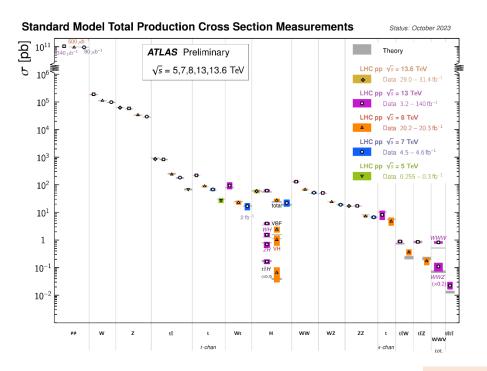
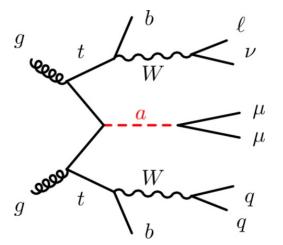
Searches for BSM physics in low-mass, non-resonant, or long-lived signatures with the ATLAS detector

Tiesheng Dai

The University of Michigan

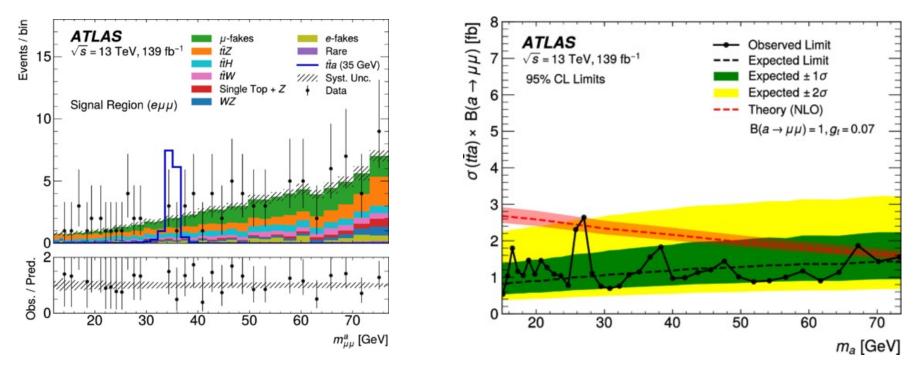

On behalf of the ATLAS Collaboration

Lake Louise Winter Institute 2024 Conference

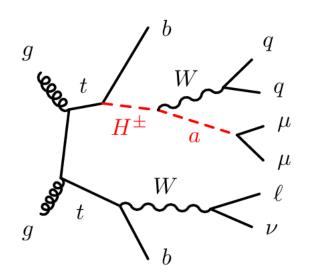

Chateau Lake Louise, Canada; Feb. 18-24 2024

Introduction

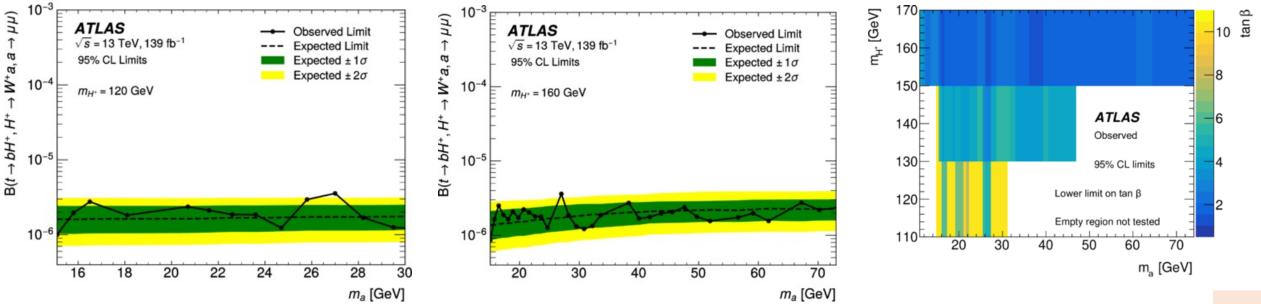
- SM is very successful with Higgs discovery, data agree with the SM predictions
- But some big questions are not explained:
 - □ What are the origins of 95% energy and mass in the universe (dark matter and energy)?
 - □ What is the source of matter-antimatter asymmetry in our universe?
 - □ Hierarchy problem, why SM m_H << m_{Planck} (Grand Unification Energy) ?
 - Reasons for observed quark & lepton masses and mixing angles;
- Many theoretical models beyond the Standard Model (BSM) predict new particles or interactions: SUSY, extra Higgs doublets, 2HDM, Quark-singlet, Composite Higgs, $L_{\mu} - L_{\tau}$ models ...
- Rich phenomenology and final states to explore at the ATLAS
- Will report selected recent ATLAS Run-2 results



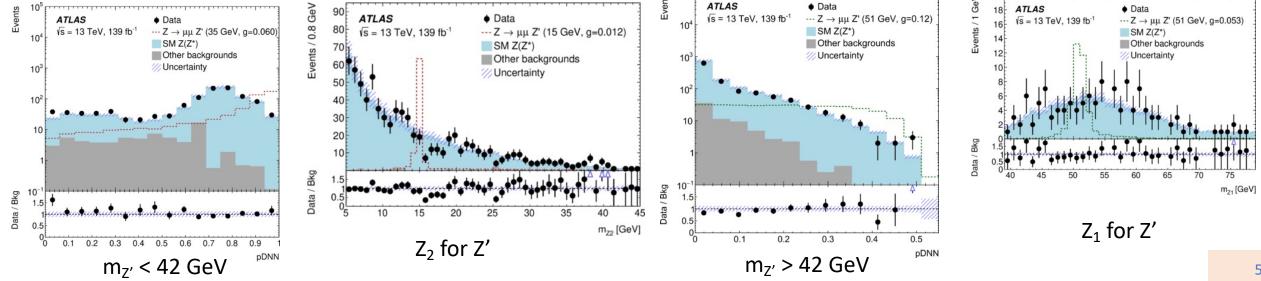
ATL-PHYS-PUB-2023-039



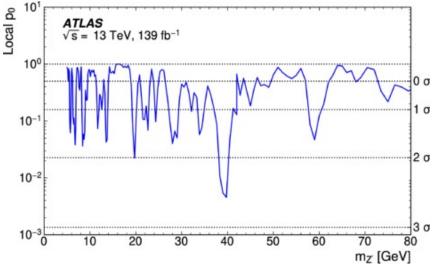
Pseudoscalar a $\rightarrow \mu\mu$


- Pseudo-scaler "a" produced in association with a pair of $pp \rightarrow tta, a \rightarrow \mu\mu$;
- Events: $\mu^+\mu^-$, 1 e/ μ , \geq 3 jets & \geq 1 b-jet;
- Prompt BKGs: leading ttZ, sub-leading ttH, ttW[±], single t, WZ from simulation normalized to data from CRs around Z pole. Data driven method is used to determined the non-prompt μ-fakes and e-fakes BKGs;
- No signal observation on signal strength μ_{sig} of each pseudoscalar "a" mass point by the profile likelihood ratio from signal + BKG fit on different $m_{\mu\mu} \rightarrow exclude$ signals with $\sigma(tta^-)B(a \rightarrow \mu\mu)$ above 0.5–3 fb at 95% confidence level.
- A non-significant "bump" at m_a = 27 GeV, corresponding to a local significance of about 2.4 σ .

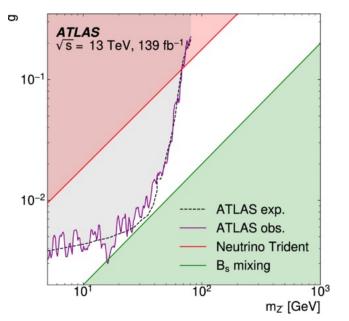
Light Charged/Pseudoscalar $H^{\pm} \rightarrow aW^{\pm} \rightarrow \mu\mu W^{\pm} Phys. Rev. D 108 (2023) 092007$

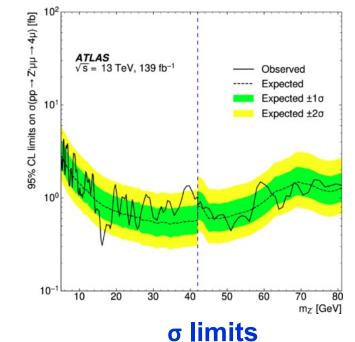


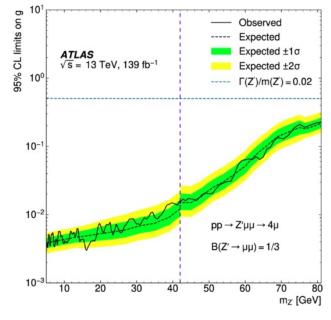
- 2HDM charged Higgs from top decaying to a pseudoscalar and a W with $a \rightarrow \mu\mu$;
 - Events: $\mu^+\mu^-$, 1 e/ μ , \geq 3 jets & \geq 1 b-jet;
- Prompt leading BKGs ttZ, sub-leading BKS, ttH, ttW[±], single t, WZ from simulation normalized to data from CRs around Z pole. Data driven method is used to determined the non-prompt μ-fakes and e-fakes.
- No signal observation for pseudoscalar "a" mass region of 15 to 72 GeV with charge higgs H[±] mass region of 110 to 160 GeV. by the profile likelihood ratio from signal + BKG fit on $m_{\mu\mu} \rightarrow$ Set upper limits on the branching ratio B($t \rightarrow bH$ +, H+ $\rightarrow W$ + $a, a \rightarrow \mu\mu$) in the range (0.9–3.9) × 10⁻⁶ at 95% CL.


New Z' Vector Boson in 4µ Events

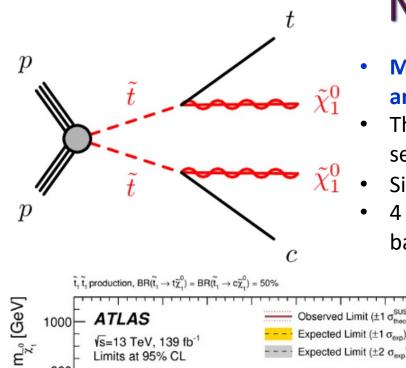
- Gauged $L_{\mu} L_{\tau}$ models_predicts a new Z' only couples to left-handed μ , τ and their v doublets and right-handed μ and τ singlets;
- At the LHC, the Z' from the final-state radiation of or μ , τ and their neutrinos;
- Signature: 4µ opposite-charge pair events around Z pole;
- Major BKG Z or ZZ^{*} \rightarrow 4 μ with small contribution from gg \rightarrow ZZ^{*}, ttV, VVV & H determined by MC. Z+jets and tt^{-} fake/non-prompt BKGs are estimated by data driven fake-factor method from CRs.
- Parameterized deep neural network (pDNN) score to categorize 4µ events as signal or background at different Z' hypothesis masses. The model is optimized by Bayesian method for hyper-parameters in order to automatically to the optimal performance




JHEP 07 (2023) 90


Results of New Z' Vector Boson in 4µ Events JHEP 07 (2023) 90

The p_0 scan across the Z' mass signal regions.



Coupling constant g limits

- Obtained cross-section limits by fitting data to the Z_1 and Z_2 mass spectra; •
- Excluded coupling strength g of the Z' to u & τ from 0.003 to 0.2; •
- Explored Z' coupling g parameter space compared with other experiment results \rightarrow An interesting parameter space was not excluded by previous experiments is now largely excluded by this search.

600

400

200

500

700

800

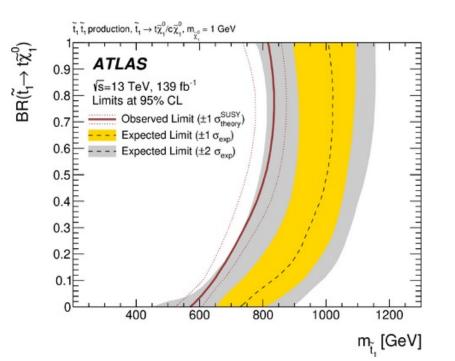
900

1000

1100

m [GeV]

1200

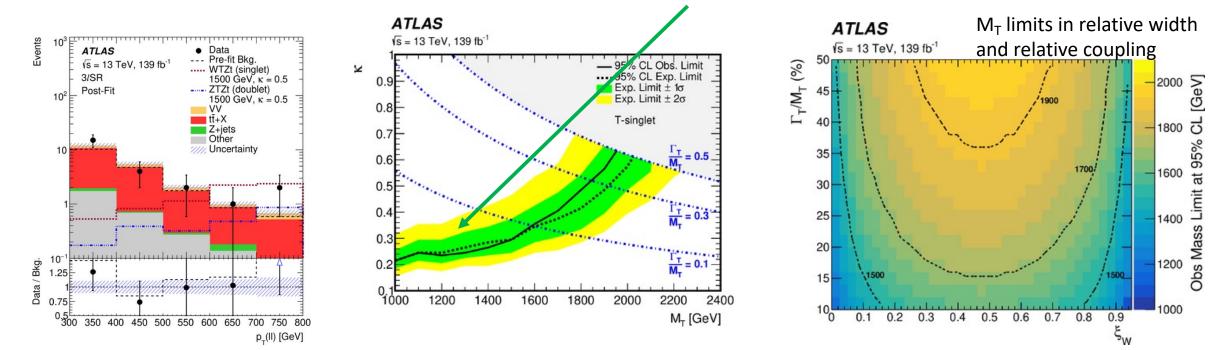

New Physics with tc+ E_T^{miss}

+*ET* arXiv:2402.12137

- Model: a non-minimal flavour violation (MFV) extension of the MSSM with the 2nd and 3rd generation squark mixing, allow $\tilde{t} \rightarrow c \tilde{\chi_1}$;
- The DNN top tagger to identify large-R t-jet, special DL1r b-tagger & DL1r_c c-tagger to select b- and c-jets, developed a multi-class NN to isolate signal from BKGs in SRD;
- Signal events: 0 e/ μ , >= 3 jets, >= 1 b-jet, >= 1 c-jet and high E_T^{miss}
- 4 SR[A-D], 6 CRs and 2 VRs, where common CRs for predicting the main SM backgrounds and common VRs to validate the background modelling.

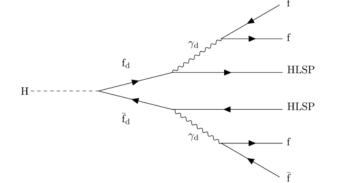
Three likelihood fits:

- "BKG-only" fit on CRs for SM BKG modelling;
- "model-dependent" fit on SRs and CRs for establish CLs for a specific BSM hypothesis;
- "model-independent" fit on SRs and CRs to compute the p-value of the SM-only hypothesis

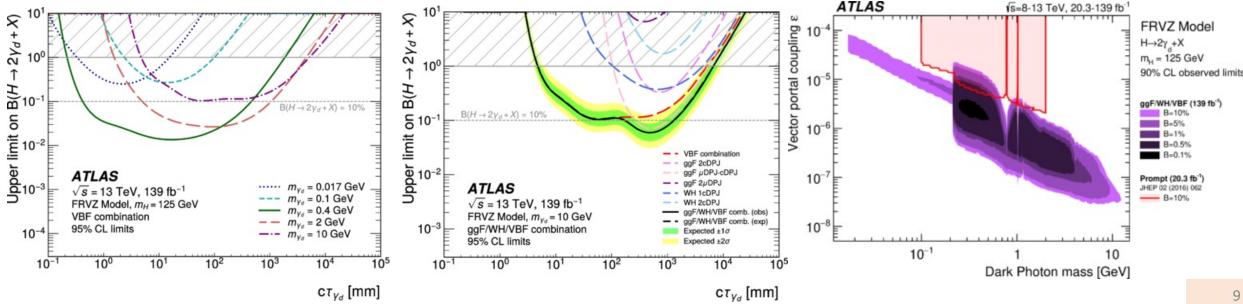

No significant deviations: an exclusion on the m(\tilde{t}) up to 800 GeV in optimal scenario; up to 600 GeV in compressed region

7

Single VLQ Top Partner in Multi-lep Final State Accepted by PRD

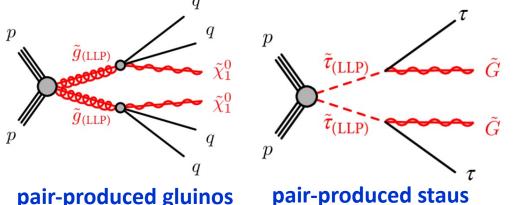

3/ Signal/Control/Validation Regions 2*l* Signal/Control/Validation Regions t-channel s-channel $\overline{b}/\overline{t}$ g2ℓCR2 2ℓCR3 2ℓVR1 2ℓVR2 2ℓSR 2ℓCR1 3ℓVV 3l/Mixed 3ℓttX 3ℓVR 3ℓSR = 2 OS-SF leptons with $|m(\ell \ell) - m_Z| < 10 \text{ GeV}$ \geq 3 leptons Preselection $p_{\rm T}(\ell \ell) > 200 {\rm ~GeV}, H_{\rm T} > 300 {\rm ~GeV}$ \geq 1 pair of OS-SF leptons with $|m(\ell \ell) - m_Z| < 10 \text{ GeV}$ Preselection ≥ 2 central jets $\geq 1 \text{ vRC jet}$ b-tagged jets 0 ≥ 2 ≥ 1 ≥ 1 $H_{\rm T} + E_{\rm T}^{\rm miss} < m_{\ell\ell J}$ 0 ≥ 1 ≥ 1 forward jets 0 W/Zforward jets ≥ 1 0 0 ≥ 1 0 ≥ 1 $\Delta \phi(Z, \ell_3) < \frac{\pi}{2} \mathbf{OR}$ $\Delta \phi(Z, \ell_3) > \frac{\pi}{2}$ AND ∆ø selections $\Delta \phi(Z, \ell_3) < 2.6$ $\Delta\phi(Z, \ell_3) < 2.6$ W/Z $\Delta \phi(Z, b_{\text{lead}}) < \frac{\pi}{2}$ $\Delta \phi(Z, b_{lead}) > \frac{\pi}{2}$ b-tagged jets 0 0 0 ≥ 1 ≥ 1 ≥ 1 $\max(p_T(\ell)) > 200 \text{ GeV}$ top-tagged jets ≥ 1 ≥ 1 ≥ 1 ≥ 1 _ _ other selections $p_{T}(\ell \ell) > 300 \text{ GeV}$ top-vetoed jets ≥ 1 ≥ 1 _ $H_T \cdot n(jets) < 6 \text{ TeV}$

- Dominant BKGs (2*t* sample) from Z+jets, and smaller contribution from VV and $t\bar{t}$, (3*t* sample) from VV, ttV, ttH;
- Signal and SM expectation: extracted from simultaneous binned profile likelihood fit in the discriminating variable $p_{T}(ee)$ on CRs and SRs;
- No significant deviation from SM → For M_T from 1000 to 1975 GeV, up limits of coupling κ from 0.22 and 0.64.

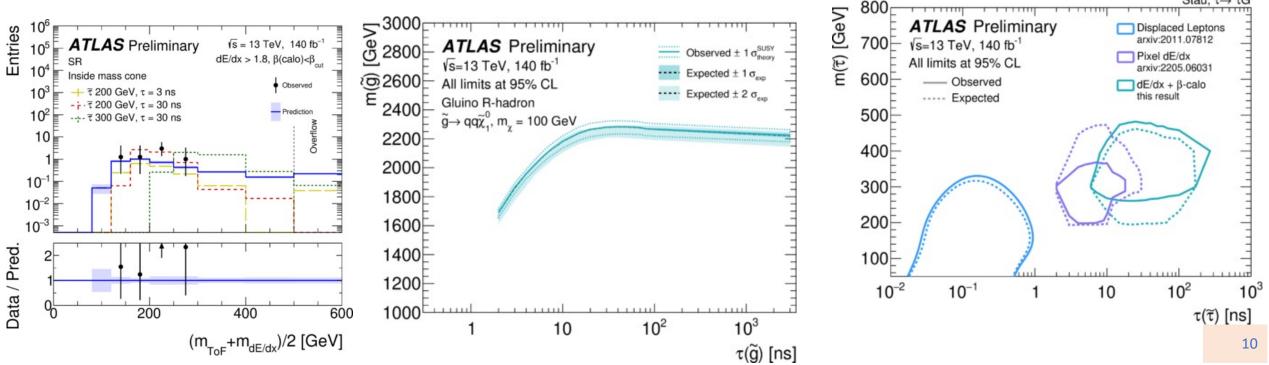


Long-Live Dark Photon

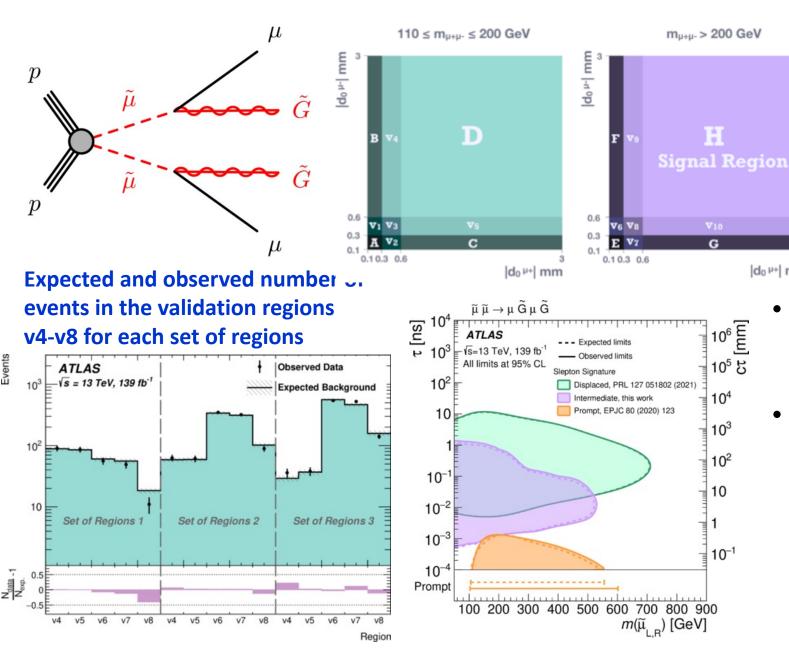
- Search for light long-lived dark photon from Higgs boson decays via VBF;
- QCD tagger based on NN to assign score to each caloDPJ (calorimeter dark-photo-jet);
- BIB tagger with similar strategy as QCD tagger to reduce beam-induced BKGs (BIB);
- Cosmic-ray tagger based on DNN to minimize BGK events from cosmic rays.



- BKGs are estimated by data driven techniques;
- Signal yield obtained from simultaneous maximum-likelihood fit to four (i.e., ABCD) regions;
- Data is consistent with expected BKGs



Massive, long-lived Charged Particles


ATLAS-CONF-2023-044

- Search for hypothetical massive, charged, long-lived particles
- Events with high-momentum isolated tracks with large dE/dx and low β_{ToF} → two independent mass measurements per candidate track m_{dE/dx} and m_{ToF} using βγ measured from dE/dx and ToF;
 BKGs modeled by using a data-driven technique from CRs and predicted BKGs compared in VRs to validate BKG modelling.
- No significant deviation from SM predictions \rightarrow 95% CL limits in $\tau(\tilde{g})/\tau(\tilde{\tau})$ vs m(\tilde{g})/m($\tilde{\tau}$) spaces, up to 2.3 TeV for m(\tilde{g}) & $\tau(\tilde{g})$ over 200 ns, while extended $\tau(\tilde{\tau})$ to 10 to 100 s depending on m($\tilde{\tau}$).

$\mu^+\mu^-$ with Small Displacement

Phys. Lett. B 846 (2023) 138172

- Search for $\mu^+\mu^-$ (pT > 20 GeV) from muon supersymmetric partner decays $(\tilde{\mu} \rightarrow \mu \tilde{G})$ motivated by GMSB SUSY models;
- Events categorized based on muon vertex and m_{u+u-}
- Extended ABCD method with gaps from data to estimate BKGs;

d₀ ^{µ+} mm

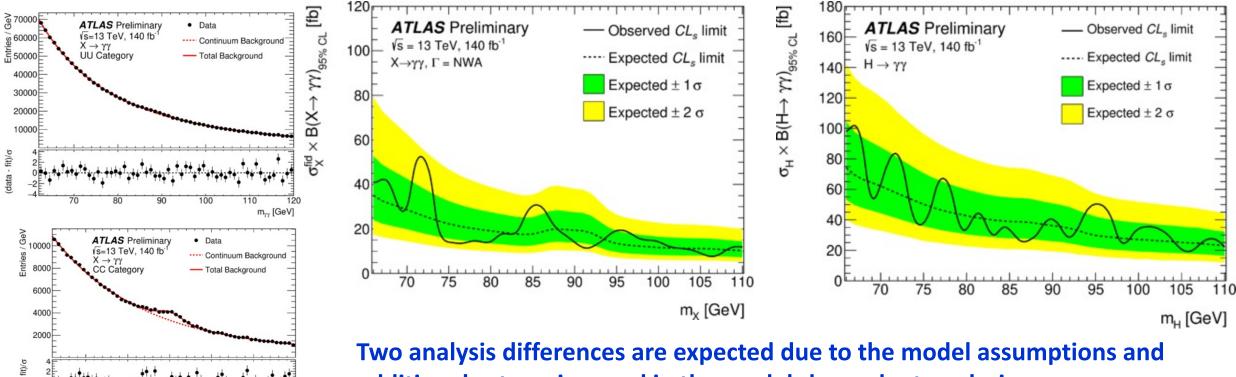
No surprise \rightarrow Set 95% CL limits in $\tilde{\mu}$ lifetime vs $m(\tilde{\mu})$ spaces, this work (pink area) fills some gap of previous searches with lifetime down to 1ps with m($\tilde{\mu}$)=100 GeV and m($\tilde{\mu}$) up to 520 GeV with $\tilde{\mu}$ lifetime 10 ps

Conclusion

- ATLAS searched for signatures of BMS including low mass resonances, new physics without resonances and long-live particles;
- Multivariable analysis widely used and enhances new physics searching sensitivities;
- No deviation is observed from the SM background predictions
- Still explore new experiment techniques together with Run 3 data of 13.6 TeV collisions → expecting many new exciting results with potential new physics discovery.

Backups

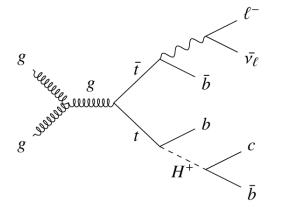
Next two slides of "Diphoton Resonances" and "Light Charged Higgs (m_{H±}<m_t): H[±]→cb", covered by Matteo Bauce, talk "Searching for additional Higgs bosons at ATLAS (12+3)" under https://indico.cern.ch/event/1382379/


 E_T^{miss}

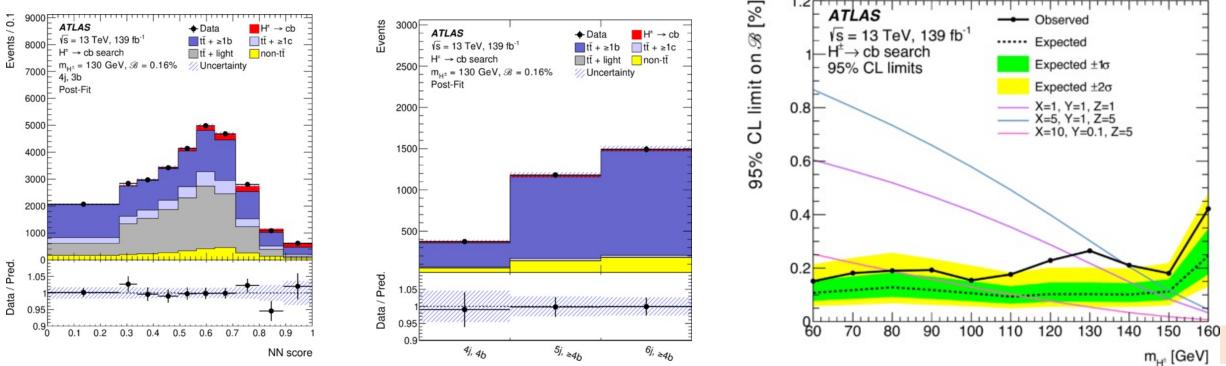
Diphoton Resonances

• BDT for photon–electron discrimination and diphoton BDT to categorize to 3 classes;

my [GeV]

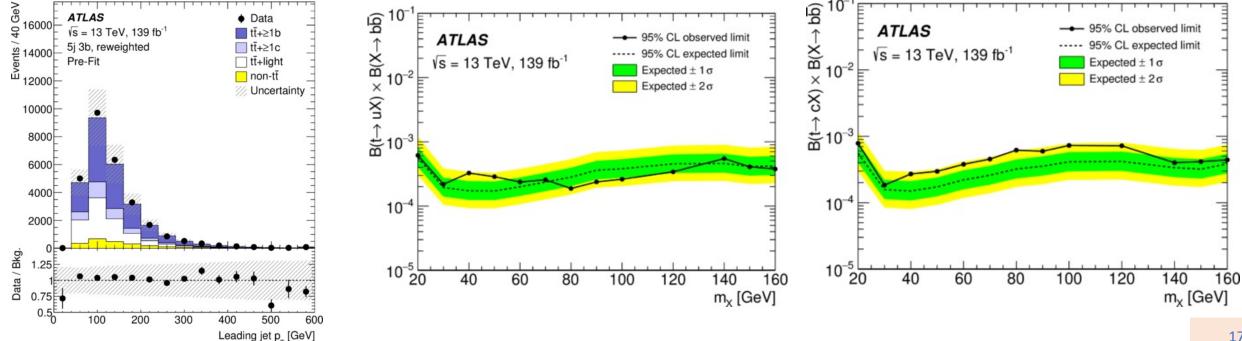

- 2 photons either converted (C) or unconverted (U) to electron pairs \rightarrow 9 categories (UU1/2/3, UC1/2/3 & CC1/2/3);
- Signals (66 to 110 GeV): narrow width approximation (NWA) modeled by a double-sided Crystal Ball function (DSCB), composed of a Gaussian core with power-law tails;
- BKG template by using $\gamma\gamma$ MC events and by fitting to γ +jet and jet+jet events from data of control region;
- No significant deviation from SM predictions
 → Upper limit of fiducial σ 8 to 53 fb (model independent) and total σ 19 to 102 fb (model dependent).

additional categories used in the model-dependent analysis


Light Charged Higgs $(m_{H^{\pm}} < m_t): H^{\pm} \rightarrow cb$

16

- <u>3HDM</u>: top pair production with one $t \rightarrow H^+b$, $H^+ \rightarrow cb$, another $t \rightarrow W^-b$;
- Signature: 1 lep (e, μ) + missing energy, at least 4-jets with 3 b-jets;
- 9 analysis regions based on jet and b-jet multiplicities to allows data-driven corrections to background *tt* (mis)modelling
- The signal extraction from a binned maximum likelihood fit to the final Neural Network (NN) discriminant on 3 SRs and 6 CRs


No significant excess beyond SM predictions \rightarrow an upper limit in the range 0.15–0.42% on Br(t \rightarrow H⁺b) for a charged m(H⁺) between 60 and 160 GeV (mild excess at $m_{H^+} = 130$ GeV, with local significance 3σ)

Scalar Resonance in FCNC $t \rightarrow qX$ (q=u/c), X→bb

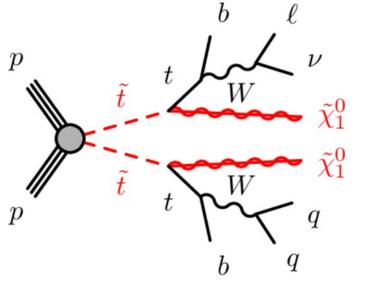
- Search new physics with SM strongly suppressed flavor change neutral current; •
- Signature: 1 lep (e, μ) + missing energy, at least 4-jets with 3 b-jets;
- 9 analysis regions based on jet and b-jet multiplicities to allows data-driven corrections to background *tt* (mis)modelling
- The signal extraction from a binned maximum likelihood fit to the final Neural Network (NN) discriminant on 3 SRs and 6 CRs

No significant resonance in FCNC observed \rightarrow an upper limit in the range 0.019–0.062% on Br(t \rightarrow uX) and 0.018% to 0.078% on Br(t \rightarrow cX) for a scalar m_x between 20 and 160 GeV.

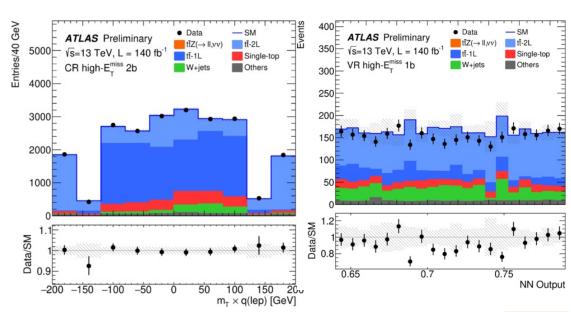
JHEP 07 (2023) 199 Removed, published on Jan. 10, 2023

W

X


q = u/c

Next two slides of "Dark Photon in Rare Z Decays", covered by Matteo Bauce, talk "Searches for Dark Matter with the ATLAS Experiment at the LHC (12+3)" under https://indico.cern.ch/event/1370675/ based on paper https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2023-22/


New Physics with tt+ E_T^{miss} , Analysis Strategy

ATLAS-CONF-2023-043

 Φ/a

- (Left) SUSY, Stop pair production;
 - (Right) Simplified benchmark model for the tt+DM production via a (pseudo)scalar mediator φ (a)
- One W→l(e/µ)v and another W→qq, signature 1 lep +multi-jets + 1/2 bjets + large missing transverse energy.
- Events to 8 category: High- E_T^{miss} 1b,High- E_T^{miss} 2b,2b+1t,1b-had-1t,1b-lep-1t,2b-0t,1b-had-0t,1b-lep-0t;
- Use Neural Network (NN) to reconstruct the hadronic top quark in the event in order to catch signals;
- Use NN score for defining regions and performing multi-fits on CRs+VRs (BKG validation, SRs+CRs (data compatibility, then results);
- The fit to data in different observables using independent normalization factors (NFs) to determine the main backgrounds in situ

g.0000000

New Physics with $tt+E_T^{miss}$, Results

100

0.1

5 10

ATLAS-CONF-2023-043

1000

1100

1200

m(t̃,) [GeV]

1300

Expected Limit (±1

----- JHEP04(2021)174 (exp)

– JHEP04(2021)174 (obs)

Observed Limit

t.t. production: $t_1 \rightarrow t\tilde{\chi}$, bW $\tilde{\chi}$

s=13 TeV. 140 fb⁻¹

imits at 95% CL

ATLAS Preliminary

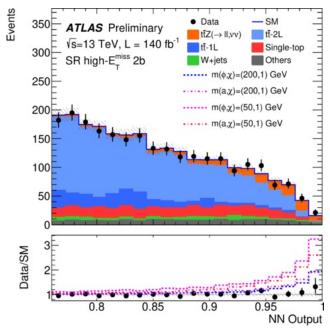
1000

900

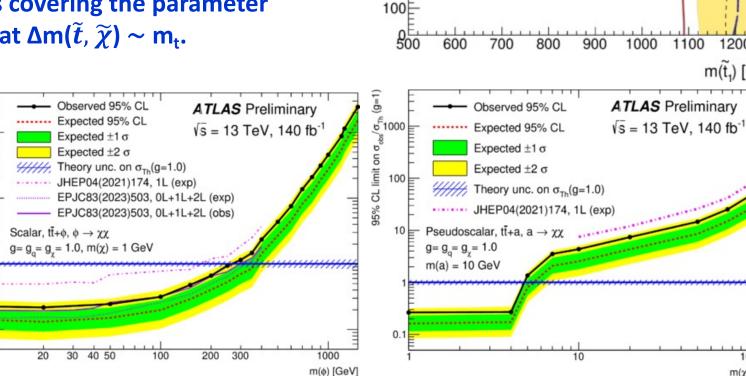
800

700

600Ē


500

400

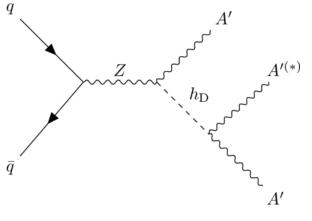

300

200

n(X₁⁰) [GeV]

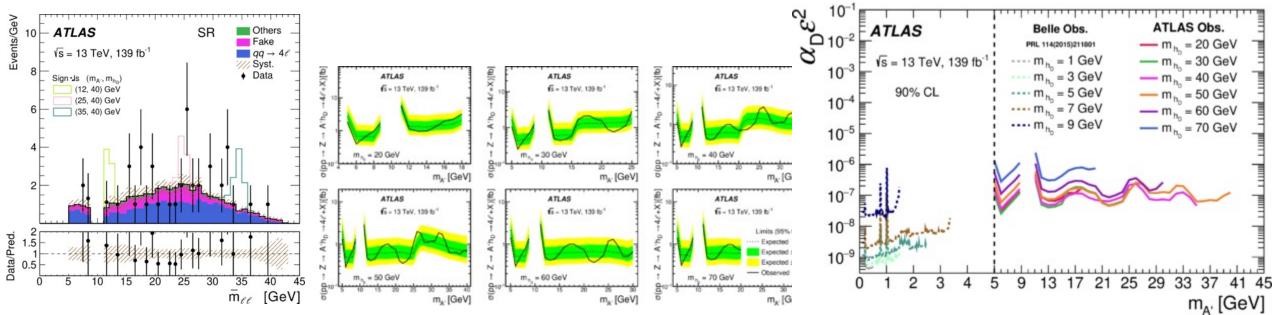
- No significant excess above the **Standard Model backgrounds**
- **Excluded stops for masses up to 1090 GeV, while exclude neutralinos** for masses up to 600 GeV;
- Significantly improved the sensitivity for high neutralino masses covering the parameter region at $\Delta m(\tilde{t}, \tilde{\chi}) \sim m_t$.

- For tt+DM searches, both limits on scalar and pseudoscaler are significantly improved in all parameter space;
- **Excluded scalar (pseudoscalar)** dark matter mediator masses as large as 250 (300) GeV;
- Set fraction predication limits at lower mediator masses.



100

Next slide of "Dark Photon in Rare Z Decays", covered by Matteo Bauce, talk "Searches for Dark Matter with the ATLAS Experiment at the LHC (12+3)" under https://indico.cern.ch/event/1370675/ based on paper https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-32/


Dark Photon in Rare Z Decays

- <u>The minimal secluded U(1) model predicts rare Z decaying to dark photon (A')</u> and dark Higgs (h_D) with $h_D \rightarrow A'A'$, two of A's decay to e or μ pairs.
- The first search for a dark photon and dark Higgs boson produced via the dark Higgs-strahlung process in rare Z boson decays at the LHC;
- Signature: at least two same-flavor opposite-charge lepton pairs (\geq 4 e/ μ) with consistent m_{II} of two lepton pairs by excluding Y(1s) and Y(3s) mass regions;
- Major BKG qq → 4l from simulation and fake-factor method from data driven to determine fake/non-prompt background of CR and VR.

No surprise \rightarrow set on the production cross-section times branching fraction, $\sigma(p \ p \rightarrow Z \rightarrow A'hD \rightarrow 4\ell + X)$, explore the dark photon to dark higgs coupling $\alpha_D \varepsilon^2$ space not previously excluded by other experiments.

Next slide of "Pair-production of VLQ Searches", covered by Marija Marjanovic, talk "Searches for Exotic Heavy Resonances with the ATLAS detector (12+3)" under https://indico.cern.ch/event/1370675/ based on paper https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-04/

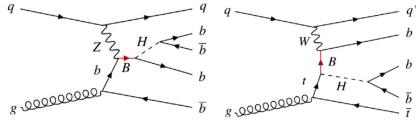
Single VLQ B Production, $B \rightarrow bH \rightarrow bbb$

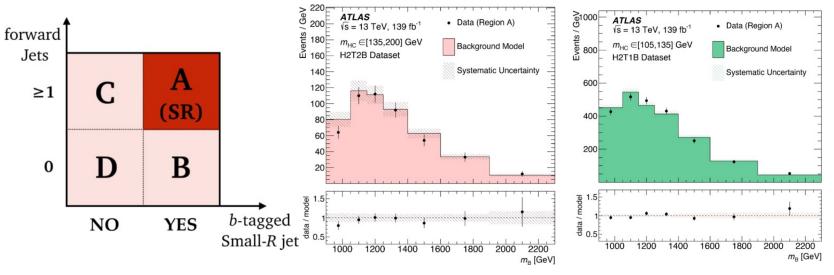
JHEP11 (2023) 168

2000

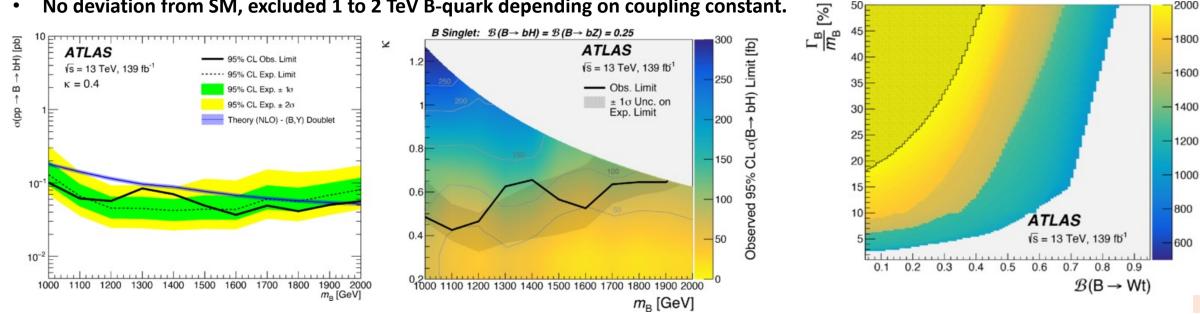
5

95%

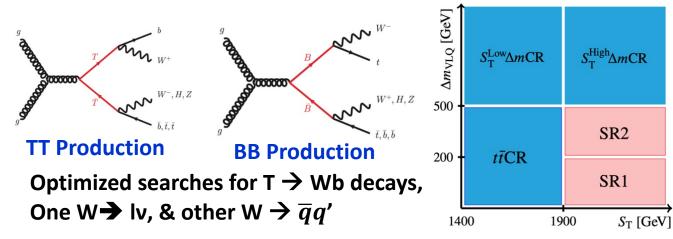

Limit


Mass

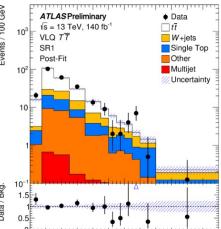
Observed


24

- s-channel & t-channel B production mediated by a *Z*/W boson
- Events: at least 3 b-jets, 1 forward jet, a Higgs candidate (HC, 2 trk-jets, reconstructed as a large-R jet)



- Data driven ABCD method is used for BKG modelling and is validated by control samples;
- Signals extracted by binned maximum-likelihood fit to m_B of reconstructed VLQ candidates;
- No deviation from SM, excluded 1 to 2 TeV B-quark depending on coupling constant.



Next slide of "Pair-production of VLQ Searches", covered by Marija Marjanovic, talk "Searches for Exotic Heavy Resonances with the ATLAS detector (12+3)" under https://indico.cern.ch/event/1370675/ based on paper https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-06/

Pair-production of VLQ Searches

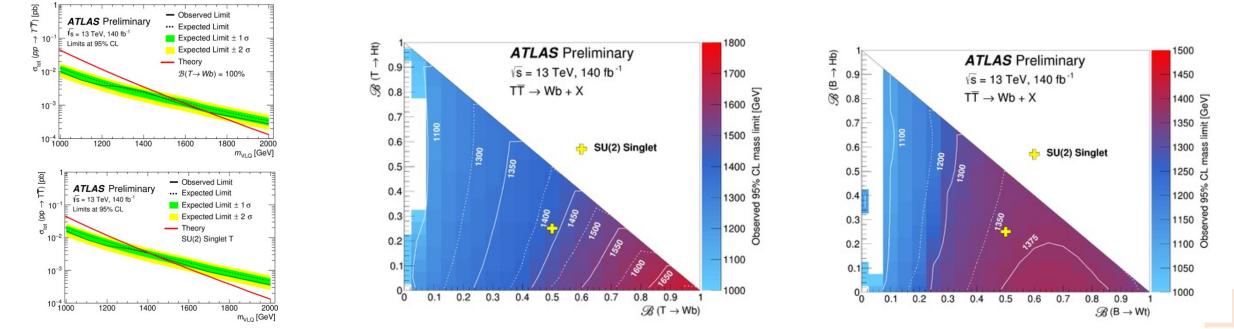
- Event: 1 μ /e with p_T > 27/60 GeV, E_T^{miss} > 60 GeV, at least 3 small-R jets, where >=1 b-tag jets;
- BKGs from tt, W+jets and t, Z+jets, VV with prompt lepton: MC with data driven corrections;
- BKG from multi-jet estimated using data driven approach.

ATLAS-CONF-2023-070

400

800

1200

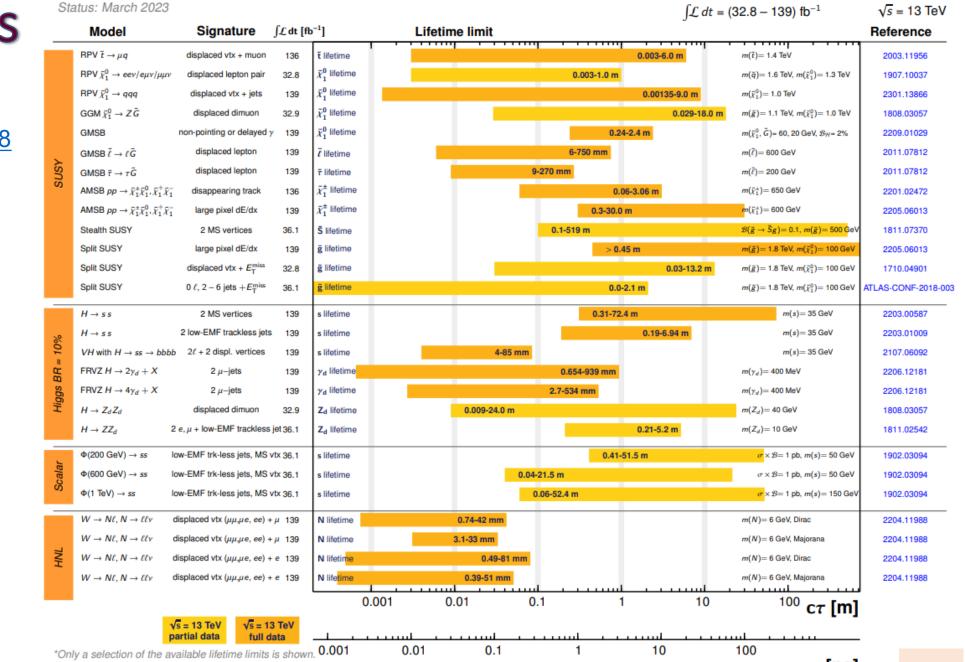

1600

2000 2400

m^{lep}_T [GeV]

26

- Signals extracted by simultaneous binned profile likelihood fit using the reconstructed m_T^{lep} distributions of the T candidate with W \rightarrow Iv on SRs and CRs;
- No deviation from SM → observed (expected) limits at 95% CL 1700 (1500) GeV for TT & 1420 (1410) GeV for singlet-T.



$\widetilde{H} \rightarrow h\widetilde{G} \rightarrow 2b\widetilde{G}$

- Signal: higgsino pair production with *H* into a Higgs[™] boson (→bb) and a nearly massless gravitino;
- Using $\geq 3 b$ -jets + E_T^{miss} events & BDT to discriminate between background and signal events
- Low mass (m_H<250GeV), BKGs from QCD multijet and *tt* using "ABDC" data driven method;
- Used multi-complementary bins;

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

LLP Searches @ATLAS ATL-PHYS-PUB-2023-008

 Rich physics and a lot of searches

28

 τ [ns]

ATLAS Preliminary