballs
 - Strong evidences for multi-quark in heavy quark sector

A new "particle zoo": https://qwg.ph.nat.tum.de/exoticshub/

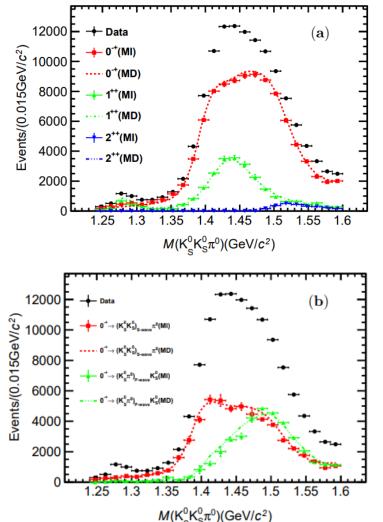
• Evidence for gluonic excitations remains sparse

World's Largest τ –charm Data Sets in e^+e^- Annihilation



a larger yield compared to mesons.

Long Standing E – L Puzzle


- MarkIII experiments found that $\eta(1405) \rightarrow a_0(980)\pi$ and $\eta(1475) \rightarrow K^*K$, confirmed by Crystal Barrel and Obelix.
 - Quark model predicts: only one pseudoscalar meson near 1.4 GeV.
 - Theoretical interpretations :
 - $\eta(1475) \Rightarrow$ the first radial excitation of η' ;
 - $\eta(1405) \Rightarrow$ the glueball candidate
 - LQCD predicts: 0^{-+} glueball (2.3~2.6 GeV)

What's the nature of the outnumbered $\eta(1405)$?

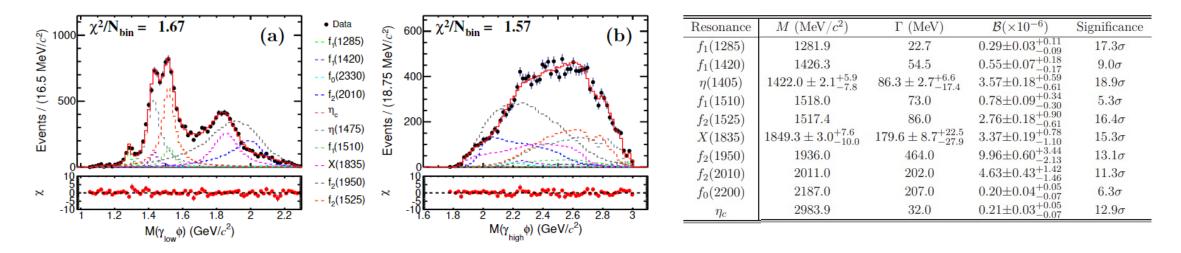
Partial Wave Analysis of $J/\psi \rightarrow \gamma K_s^0 K_s^0 \pi^0$

JHEP03(2023)121

Mass Dependent PWA : Isobar model

- Two pseudoscalar states needed: $\eta(1405)/\eta(1475)$.
- $f_1(1285), f_1(1420), f_2(1525)$ are observed
- Mass Independent PWA : Disentangle J^{PC} in each bin
- Two 0⁻⁺ around 1.4 GeV/c² in $(K_s^0 K_s^0)_{s-wave} \pi^0$
 - and $(K_s^0 \pi^0)_{p-wave} K_s^0$ partial waves
- Consistency between MI and MD results

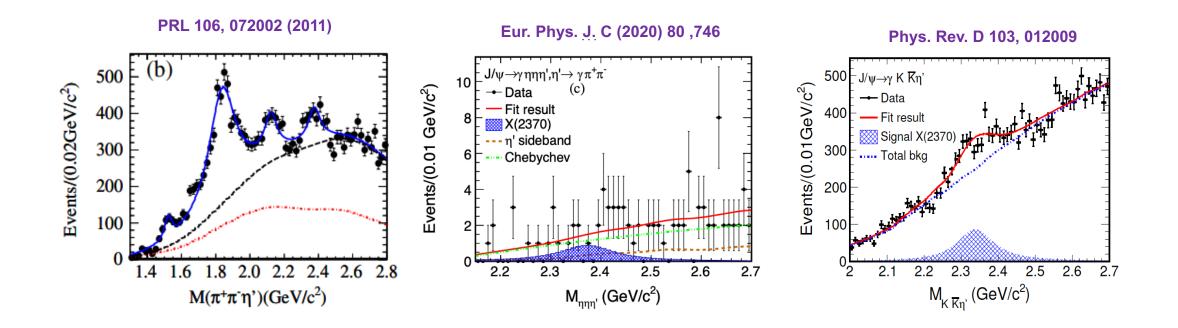
Resonance	$M({ m MeV}/c^2)$	$\Gamma({ m MeV})$		
$\eta(1405)$	$1391.7\pm0.7^{+11.3}_{-0.3}$	$60.8 \pm 1.2^{+5.5}_{-12.0}$		
$\eta(1475)$	$1507.6 \pm 1.6^{+15.5}_{-32.2}$	$115.8 \pm 2.4^{+14.8}_{-10.9}$		
$f_1(1285)$	$1280.2\pm0.6^{+1.2}_{-1.5}$	$28.2 \pm 1.1^{+5.5}_{-2.9}$		
$f_1(1420)$	$1433.5 \pm 1.1^{+27.9}_{-0.7}$	$95.9 \pm 2.3^{+13.6}_{-10.9}$		
$f_2(1525)$	$1515.4 \pm 2.5^{+3.2}_{-7.6}$	$64.0\pm4.3^{+2.0}_{-6.1}$		


Theorists attempt to explain $\eta(1405)/\eta(1475)$ using one pole

• further study is needed

Phys.Rev.D 107 (2023) 9, L091505

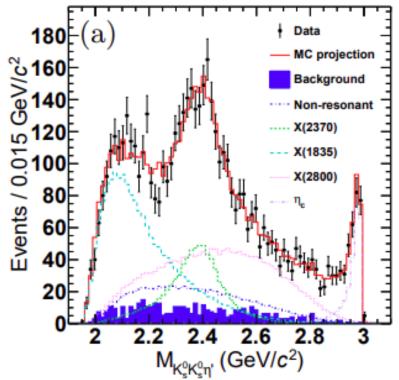
Partial Wave Analysis of $J/\psi \rightarrow \gamma \gamma \phi$


arXiv: 2401.00918

- Flavor filter reactions ⇒ η(1405) and X(1835) decaying into γφ: contain a sizable ss
- Just one $\eta(1405)$ state and a $f_1(1420)$ are needed around 1.4 GeV/ c^2
- $\eta_c \to \gamma \phi \text{ is observed for the first time}$
- The upper limit for $\eta(1295)$, $\eta(1475)$, $\eta_1(1855)$ and X(2370) are also reported

Study of X(2370)

- The X(2370) is first observed in the process of $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$. ■ The X(2370) is also observed in $J/\psi \rightarrow \gamma K \overline{K} \eta'$; $B(J/\psi \rightarrow \gamma X(2370) \rightarrow \gamma K \overline{K} \eta')$ = (1.79±0.23±0.65)×10⁻⁵
- No X(2370) signal in $J/\psi \rightarrow \gamma \eta \eta \eta'$, $B(J/\psi \rightarrow \gamma X(2370) \rightarrow \gamma \eta \eta \eta') < 9.2 \times 10^{-6}$ at 90% C.L.
- No contradiction to the calculation for X(2370) as 0^{-+} glueball [2.3-2.6 GeV/ c^2]

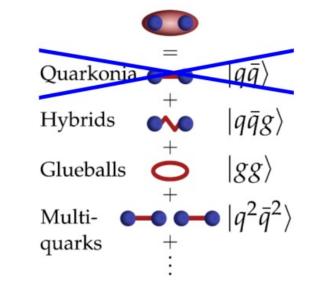

Study of X(2370)

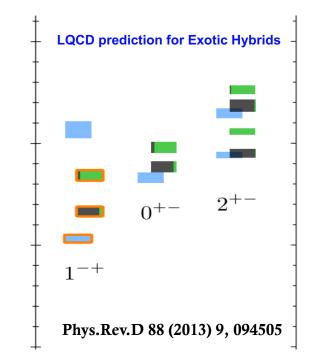
arXiv:2312.05324

Partial wave analysis of $J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta'$

- Simultaneous fit to $\eta' \to \eta \pi \pi$ and $\eta' \to \gamma \pi \pi$ mass spectra
- Using a subsample by requiring $M_{K_s^0 K_s^0} < 1.1 \ GeV/c^2$

The spin-parity is determined to be 0^{-+}


Light hadrons with exotic quantum numbers

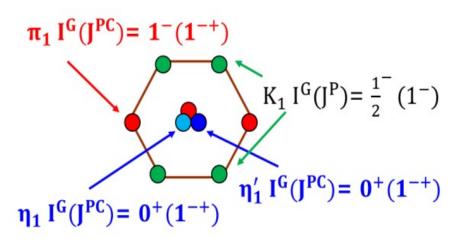

Unambiguous signature for exotics
 Light Flavor-exotic hard to establish
 Efforts concentrate on Spin-exotic
 Forbidden for (qq): 0⁻⁻, even⁺⁻, odd⁻⁺

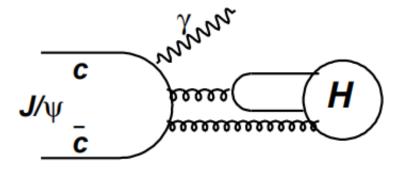
- Lightest spin-exotic: 1⁻⁺
 - •1.7~2.1 GeV/c^2
- Only 3 spin exotic candidate so far : All 1⁻⁺ isovectors

• $\pi_1(1400), \pi_1(1600), \pi_1(2015)$

 $\pi_1(1400), \pi_1(1600)$ can be explained as one pole

1⁻⁺ Hybrids


Isoscalar 1⁻⁺ is critical to establish the hybrid nonet


•Can be produced in the gluon-rich charmonium decays

```
•Can decay to \eta\eta' in P-wave
```

[PRD 83,014021 (2011), PRD 83,014006 (2011), EP.J.P 135, 945(2020)]

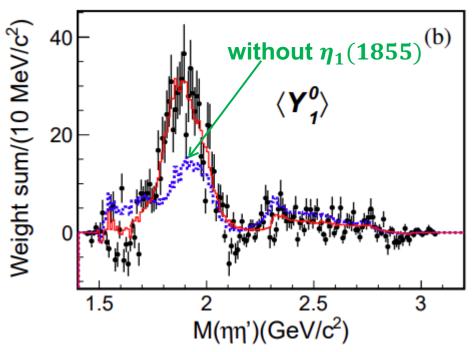
 $\Gamma(J/\psi\to\gamma H){\sim} O(\alpha\alpha_s^3)$

Observation of Exotic Isoscalar State $\eta_1(1855)$ in $J/\psi \rightarrow \gamma \eta \eta'$

An isoscalar 1^{-+} state, $\eta_1(1855)$, has been observed with statistical significance larger than 19σ

 $M = (1855 \pm 9^{+6}_{-1}) MeV/c^2; \ \ \Gamma = (188 \pm 18 \pm {}^{+3}_{-8}) MeV$

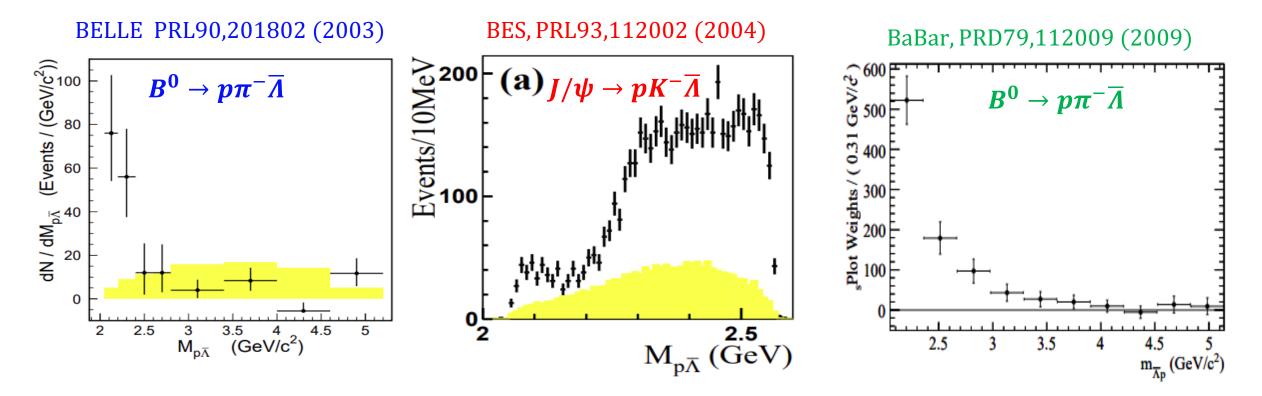
 $B(J/\psi \rightarrow \gamma \eta_1(1855) \rightarrow \gamma \eta \eta') = (2.70 \pm 0.41^{+0.16}_{-0.35}) \times 10^{-6}$


- Mass is consistent with hybrid on LQCD
- Inspired many interpretations:
 - Hybrid? Molecule? Tetraquark?

Further more, suppression of $f_0(1710) \rightarrow \eta \eta'$ supports it has a large overlap with glueball

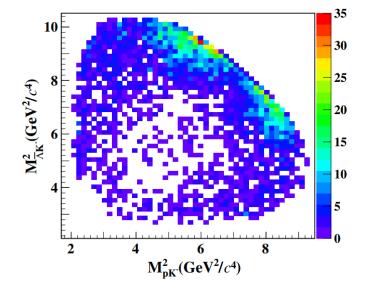
$$\frac{Br(f_0(1500) \to \eta \eta')}{Br(f_0(1500) \to \pi \pi)} = (1.66^{+0.42}_{-0.40}) \times 10^{-1}$$

 $\frac{Br(f_0(1710) \to \eta \eta')}{Br(f_0(1710) \to \pi \pi)} < 2.7 \times 10^{-3} @90\% C.L$


PRL 129, 192002 (2022); PRL 130, 159901 (2023) (erratum) PRD 106,072012 (2022); PRD 107,079901 (2023) (erratum)

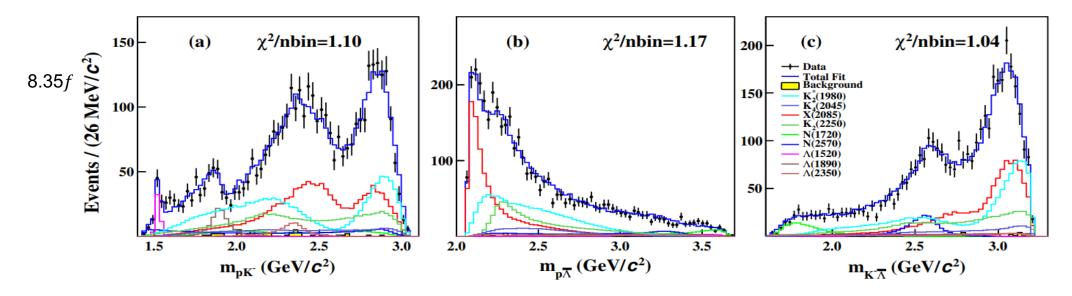
Opens a new direction to completing the picture of spin-exotics

Observation of the Narrow Structure Near the $p\overline{\Lambda}$ Threshold


Similar evidence of a structure of $p\overline{\Lambda}$ in several decays of B mesons and charmonium states

Different scenarios investigated: baryonium state [PRD74,014029], baryon-antibaryon SU(3) nonets [PLB626,95], final state interaction [IJMPA22,5401], ...

Observation of the Narrow Structure Near the $p\overline{\Lambda}$ Threshold


 $ightarrow e^+e^- \rightarrow pK^-\overline{\Lambda}$: Amplitude analysis for spin parity determination PRL 131, 151901 (2023)

- Anomalous enhancement near the $p\overline{\Lambda}$ mass threshold observed in $e^+e^- \rightarrow pK^-\overline{\Lambda}$
- **X**(2085) observed with statistical significance > 20σ

 $M = (2086 \pm 4 \pm 6) \text{MeV}$; $\Gamma = (56 \pm 5 \pm 16) \text{MeV}$; $J^P = 1^+$

■ Same structure as in PRL93,112002 ?

Summary and outlook

BESIII experiment is an excellent laboratory to study light hadron physics and search for light QCD exotic states

Exciting results from new J/ψ data are presented

- pesudoscalar state : $\eta(1405)$, X(2370)
- isoscalar 1^{-+} spin exotics state: $\eta_1(1855)$
- $p\overline{\Lambda}$ threshold structure: X(2085)

BESIII is taking data since 2008. It will continue to run ~2030

• BEPCII-U: 3x upgrade on luminosity; Ecms expanded to 5.6 GeV (summer 2024)

More interesting results are expected!!!

Thank you for your attention

Discussions about $f_0(1500) \& f_0(1710)$

- Production properties:
- → Observed $\Gamma(J/\psi \rightarrow \gamma f_0(1710))$ is x10 larger than $f_0(1500)$
- PWA fit result

Decay mode	Resonance	$M ({\rm MeV}/c^2)$	Γ (MeV)	$M_{\rm PDG}~({\rm MeV}/c^2)$	Γ _{PDG} (MeV)	B.F. $(\times 10^{-5})$	Sig.
	$f_0(1500)$	1506	112	1506	112	$3.05{\pm}0.07$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	$0.07 {\pm} 0.01$	7.6σ
	$f_0(2020)$	1935±5	266±9	1992	442	$1.67 {\pm} 0.07$	11.0σ
	$f_0(2100)$	2109±11	$253{\pm}21$	2086	284	$0.33 {\pm} 0.03$	5.2σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	2327±4	44±5	2314	144	$0.07{\pm}0.01$	8.5σ
	$f_2(1565)$	1542	122	1542	122	$0.20{\pm}0.03$	6.2σ
	$f_2(1810)$	1815	197	1815	197	$0.37 {\pm} 0.03$	7.0σ
	$f_2(2010)$	2022 ± 6	212±8	2011	202	$1.36{\pm}0.10$	8.8σ
	$f_2(2340)$	2345	322	2345	322	$0.25{\pm}0.04$	6.5σ
	$f_4(2050)$	2018	234	2018	234	$0.11{\pm}0.02$	5.6σ
	$h_1(1415)$	1416	90	1416	90	$0.14{\pm}0.01$	10.3σ
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1595)$	1584	384	1584	384	$0.41 {\pm} 0.04$	9.7σ
	$\phi(2170)$	2160	125	2160	125	$0.24{\pm}0.03$	5.6σ
$J/\psi \to \eta X \to \gamma \eta \eta'$	$h_1(1595)$	1584	384	1584	384	$0.50 {\pm} 0.03$	11.0σ
	$\rho(1700)$	1720	250	1720	250	$0.22{\pm}0.03$	8.8σ

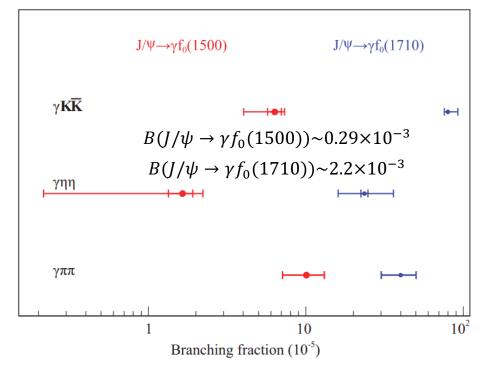
- The decay of scalar glueball to the $\eta \eta'$ final state are suppressed due to gauge duality $\frac{Br(G \to \eta \eta')}{Br(G \to \pi \pi)} < 0.04$
- •Significant $f_0(1500)$

$$\frac{Br(f_0(1500) \to \eta \eta')}{Br(f_0(1500) \to \pi \pi)} = (1.66^{+0.42}_{-0.40}) \times 10^{-1}$$

•Absence of $f_0(1710)$

 $\frac{Br(f_0(1710) \to \eta \eta')}{Br(f_0(1710) \to \pi \pi)} < 2.87 \times 10^{-3} @ 90\% C.L$

•Supports to the hypothesis: $f_0(1710)$ has overlaps with the ground state scalar glueball


Scalar Glueball

- **Scalar glueball is expected to have a large** production in J/ψ radiative decays
 - LQCD: $\Gamma(J/\psi \rightarrow \gamma G_{0^+})/\Gamma_{total} = 3.8(9) \times 10^{-3}$
 - Observed $B(J/\psi \rightarrow \gamma f_0(1710))$ is x10 larger than $f_0(1500)$
 - BESIII: $f_0(1710)$ largely overlapped with scalar glueball

BESIII PRD 87 092009 (2013) BESIII PRD 92 052003 (2015) BESIII PRD 98 072003 (2018)

phenomenology studies of coupled channel analysis with BESIII results: PLB 816, 136227 (2021), EPJC 82, 80 (2022)

Natl. Sci. Rev. 8, no.11, nwab198 (2021)

Tensor glueball candidate

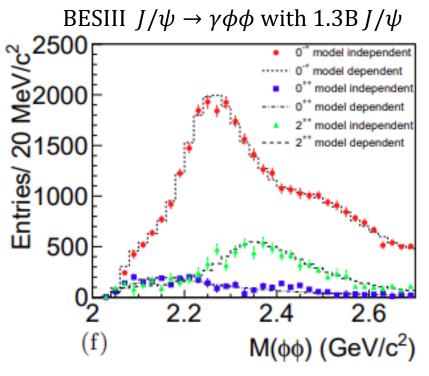
$$\begin{split} &\Gamma(J/\psi\to\gamma G_{2^+})=1.01(22)keV\\ &\Gamma(J/\psi\to\gamma G_{2^+})/\Gamma_{total}=1.1\times 10^{-2} \end{split}$$

CLQCD, Phys. Rev. Lett. 111, 091601(2013)

Experimental results

 $Br(J/\psi \to \gamma f_2(2340) \to \gamma \eta \eta) = (3.8^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$ BESIII PRD 87,092009 (2013)

$$Br(J/\psi \to \gamma f_2(2340) \to \gamma \phi \phi) = (1.91 \pm 0.14^{+0.72}_{-0.73}) \times 10^{-4}$$

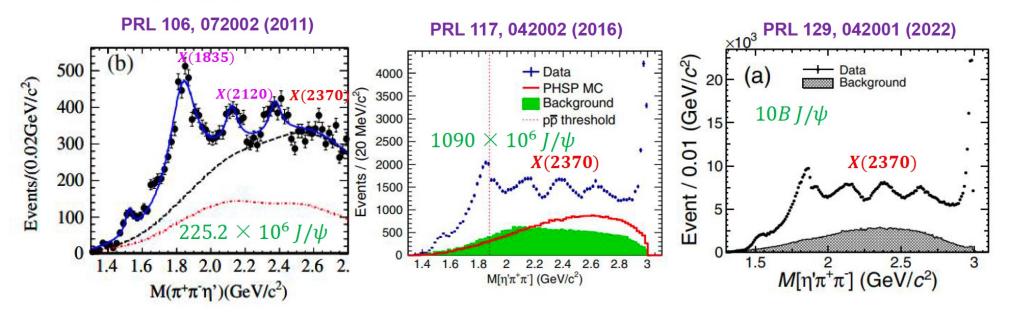

BESIII PRD 93, 112011 (2016)

$$Br(J/\psi \to \gamma f_2(2340) \to \gamma K_s^0 K_s^0) = (5.54^{+0.34+3.82}_{-0.40-1.49}) \times 10^{-5}$$

BESILI PRD 98.072003 (2018)

$$Br(J/\psi \to \gamma f_2(2340) \to \gamma \eta' \eta') = (8.67 \pm 0.70^{+0.16}_{-1.67}) \times 10^{-6}$$

BESIII PRD 105,072002 (2022)


It is desirable to search for more decay modes

 $f_2(2010)$, $f_2(2300)$ and $f_2(2340)$ stated in $\pi^- p$ reactions are observed with a strong production of $f_2(2340)$ Consist with central exclusion production in WA102

Pseudoscalar glueball searches

Study of $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

- > The *X*(2370) is first observed in the process of $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$, comfirmed with higher statistic
- ► Based on chiral effective Lagrangian with mass of X(2370), the predicted branching ratio of pseudoscalar glueball is : $B(G \rightarrow \eta\eta\eta')$: $B(G \rightarrow KK\eta')$: $B(G \rightarrow \pi\pi\eta') = 0.00082, 0.011, 0.09$ [Phys. Rev. D 87, 054036 (2013)]